JPS59216076A - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JPS59216076A
JPS59216076A JP58089196A JP8919683A JPS59216076A JP S59216076 A JPS59216076 A JP S59216076A JP 58089196 A JP58089196 A JP 58089196A JP 8919683 A JP8919683 A JP 8919683A JP S59216076 A JPS59216076 A JP S59216076A
Authority
JP
Japan
Prior art keywords
radiation
ray
detector
radiation detector
entrance window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58089196A
Other languages
Japanese (ja)
Inventor
Yuzo Yoshida
吉田 祐三
Toshihiro Rifu
俊裕 利府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58089196A priority Critical patent/JPS59216076A/en
Publication of JPS59216076A publication Critical patent/JPS59216076A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/185Measuring radiation intensity with ionisation chamber arrangements

Abstract

PURPOSE:To guide low-energy photons of a radiation transmitted through a subject to a detecting element efficiently and to improve density resolution by using a carbon fiber-reinforced resin for an incidence window where the radiation is made incident. CONSTITUTION:A detecting element group 6 is installed in a detector case 4 and gaseous Xe is enclosed therein. This detector case 4 is made of, for example, aluminum. The X-ray incidence window 4a is formed of carbon fiber reinforced resin and fixed to the internal surface side of the detector case 4, i.e. the front surface of the incidence path of an X-ray fan beam to the detecting element group 6.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、放射線断J俗撮影に用いる放射線検出器に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a radiation detector used for radiographic tomography.

〔発明の技術的背景〕[Technical background of the invention]

放射線断層撮影装置の一つとしてコンピュータ・トモグ
ラフィ ((::o+nputerized ’l’o
mography :以下CT装置と略称する。)と呼
ばれる装置がある。
Computerized tomography (::o+nputerized 'l'o
mography: Hereinafter abbreviated as CT device. ) There is a device called.

この装置は第1図に示す如く例えば偏平なファンビーム
X線FXをパルス的に曝射するX線源1と、このX線を
検出する複数の放射線検出素子りを並設して成る放射線
検出器2とを被写体6を介して対峙させ、且つこれらX
線源1及び放射線検出器2を前記被写体6を中心に互い
に同方向に同一角速度で回転移動させ、被写体6断面の
種々の方向に対するX線吸収データを収集する。そして
十分なデータを収集した後、このデータを電子計算機で
解析し、被写体断面側々の位置に対するX線吸収率を算
出してその吸収率に応じた階調度で前記被写体断面を再
構成するようにしたもので、組成に応じて2000段階
にも及ぶ階調度で分析できるので、軟質組織から硬質組
織に至るまで明確な断層像が得られる。
As shown in Fig. 1, this radiation detection device consists of an X-ray source 1 that emits flat fan beam X-rays FX in a pulsed manner, and a plurality of radiation detection elements that detect the X-rays arranged in parallel. 2 through the subject 6, and these X
The radiation source 1 and the radiation detector 2 are rotated around the subject 6 in the same direction and at the same angular velocity to collect X-ray absorption data in various directions of the cross section of the subject 6. After collecting sufficient data, this data is analyzed by a computer, the X-ray absorption rate for the position on each side of the object cross section is calculated, and the object cross section is reconstructed with a gradation level corresponding to the absorption rate. With this system, analysis can be performed in as many as 2,000 gradation levels depending on the composition, so clear tomographic images can be obtained from soft tissues to hard tissues.

ところで、前記放射線検出器2は被写体6の断面を透過
したX線のエネルギを電離電流として検出し、これをX
線吸収データとして出力する。
Incidentally, the radiation detector 2 detects the energy of the X-rays transmitted through the cross section of the subject 6 as an ionizing current, and converts this into an
Output as line absorption data.

