JPH0258203B2 - - Google Patents

Info

Publication number
JPH0258203B2
JPH0258203B2 JP57035266A JP3526682A JPH0258203B2 JP H0258203 B2 JPH0258203 B2 JP H0258203B2 JP 57035266 A JP57035266 A JP 57035266A JP 3526682 A JP3526682 A JP 3526682A JP H0258203 B2 JPH0258203 B2 JP H0258203B2
Authority
JP
Japan
Prior art keywords
carbon
cilia
particles
fine
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57035266A
Other languages
Japanese (ja)
Other versions
JPS58156513A (en
Inventor
Shohachi Kawakado
Makoto Egashira
Hiroaki Katsuki
Yasuki Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP57035266A priority Critical patent/JPS58156513A/en
Publication of JPS58156513A publication Critical patent/JPS58156513A/en
Publication of JPH0258203B2 publication Critical patent/JPH0258203B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、微粒状または微粉状の炭素基体の表
面上に、炭化水素の熱分解による気相成長法によ
り高強度、高弾性率の微小炭素繊毛を密生した海
胆状(または毬藻状または毬栗状)の形態をもつ
炭素材にかかわるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a sea bile-like structure in which fine carbon cilia with high strength and high elastic modulus are densely grown on the surface of a fine granular or powdered carbon substrate by a vapor phase growth method using thermal decomposition of hydrocarbons. This refers to carbon materials that have a cone-like or cone-like shape.

さきに本発明者らは炭化水素を非酸化性雰囲気
中で700―1500℃で熱分解するに際して硫黄また
は硫黄化合物を共存させ高強度・高弾性率の炭素
繊維を高収率で製造できることを見出した(特開
昭56−118913号公報)。とくに炭化水素としてナ
フタレン、アントラセンなどの多芳香環化合物を
炭素源として用いた場合に、硫黄または硫黄化合
物の共存下に気相成長反応を行うと、炭素繊維が
10〜数10%の高い収率で得られることを示した。
本発明者らは、今回さらに気相成長炭素繊維の基
体として微粒状または微小粉状炭素材を選び炭化
水素として一酸化炭素、メタン、エタン、エチレ
ン、アセチレン、プロパン乃至ベンゼンなど比較
的炭素数の少い低級炭化水素を用い、硫黄または
硫黄化合物の共存下に700―1500℃で熱分解を行
つた場合に、以下に説明するような優れた性能と
用途をもち、とくにプラスチツクス・金属および
無機材料を母材とする複合材料用(分散)強化材
として最適の毬藻状(または海胆状または毬栗
状)の形態をもつ微小炭素材が生成することを見
出した。
Previously, the present inventors discovered that carbon fibers with high strength and high modulus of elasticity can be produced in high yield by coexisting sulfur or sulfur compounds when hydrocarbons are thermally decomposed at 700-1500°C in a non-oxidizing atmosphere. (Japanese Unexamined Patent Publication No. 118913/1983). In particular, when a polyaromatic ring compound such as naphthalene or anthracene is used as a carbon source and a vapor phase growth reaction is carried out in the presence of sulfur or sulfur compounds, carbon fibers are
It was shown that it could be obtained with a high yield of 10 to several tens of percent.
The present inventors further selected a fine granular or fine powder carbon material as the substrate of the vapor-grown carbon fiber, and used hydrocarbons with relatively high carbon numbers such as carbon monoxide, methane, ethane, ethylene, acetylene, propane, and benzene. When thermal decomposition is carried out at 700-1500℃ using a small amount of lower hydrocarbons in the coexistence of sulfur or sulfur compounds, it has excellent performance and uses as described below, especially for plastics, metals, and inorganic materials. We have discovered that a microcarbon material with a cone-like (or sea gall-like or cone-like) morphology is produced that is optimal as a (dispersion) reinforcing material for composite materials using this material as a matrix.