即ち、このX線吸収データの収集にあたっては、電離槽
を構成する各放射線素子とX線源とを結ぶ線上(これを
Xaババス言う)を透過してきたX線のエネルギを電離
電流として検出してこれを所定の時間積分し、その積分
値を所定の時定数の放電回路にて放電してその放電時間
値をX線吸収データとするものである。
In other words, in collecting this X-ray absorption data, the energy of the X-rays that have passed through the line connecting each radiation element making up the ionization tank and the X-ray source (this is called the Xa bus) is detected as an ionizing current. This is integrated over a predetermined time, and the integrated value is discharged in a discharge circuit with a predetermined time constant, and the discharge time value is used as X-ray absorption data.

最終的な再構成画像の良否は、放射線検出器のもつ感度
1分解能(空間分解能、密度分解能)で定まるため、停
れたCT装置を得るためには、高感度、高分能な放射線
検出器が要求される。
The quality of the final reconstructed image is determined by the sensitivity and resolution (spatial resolution and density resolution) of the radiation detector. is required.

〔背景技術の問題点〕[Problems with background technology]

前述したように、放射線検出器の具備すべき項目は、感
度、空間分解能、密度分解能の6点に代表される。この
うち感度はPL値(ガス圧×検出素子奥行長;atm−
cn1)で規定されるものであり、一般には60 at
m+1 crn程度で、その時のエネルギ吸収効率は4
0〜60%である。1だ、空間分解能は、電極素子配列
ピッチにより規定されるものであり、0.5問〜0.6
 mpn径の物質が検知されれば優秀とされている。
As mentioned above, the items that a radiation detector should have are represented by six points: sensitivity, spatial resolution, and density resolution. Among these, the sensitivity is the PL value (gas pressure x detection element depth; atm-
cn1), and generally 60 at
m+1 crn, the energy absorption efficiency at that time is 4
It is 0-60%. 1, the spatial resolution is defined by the electrode element arrangement pitch, and is 0.5 to 0.6
It is considered excellent if a substance with a diameter of mpn is detected.

密度分解能は、臨床においていかに密度差の小さい物質
が識別できるかの能力であるが、その能力の良否はX線
入射窓を透過して検出素子に到達する低エネルギフォト
ンに比例する。なぜなら、白質と灰白質との線吸収係数
Ccrn−” )差は、低エネルギにおいて有意差を生
ずるからである。
Density resolution is the ability to distinguish substances with small density differences in clinical practice, and the quality of this ability is proportional to the low-energy photons that pass through the X-ray entrance window and reach the detection element. This is because the difference in linear absorption coefficient Ccrn-'') between white matter and gray matter produces a significant difference at low energy.

しかしながら、一般には前記低エネルギフォトンは、検
出素子に到達する前にX線入射窓に吸収されてしまう。
However, the low-energy photons are generally absorbed by the X-ray entrance window before reaching the detection element.

従来は、X線入射窓に比較的X線透過率の良好なアルミ
ニウムが用いられていたが、さらに密度分解能の向上を
図るためには他の新たな部材の提供が望まれていた。
Conventionally, aluminum, which has a relatively good X-ray transmittance, has been used for the X-ray entrance window, but in order to further improve the density resolution, it has been desired to provide other new materials.

〔発明の目的〕[Purpose of the invention]

この発明は、前記事情に鑑みて成されたものであり、被
写体を透過した放射線の低エネルギフォトンを効率よく
検出素子に到達させ、もって密度分解能の向上を図るこ
とができる放射線検出器を提供することを目的とするも
のである。
The present invention has been made in view of the above circumstances, and provides a radiation detector capable of efficiently allowing low-energy photons of radiation transmitted through an object to reach a detection element, thereby improving density resolution. The purpose is to

〔発明の概要〕[Summary of the invention]

この発明に係る放射線検出器は、少なくとも放射線の入
射する入射窓を炭素繊維強度樹脂で形成して前記目的を
達成するものである。
The radiation detector according to the present invention achieves the above object by forming at least the entrance window through which radiation enters from carbon fiber strength resin.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

先ず、この発明に係る放射線検出器の入射窓に適用すべ
き炭素繊維強度樹脂((::arbon FiberR
einforcetl Plastics ;以下CF
RPと略記する〕について説明する。
First, carbon fiber strength resin ((::arbon Fiber®) to be applied to the entrance window of the radiation detector according to the present invention
einforcetl Plastics;hereinafter CF
(abbreviated as RP)] will be explained.