炭化水素の熱分解による、所謂気相成長法と呼
ばれる炭素繊維の生成は、たとえば100Å前後の
鉄粒子の共存下に、炭素、シリカ、アルミナ、ム
ライト質などの耐熱性基体上で1000―1100℃にお
いてベンゼン蒸気をH2などの還元性雰囲気中で
熱分解する際に起ることがよく知られている。こ
のようにして得られた炭素繊維の引張強度と弾性
率は、ポリアクリロニトリル、レーヨン、ピツチ
などの有機高分子繊維の焼成によつて得られる炭
素繊維と略々同等の値を示すこともわかつてい
る。従つて、気相成長法の炭素繊維も複合材料用
強化材として有望視されているが、末だその製造
法における炭素収率が低く工業化されるまでに至
つていない。
Carbon fibers are produced by thermal decomposition of hydrocarbons using the so-called vapor phase growth method, for example, on a heat-resistant substrate such as carbon, silica, alumina, or mullite in the coexistence of iron particles of around 100 Å at temperatures of 1000-1100°C. It is well known that this occurs when benzene vapor is thermally decomposed in a reducing atmosphere such as H2 . It is also known that the tensile strength and elastic modulus of the carbon fibers obtained in this way are approximately equivalent to those of carbon fibers obtained by firing organic polymer fibers such as polyacrylonitrile, rayon, and pitch. There is. Therefore, although carbon fiber produced by vapor phase growth is also seen as a promising reinforcing material for composite materials, it has not yet been industrialized due to the low carbon yield of the production method.

本発明者らは優れた引張強度と弾性率を有する
微小な気相成長炭素繊毛を非常に高い生成密度で
微小な炭素基体の表面上に成長させた海胆状炭素
微粒を製造しうる方法を見い出した。これらの炭
素材がプラスチツクス・金属および無機材料を母
材とする複合材料用(分散)強化材として、粒子
強化性と繊維強化性の両性能を同時に発揮できる
だけでなく母材と強化材の接着性の点から単なる
炭素微粒子に較べて遥かに優れていることは明ら
かである。
The present inventors have discovered a method for producing sea bile-like carbon microparticles in which microscopic vapor-grown carbon cilia with excellent tensile strength and elastic modulus are grown on the surface of a microscopic carbon substrate at a very high production density. Ta. These carbon materials can be used as (dispersed) reinforcing materials for composite materials with plastics, metals, and inorganic materials as base materials, and not only can they simultaneously exhibit both particle and fiber reinforcement properties, but also have excellent adhesion between the base materials and reinforcement materials. It is clear that they are far superior to simple carbon particles in terms of properties.

本発明者らがすでに特開昭56−118913号公報に
おいて述べているように、硫黄乃至硫黄化合物の
共存下に、炭化水素を熱分解し、耐熱性基板の表
面上に成長させた炭素繊維は直径が通常10乃至
100μmを示し、一般に、たとえば基体として数
μmから数100μmの直径をもつ炭素粒を用いた場
合には、炭素粒の直径と略々同じかそれ以上の直
径をもつ炭素繊維を生成する。従つて本発明の目
的に適した形態と仕様をもつ炭素繊毛としては、
その繊維の直径が過大である。また生成繊維の長
さも数mmより数cm、希には数10cmに達し、基体と
しての炭素粒子の大きさに較べて過大である。従
つてまた、直径と長さが比較的微小な繊維を生成
させることができた場合でも炭素粒1個当りの生
成炭素繊維の本数も数本乃至数10本に過ぎない。
本発明の複合材料用強化炭素材とは、平均直径が
10μm以下の微小繊毛が、数μmから数100μmの平
均粒径をもつ炭素粒の1個当り100―1000本(平
均生成密度として炭素粒の表面積1mm2当り100本
以上)の割合で密生した海胆状微小炭素粒であ
る。本発明者らは、このような形態と仕様をもつ
複合材料用強化炭素材を製造する目的をもつて各
種の炭素材について実験条件に関する探索研究を
つづけた結果、本発明を完成させたものである。
As the inventors have already described in Japanese Patent Application Laid-Open No. 118913/1983, carbon fibers grown on the surface of a heat-resistant substrate by thermally decomposing hydrocarbons in the coexistence of sulfur or sulfur compounds are The diameter is usually 10 to
100 μm, and generally, for example, when carbon grains with a diameter of several μm to several 100 μm are used as a substrate, carbon fibers with a diameter approximately equal to or larger than the diameter of the carbon grains are produced. Therefore, carbon cilia having a form and specifications suitable for the purpose of the present invention include:
The fiber diameter is too large. Furthermore, the length of the produced fibers ranges from several mm to several centimeters, and in rare cases reaches several tens of centimeters, which is excessive compared to the size of the carbon particles serving as the base material. Therefore, even if it is possible to produce fibers with relatively small diameters and lengths, the number of carbon fibers produced per carbon grain is only a few to several dozen.
The reinforced carbon material for composite materials of the present invention has an average diameter of
Sea galls are densely populated with microcilia of less than 10 μm at a ratio of 100 to 1000 microcilia per carbon grain with an average particle diameter of several μm to several 100 μm (average production density of 100 or more cilia per 1 mm2 of carbon grain surface area). It is a microscopic carbon grain. The present inventors have completed the present invention as a result of continuing exploratory research on experimental conditions for various carbon materials with the aim of manufacturing reinforced carbon materials for composite materials having such a form and specification. be.