CFRPはアクリル繊維、レーヨン繊維等を高温(20
0〜6〔〕o℃)で炭炎゛化し、更に昇高(700〜1
800℃)して炭化させた炭素繊維ヲレシン(エポキシ
樹脂等)で含浸したものである。そして、その体積含有
率は繊維60%、レジン40q6が一般的である。
CFRP is made by heating acrylic fibers, rayon fibers, etc. at high temperatures (20
It becomes charcoal at a temperature of 0 to 6 [oC] and further increases in temperature (700 to 1 oC).
800° C.) and impregnated with carbonized carbon fiber resin (epoxy resin, etc.). The volume content is generally 60% fiber and 40q6 resin.

この発明の目的を達成するためには、CFRP。To achieve the purpose of this invention, CFRP.

X線透過率が従来の部材たるAlよりも優れたものでな
ければならない。従来の部材たるAlは、エネルギ60
 KeVでX線吸収係数P = 0.27 cm−”で
あった。これに対しCFRPOX線透過率は、エネルギ
60 Ke’V 〜100 KeVにおいてA/a量で
10倍程度優れている。従って、低エネルギフォトンの
透過率が極めて向上し、密度分解能の向上が図れるので
ある。
The X-ray transmittance must be superior to that of Al, which is a conventional material. Al, which is a conventional member, has an energy of 60
The X-ray absorption coefficient P = 0.27 cm-'' at KeV. On the other hand, the CFRPOX X-ray transmittance is about 10 times better in A/a amount at energies of 60 Ke'V to 100 KeV. Therefore, The transmittance of low-energy photons is greatly improved, and density resolution can be improved.

丑だ、放射線検出器は、高圧Xeガスを封入した電^1
箱式が一般的であるため、放射線検出器の外皮を形成す
るCFRPの機械的強度が要求される。
Hell, the radiation detector is an electric wire filled with high-pressure Xe gas.
Since the box type is common, the mechanical strength of the CFRP that forms the outer skin of the radiation detector is required.

CFRPの引張強度は、その繊維方向に対して120K
F/j+7であり、Mの引張強度’;50にグ/mAに
対して強度の面からも十分優れた特性を有している。
The tensile strength of CFRP is 120K in the fiber direction.
F/j+7, and the tensile strength of M is 50 g/mA, which has sufficiently excellent properties from the viewpoint of strength.

さらに、CFRPの弾性率は約12000にダ/−であ
り、その加工性についても劣ることがない。
Furthermore, the elastic modulus of CFRP is about 12,000 da/-, and its workability is also not inferior.

このように、CFRPは従来の部利たるMと比較して放
射線透過率及び強度の面において数段fりれている。
As described above, CFRP is several steps superior to M, which is a conventional material, in terms of radiation transmittance and strength.

次に、前記CFRPを用いた放射線検出器の一例を第2
図乃至第4図を参照して説明する。
Next, a second example of the radiation detector using the CFRP is shown.
This will be explained with reference to FIGS. 4 to 4.