本発明の複合材料用強化炭素材の製造が可能と
なつたのは、次のような基本的必要条件が満たさ
れたからである。すなわち、気相成長法による炭
素繊維の炭素基体表面における生成密度を高くす
るためには炭素繊毛の収率が著しく高く且、各炭
素繊毛の直径と長さが炭素基体に較べて適当な大
きさでなければならないことである。気相成長法
の炭素繊維の収率は、従来の製造方法では収率自
体の測定値が明確でなくこのことは従来の製造方
法の収率が極めて低いことを示すものに外ならな
い。
The production of the reinforced carbon material for composite materials of the present invention was made possible because the following basic requirements were met. In other words, in order to increase the production density of carbon fibers on the surface of a carbon substrate by the vapor phase growth method, the yield of carbon cilia must be extremely high, and the diameter and length of each carbon cilia must be appropriately large compared to the carbon substrate. It must be. With respect to the yield of carbon fiber produced by the vapor phase growth method, the measured value of the yield itself is not clear in the conventional production method, and this fact shows that the yield of the conventional production method is extremely low.

本発明者らは、鉄などの遷移金属が共存しなく
ても硫黄および硫黄化合物の存在下に700―1500
℃の各種担体上で炭化水素を熱分解するとき従来
の方法に較べて炭素収率が非常に高い方法で炭素
繊維を製造する方法を見い出している。
The present inventors have shown that 700-1500
We have discovered a method for producing carbon fibers with a much higher carbon yield than conventional methods when hydrocarbons are thermally decomposed on various carriers at .degree.

本発明者らは、この方法を各種の炭素基体に適
用し、比較的、低級炭化水素を炭素源として用い
た反応後の基体表面を走査型電子顕微鏡で観察し
た場合に、表面上に平均直径10μm以下、平均長
さが100―150μmの炭素繊毛が密生していた。す
なわち、従来の方法では本発明の形態と仕様をも
つ炭素繊毛を各種炭素基体の表面上に密生させる
ことはできないが、硫黄乃至硫黄化合物の共存下
に炭化水素を熱分解する方法により本発明の形態
と仕様をもつ炭素繊毛を密生させることが可能と
なつた。
The present inventors applied this method to various carbon substrates, and found that when the surface of the substrate after a reaction using a relatively lower hydrocarbon as a carbon source was observed with a scanning electron microscope, an average diameter of Carbon cilia with a diameter of less than 10 μm and an average length of 100-150 μm were densely grown. In other words, carbon cilia having the form and specifications of the present invention cannot be densely grown on the surface of various carbon substrates by conventional methods, but the method of the present invention can be achieved by thermally decomposing hydrocarbons in the coexistence of sulfur or sulfur compounds. It has become possible to create dense carbon cilia with specific shapes and specifications.

本発明の製造条件において使用する炭素源とし
ての炭化水素の種類に制限はなく、メタン、エタ
ン、アセチレン、エチレン、プロピレンなど脂肪
族炭化水素から、ベンゼン、トルエン、シクロヘ
キサン、ナフタレン、アントラセンなどの芳香族
炭化水素に至る各種炭化水素が用いられるが、微
細繊毛の密生法の制御には、低級炭化水素が好都
合である。一般にハロゲンは炭素繊維の成長に対
し抑制効果があるのでハロゲンを含まない炭化水
素の使用が望ましい。
There are no restrictions on the type of hydrocarbons used as carbon sources in the production conditions of the present invention, ranging from aliphatic hydrocarbons such as methane, ethane, acetylene, ethylene, and propylene to aromatic hydrocarbons such as benzene, toluene, cyclohexane, naphthalene, and anthracene. Although various hydrocarbons are used, lower hydrocarbons are convenient for controlling the dense growth of fine cilia. In general, halogen has an inhibitory effect on the growth of carbon fibers, so it is desirable to use a hydrocarbon that does not contain halogen.

本発明に用いられる炭素基体の種類にとくに限
定すべき条件はないが、本発明の海胆状炭素微粒
が複合材料用の強化材として用いられる場合に
は、その炭素基体はガラス状炭素のような硬質炭
素たとえば活性炭粉末あるいは石炭酸樹脂などの
各種熱硬化性樹脂とくにスルホン化ポリスチレン
微粒子を高温で焼成した炭化粉末が適している。
There are no particular conditions to limit the type of carbon substrate used in the present invention, but when the sea bile carbon fine particles of the present invention are used as a reinforcing material for composite materials, the carbon substrate may be a carbon substrate such as glassy carbon. Suitable materials include hard carbon, such as activated carbon powder, and various thermosetting resins such as carbonic acid resin, particularly carbonized powder obtained by firing fine particles of sulfonated polystyrene at high temperatures.

その際、硫黄を含む炭素材ではとくに鉄などの
金属微粒子あるいはケイ素などの非金属微粒子を
担持添加する必要はないが、硫黄を含まない炭素
基体では、これらの微粒子を担持添加し、同時に
原料炭化水素ガス中に硫黄または硫黄化合物を混
合添加することが有効である。
At this time, with carbon materials containing sulfur, it is not necessary to add metal particles such as iron or non-metal particles such as silicon as a support, but with carbon substrates that do not contain sulfur, these particles are added as a support and at the same time, the material is carbonized. It is effective to mix and add sulfur or a sulfur compound to hydrogen gas.

またこれらの微粒子添加物は微粉末状あるいは
金属カルボニルや有機金属化合物の蒸気を原料炭
化水素ガス中に混合添加してもよいことは勿論で
ある。
It goes without saying that these particulate additives may be added in the form of a fine powder or in the form of a vapor of a metal carbonyl or organometallic compound mixed into the raw hydrocarbon gas.

本発明の炭素繊毛が生成している炭素基体の断
面の走査型電子顕微鏡写真は、炭素繊毛が炭素基
体の表面上で直接生成しているのではなく、基体
上に沈積した析出炭素の2―5μmの厚さの層より
成長していることを示す。この析出炭素層と基体
間に全く空孔は認められないので、炭素繊毛の炭
素基体との密着性は実用上、十分な強度をもつも
のと考えられる。また炭素繊毛自体の断面写真
は、規則的に繊維軸に平行な同心円状の炭素層面
より成り、X線、電子回析の解析結果よりその層
間距離d002は3.46〜3.48Åである。
A scanning electron micrograph of a cross section of a carbon substrate on which the carbon cilia of the present invention are formed shows that the carbon cilia are not directly formed on the surface of the carbon substrate, but are 2- It shows that the growth is from a layer with a thickness of 5 μm. Since no pores were observed between this precipitated carbon layer and the substrate, it is considered that the adhesion of the carbon cilia to the carbon substrate has sufficient strength for practical use. Further, a cross-sectional photograph of the carbon cilia itself shows that the carbon cilia themselves consist of regularly concentric carbon layer planes parallel to the fiber axis, and the interlayer distance d 002 is 3.46 to 3.48 Å according to the analysis results of X-ray and electron diffraction.