第2図はこの発明に係るX線検出器の概略斜視図、第6
図はX線検出器の断面図である。第2図において、X線
検出器2は、検出器プレート5に固着された検出器ケー
ス4と、該検出器ケース4の一部に設けられ、角度θの
X線ファンビームFXを入射するX線入射窓4aとから
成っている。また、第6図に示すように、前記検出器ケ
ース4の内部には、検出素子群6が収納配置されると共
にXeガスが密封されるようになっている。この検出器
ケース4は、例えばアルミニウムより形成される。前記
X線入射窓4aは、CFRPより形成され、前記検出器
ケース4の内面側であって、前記検出素子群6への前記
X線ファンビームFXの入射経路(図示矢印A方向)前
面に固着される。尚、検出器ケース4への前記X線入射
窓4aの固着は、内部のXeガス漏れを防止するために
、検出器ケース4とXi!i!i1入射窓4aとの間に
シート状の接着剤を加熱下で圧着するようにしてもよい
、以上のように構成されたX線検出器20作用について
説明する。本実施例においてxi入射窓4aにCFRP
を適用することにより、X線入射窓4aでの低エネルギ
フォトンの透過率が向上し、密度分解能の向上を図るこ
とができる。これを第4図を参照して説明する。第4図
は、被検体を透過したX線フォンビームのフォトンエネ
ルギを横軸にとり、X線入射窓4aを介して検出素子群
6で検出される吸収スペクトル強度を縦軸にとったシュ
ミレーション結果を示す特性図である。第4図において
、図示7はX線入射窓4aの前面におけるxhスペクト
ルを示している。また、図示8.9は、それぞれX線入
射窓4aをCFRP 、アルミニウムで同じ厚さに形成
した際に、X線入射窓4aを透過して得られる検出素子
群6でのX線吸収スペクトルを示している。第4図から
明らかなように、CFRPよ構成るX線入射窓4aを用
いれば、従来のものに比して低エネルギ側での吸収は1
5〜20%向上することがわかる。このため、低エネル
ギフォトンの吸収が向上し、吸収係数差の微小な白質、
灰白質の識別が可能となり臨床的に有効なデータを提供
することが可能となる。まだ、CFRPはX線透過率が
良好であるため、検出素子群6に到達するX線量が増加
してS/Nの向上をも図ることができる。
FIG. 2 is a schematic perspective view of the X-ray detector according to the present invention, and FIG.
The figure is a cross-sectional view of the X-ray detector. In FIG. 2, the X-ray detector 2 includes a detector case 4 fixed to a detector plate 5, and an It consists of a line entrance window 4a. Further, as shown in FIG. 6, a detection element group 6 is housed inside the detector case 4, and Xe gas is sealed therein. This detector case 4 is made of aluminum, for example. The X-ray entrance window 4a is formed of CFRP, and is fixed to the inner surface of the detector case 4 and to the front surface of the incident path (direction of arrow A in the figure) of the X-ray fan beam FX to the detection element group 6. be done. The X-ray entrance window 4a is fixed to the detector case 4 in order to prevent Xe gas leakage inside the detector case 4 and Xi! i! The operation of the X-ray detector 20 configured as above, in which a sheet-like adhesive may be pressed under heat between the X-ray detector 20 and the i1 entrance window 4a, will be described. In this embodiment, the xi entrance window 4a is made of CFRP.
By applying this, the transmittance of low-energy photons at the X-ray entrance window 4a is improved, and density resolution can be improved. This will be explained with reference to FIG. FIG. 4 shows simulation results in which the horizontal axis represents the photon energy of the X-ray Phong beam transmitted through the subject, and the vertical axis represents the absorption spectrum intensity detected by the detection element group 6 through the X-ray entrance window 4a. FIG. In FIG. 4, illustration 7 shows the xh spectrum in front of the X-ray entrance window 4a. In addition, Figure 8.9 shows the X-ray absorption spectrum at the detection element group 6 obtained by passing through the X-ray entrance window 4a when the X-ray entrance window 4a is made of CFRP and aluminum with the same thickness. It shows. As is clear from FIG. 4, if the X-ray entrance window 4a made of CFRP is used, the absorption on the low energy side is 1 compared to the conventional one.
It can be seen that the improvement is 5 to 20%. Therefore, the absorption of low-energy photons is improved, and white matter with a small difference in absorption coefficient,
It becomes possible to identify gray matter and provide clinically effective data. However, since CFRP has good X-ray transmittance, the amount of X-rays reaching the detection element group 6 increases, and the S/N ratio can also be improved.

この発明は前記実施例に限定されるものでは々く、この
発明の要旨の範囲内で種々の変形例を包含することは言
うまでもない。前記実施例では一例としてX線検出器に
ついて説明したが、他の放射耗!について適用できるこ
とは言う寸でもない。
It goes without saying that the present invention is not limited to the embodiments described above, and includes various modifications within the scope of the gist of the invention. In the above embodiments, an X-ray detector was explained as an example, but other types of radiation wear may also be used! There is not much that can be applied to this.

また、放射線検出器の構造としては、前記実施例に限ら
ず、自’r 5図乃至第7図に示す拝r造とすることも
できる。第5図に示す放射線検出器は、放射線入射窓部
10aを含めて検出器ケース10をアルミニウムで一体
形成しである。そして、前記放射線入射窓部10 a 
”f薄肉成形とし、その外面に所定厚みのCFRPを重
ねて補強したものである。
Further, the structure of the radiation detector is not limited to the above-mentioned embodiment, but may also be of the structure shown in FIGS. 5 to 7. In the radiation detector shown in FIG. 5, a detector case 10 including a radiation entrance window 10a is integrally formed of aluminum. And the radiation entrance window 10 a
It is thin-walled and reinforced by overlaying CFRP of a predetermined thickness on its outer surface.

このような構成によっても、放射線入射窓をアルミニウ
ム(4i独で形成し、かつ、所定強度を有する放射線検
出器よりも放射線透過率は良好である。
Even with such a configuration, the radiation transmittance is better than that of a radiation detector in which the radiation entrance window is made of aluminum (4i) and has a predetermined strength.

また、CF RPの強度及び加工性がアルミニウムより
も優れていることから、放射線検出器を第6図。
In addition, since the strength and workability of CF RP are superior to that of aluminum, radiation detectors are used in Figure 6.

第7図に示す構造とすることもできる。第6図に示す放
射線検出器は、放射線入射窓部12aを含めた検出器ケ
ースの内皮をCFRP12で薄肉形成し、放射線入射窓
部12aを除く他の部分の外面をレジン(エポキシ樹脂
等)16で補強したものである。一方、第7図に示す放
射線検出器は、放射線入射窓14aを薄肉形成して検出
器ケース全体をCFRP 14で形成したものである。
The structure shown in FIG. 7 may also be used. In the radiation detector shown in FIG. 6, the inner skin of the detector case including the radiation entrance window 12a is made of a thin CFRP 12, and the outer surface of the other parts except the radiation entrance window 12a is made of resin (epoxy resin etc.) 16. It has been reinforced with. On the other hand, in the radiation detector shown in FIG. 7, the radiation entrance window 14a is made thin and the entire detector case is made of CFRP 14.

CFRPは加工性につい−でも劣ることがないので、検
出器ケースと[〜ての加工も容易であり、かつ、その強
度も優れているため検出器ケース全体を形成しても高圧
Xeガスを安全に密封保持できる。
CFRP has no inferiority in workability, so it is easy to process the detector case and [...], and its strength is also excellent, making it safe for high-pressure Xe gas even when the entire detector case is formed. Can be kept sealed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によると次のような効果
を奏することができる。
As explained above, according to the present invention, the following effects can be achieved.

■ 検出素子における放射線の低エネルギ側の吸収が増
加するだめ、吸収係数差の微小な白質。
■ White matter has a small difference in absorption coefficient due to increased absorption of radiation on the low energy side by the detection element.

灰白質の識別が可能となり、即ち密度分解能が向上する
ことにより臨床的に有効なデータの収集が可能となる。
Gray matter can be distinguished, that is, density resolution can be improved, making it possible to collect clinically useful data.

■ 入射窓のX線透過率が向上するため、検出素子に到
達するX線量が増大しシへか向上する。
- Since the X-ray transmittance of the entrance window is improved, the amount of X-rays reaching the detection element increases and the radiation efficiency is improved.