本発明の炭素繊毛は長さが普通数10μm程度で
あるのでその引張強度と弾性率を通例の引張試験
機により測定することはできないが、一般に炭素
繊維の強度は、その直径が小さくなる程、指数関
数的に増大する傾向を示すので本発明の平均直径
が数μmの炭素繊毛は、一般基板上に慣例法によ
り生成させた直径の比較的大きくて長い炭素繊維
と較べて、より優れた引張強度と弾性率を示すも
のと推論される。
Since the length of the carbon cilia of the present invention is usually about 10 μm, its tensile strength and elastic modulus cannot be measured using a common tensile tester, but in general, the strength of carbon fibers increases as the diameter becomes smaller. Because of their tendency to increase exponentially, the carbon cilia of the present invention with an average diameter of a few μm have superior tensile strength compared to relatively large diameter and long carbon fibers produced by conventional methods on general substrates. It is inferred that it indicates strength and elastic modulus.

本発明の炭素質海胆状粒子は同じ重量の炭素粒
子と比較して単位重量当りの表面積すなわち比表
面積が大きいことは明らかである。またその集合
体は密充填されることなく適当な空隙率をもつも
ので、触媒活性を向上させ接触反応を円滑に進行
させるための各種金属触媒の担持体として、その
他、充填剤、吸着剤、材などの各種用途に好適
な材料である。このように、特異な性能を発揮で
きる特殊な形状の炭素材はいままでに全く知られ
ていない新規な材料である。
It is clear that the carbonaceous sea bile particles of the present invention have a larger surface area per unit weight, that is, a larger specific surface area than carbon particles of the same weight. In addition, the aggregate has an appropriate porosity without being tightly packed, and can be used as a support for various metal catalysts to improve catalytic activity and facilitate catalytic reactions. It is a material suitable for various uses such as wood. In this way, a carbon material with a special shape that can exhibit unique performance is a completely new and completely unknown material.

以下具体的に実施例により、さらに本発明を詳
しく説明するが、本発明がこれらに限定されるも
のではない。
EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto.

実施例 1 5%のジビニルベンゼンとスチレンの共重合体
微粒約4gにSO3を60%含む発煙硫酸30mlと硫酸
30mlの混合液を加え撹拌しながら90℃で1時間反
応させた。得られたスルホン化ポリスチレンを磁
製反応管中で窒素ガス流通下で昇温速度1℃/
minで1000℃まで上げ5時間保持して焼成炭化し
た。(第1図)このようにして得られた粒子径が
90〜140μmの硬質炭素は硫黄3.33wt%と灰分
0.05wt%を含み、灰分はけい光X線分析・原子吸
光分析によれば大部分がSiとAlでFeは全く検出
されなかつた。この炭素微粒10mgをあらかじめ弗
酸で処理し金属成分を除去したムライト質ボート
(幅16mm、長さ150mm)に載せ、内径25mm長さ1000
mmの石英反応管の中央部に挿入した後1000℃に保
ち、水素ガスとともに25vol%の濃度のプロピレ
ンガス混合物を毎分40mlの速度で供給した。2時
間後に第2図に示すような海胆状炭素微粒子が得
られた。これらの微粒子の表面上に密生した炭素
繊毛の平均生成密度は1粒子当り400〜450本(炭
素粒の表面積1mm2当り13000〜14000本)各繊維の
平均径は5.0μm、平均長さは120μmであつた。ま
たBET法により測定した原料炭素微粒子の比表
面積10〜15m2/gは、炭素繊毛の密生後は約60
m2/gに増大した。
Example 1 Approximately 4 g of 5% divinylbenzene and styrene copolymer fine particles, 30 ml of fuming sulfuric acid containing 60% SO 3 and sulfuric acid
30 ml of the mixture was added and reacted at 90°C for 1 hour with stirring. The obtained sulfonated polystyrene was heated in a porcelain reaction tube under nitrogen gas flow at a heating rate of 1°C/
The temperature was raised to 1000°C at 100°C and held for 5 hours for firing and carbonization. (Figure 1) The particle size obtained in this way is
Hard carbon of 90-140μm has sulfur 3.33wt% and ash content
According to fluorescence X-ray analysis and atomic absorption spectrometry, the ash content was mostly Si and Al, with no Fe detected at all. 10 mg of these fine carbon particles were placed on a mullite boat (width 16 mm, length 150 mm) that had been previously treated with hydrofluoric acid to remove metal components.
After inserting it into the center of a quartz reaction tube, the tube was kept at 1000°C, and a mixture of propylene gas with a concentration of 25 vol% was supplied together with hydrogen gas at a rate of 40 ml per minute. After 2 hours, sea bile-like carbon fine particles as shown in FIG. 2 were obtained. The average density of carbon cilia growing densely on the surface of these fine particles is 400 to 450 per particle (13,000 to 14,000 per 1 mm2 of carbon particle surface area).The average diameter of each fiber is 5.0 μm, and the average length is 120 μm. It was hot. In addition, the specific surface area of raw carbon fine particles measured by the BET method is 10 to 15 m 2 /g, which is approximately 60 m 2 /g after dense carbon cilia.
m 2 /g.