■ CF″BPは、強度及び加工性についても優れてい
るだめ検出素子を包含する外皮全体をCFRPで形成す
ることができる。
(2) CF''BP has excellent strength and workability, and the entire outer skin including the defect detection element can be made of CFRP.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCT装置を示す概略説明図、第2図は放射線検
出器の概略斜視図、第6図はこの発明に係る放射線検出
器の1所面図、第4図はこの発明に係る放射線検出器の
シュミレーション結果を示す特性図、第5図乃至第7図
は放射線検出器の変形例を示す断面図である。 2・・・放射線検出器、  4・・・検出器ケース、4
a・・・入射窓、  6・・・検出素子群。
FIG. 1 is a schematic explanatory diagram showing a CT apparatus, FIG. 2 is a schematic perspective view of a radiation detector, FIG. 6 is a top view of the radiation detector according to the present invention, and FIG. 4 is a radiation detector according to the present invention. Characteristic diagrams showing simulation results of the detector, and FIGS. 5 to 7 are cross-sectional views showing modified examples of the radiation detector. 2... Radiation detector, 4... Detector case, 4
a...Incidence window, 6...Detection element group.

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも放射線の入射する入射窓を炭素繊維強
度樹脂で形成したことを特徴とする放射線検出器。
(1) A radiation detector characterized in that at least an entrance window through which radiation enters is formed of carbon fiber strength resin.
(2)前記放射線検出器は、検出器の外皮全体を炭素繊
維強度樹脂で形成したことを特徴とする特許請求の範囲
第1項に記載の放射線検出器。
(2) The radiation detector according to claim 1, wherein the entire outer skin of the radiation detector is made of carbon fiber strength resin.
JP58089196A 1983-05-23 1983-05-23 Radiation detector Pending JPS59216076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58089196A JPS59216076A (en) 1983-05-23 1983-05-23 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58089196A JPS59216076A (en) 1983-05-23 1983-05-23 Radiation detector

Publications (1)

Publication Number Publication Date
JPS59216076A true JPS59216076A (en) 1984-12-06

Family

ID=13963956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58089196A Pending JPS59216076A (en) 1983-05-23 1983-05-23 Radiation detector

Country Status (1)

Country Link
JP (1) JPS59216076A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257598A (en) * 2004-03-15 2005-09-22 Kawasaki Heavy Ind Ltd X-ray ion chamber detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257598A (en) * 2004-03-15 2005-09-22 Kawasaki Heavy Ind Ltd X-ray ion chamber detector
JP4498779B2 (en) * 2004-03-15 2010-07-07 川崎重工業株式会社 X-ray ion chamber detector and X-ray detector

Similar Documents

Publication Publication Date Title
US4247774A (en) Simultaneous dual-energy computer assisted tomography
Van de Casteele et al. A model-based correction method for beam hardening artefacts in X-ray microtomography
Phelps et al. Correlation of effective atomic number and electron density with attenuation coefficients measured with polychromatic x rays
US7881424B2 (en) Method for calibrating dual-energy CT system and method of image reconstruction
A. Brooks et al. Split-detector computed tomography: a preliminary report
US20120069952A1 (en) System and method of spectral calibration and basis material decomposition for x-ray ct systems
US7809103B2 (en) Method for detecting the presence of high atomic number elements
JP2009508616A (en) CT image forming system
US7050530B2 (en) Method and apparatus for the spatially-resolved determination of the element concentrations in objects to be examined
Rapaport et al. A dual-mode industrial CT
US10429323B2 (en) Method and apparatus for performing multi-energy (including dual energy) computed tomography (CT) imaging
JPS59216076A (en) Radiation detector
JPH0479433B2 (en)
JPS60220049A (en) Calclator tomography apparatus
Avila et al. Contrast cancellation technique applied to digital x‐ray imaging using silicon strip detectors
Lopes et al. Neutron computerized tomography in compacted soil
Hassler et al. X-ray dual-energy calibration based on estimated spectral properties of the experimental system
Grätz et al. Time-gated x-ray tomography
JPS6253639A (en) Radiation imaging method and apparatus
JPS6089054A (en) Radiation detector
US4256965A (en) High energy fluoroscopic screen
Tsutsui et al. Measurement of X-ray spectrum using a small size CdTe multichannel detector
Suparta et al. Application of computed tomography to quality inspection of brass alloy
JP2917269B2 (en) X-ray CT scintillator material
JPS6074253A (en) Radioactive ray detector