実施例 2 市販のスルホン基を含む陽イオン交換樹脂(ア
ンバーライトIR―120 )を水素形に変え、窒素
ガス雰囲気中で実施例1と同様の条件下に焼成
し、得られた粒径が500〜600μm硬質炭素(第3
図)は硫黄2.89wt%と灰分0.10%を含み、灰分に
鉄分が全く検出されなかつた。この炭素微粒上に
プロピレンを流して実施例1と同様の操作と条件
下に炭素繊毛を生成させた。第4図に示すような
繊毛の平均直径4.6μm長さ90μm、生成密度500〜
550本/粒(650本/mm2)の海胆状炭素微粒が得ら
れた。
Example 2 A commercially available sulfone group-containing cation exchange resin (Amberlite IR-120) was converted into hydrogen form and calcined in a nitrogen gas atmosphere under the same conditions as in Example 1, resulting in a particle size of 500. ~600μm hard carbon (3rd
Figure) contained 2.89wt% sulfur and 0.10% ash, and no iron was detected in the ash. Propylene was flowed over the carbon particles to generate carbon cilia under the same operation and conditions as in Example 1. As shown in Figure 4, the average diameter of cilia is 4.6 μm, the length is 90 μm, and the production density is 500 ~
550 pieces/grain (650 pieces/mm 2 ) of sea bile carbon fine particles were obtained.

参考例 1 粒子径が130〜170μmの呉羽化学工業(株)製
carbon micro balloon(第5図)は実施例1およ
び2に用いた炭素粒と異なり、硫黄含有率は
0.88wt%と少量である軟質炭素粒子である。灰分
は0.65wt%で鉄分は全く検出されなかつた。この
炭素微粒上にプロピレンを実施例1と同様の操作
と条件下に流したが、第6図に示すように粒子表
面はフイルム状およびスス状炭素でおおわれただ
けで炭素繊毛の生成は認められなかつた。
Reference example 1 Made by Kureha Chemical Industry Co., Ltd. with a particle size of 130 to 170 μm
Unlike the carbon particles used in Examples 1 and 2, the carbon micro balloon (Fig. 5) has a sulfur content of
It is a soft carbon particle with a small amount of 0.88wt%. The ash content was 0.65wt% and no iron was detected. Propylene was flowed over these carbon particles under the same operation and conditions as in Example 1, but as shown in Figure 6, the particle surface was only covered with film-like and soot-like carbon, and no carbon cilia were observed. Nakatsuta.

実施例 3 和光純薬(株)製の活性炭微粉末を炭素基体とし、
炭化水素としてベンゼン蒸気を用い炭素繊毛を密
生させた結果を第7図に示す。先づ活性炭を粉
砕、篩分けを行ない粒径500〜1200μmの微粒を濃
塩酸とフツ酸の混合溶液(1:1)で洗浄して不
純物を十分に除去した。
Example 3 Activated carbon fine powder manufactured by Wako Pure Chemical Industries, Ltd. was used as the carbon base,
Figure 7 shows the results of densely growing carbon cilia using benzene vapor as the hydrocarbon. First, the activated carbon was crushed and sieved, and the fine particles having a particle size of 500 to 1200 μm were washed with a mixed solution of concentrated hydrochloric acid and hydrofluoric acid (1:1) to sufficiently remove impurities.

次にこの活性炭粒子を0.5mol/の硝酸第二
鉄溶液中に浸した後別・乾燥しさらに水素雰囲
気中で500℃で1時間と1100℃で1時間加熱処理
を行なつた。この処理により鉄含有率0.82wt%の
鉄担持活性炭が得られた。この場合の鉄の粒径分
布は330〜1100Å(平均粒径は660Å)であつた。
Next, the activated carbon particles were immersed in a 0.5 mol/ferric nitrate solution, separated and dried, and further heat-treated in a hydrogen atmosphere at 500°C for 1 hour and at 1100°C for 1 hour. Through this treatment, iron-supported activated carbon with an iron content of 0.82 wt% was obtained. The particle size distribution of iron in this case was 330 to 1100 Å (average particle size 660 Å).

この鉄担持活性炭0.2gを炭素基体とし実施例
1と略々同じ装置と操作により炭素繊毛を生成さ
せた。ただし炭化水素としてベンゼン蒸気を用
い、ベンゼン濃度12.1vol%、水素85.4vol%、
H2S2.5vol%の混合ガスを40ml/minの流速で炭
素基体上に供給して1100℃で30分間熱分解を行な
つた。第7図および第8図に示すように繊維径が
0.1〜2μm、長さ数100μmの炭素繊毛が5〜10×
104本/mm2の非常に高い生成密度で生成している
毬栗状分散強化材が得られた。
Using 0.2 g of this iron-supported activated carbon as a carbon substrate, carbon cilia were produced using substantially the same equipment and operation as in Example 1. However, using benzene vapor as the hydrocarbon, benzene concentration 12.1 vol%, hydrogen 85.4 vol%,
A mixed gas of 2.5 vol% H 2 S was supplied onto the carbon substrate at a flow rate of 40 ml/min, and thermal decomposition was performed at 1100° C. for 30 minutes. As shown in Figures 7 and 8, the fiber diameter is
5 to 10 carbon cilia of 0.1 to 2 μm and several 100 μm in length
A chestnut-like dispersion reinforced material was obtained that was produced at a very high production density of 10 4 pieces/mm 2 .

参考例 2 実施例3と活性炭微粒子に鉄を含浸させない
で、不純物を除去した活性炭微粒子をそのまま炭
素基体とし、H2Sも添加することなく12.1vol%
のベンゼンを含む水素ガスを40ml/minの流速で
通し1100℃で30分間熱分解させた場合に、活性炭
粒子表面上に実施例3と較べて大きい繊維径10〜
15μm、長さ1〜5cmの炭素繊維が20〜40本/mm2
の非常に低い密度で生成し、活性炭全表面が炭素
繊毛で覆われるまでには至らなかつた。
Reference Example 2 Example 3 and activated carbon fine particles were not impregnated with iron, and the activated carbon fine particles from which impurities were removed were used as the carbon base, and 12.1 vol% was obtained without adding H 2 S.
When hydrogen gas containing benzene of
20 to 40 carbon fibers/mm 2 with a length of 15 μm and a length of 1 to 5 cm.
The activated carbon was formed at a very low density, and the entire surface of the activated carbon was not covered with carbon cilia.

次に実施例3の鉄を0.82wt%含浸させた活性炭
微粒子を炭素基体とし、同様にH3Sを添加するこ
となく12.1vol%のベンゼン濃度の水素ガスを40
ml/minの流速で通し1100℃で30分間熱分解を行
なつた。この場合には炭素繊毛の生成密度が、鉄
を含浸させない場合に較べて2倍程度に増加した
が同様に活性炭全表面を覆うまでに密生させるこ
とはできなかつた。
Next, the activated carbon fine particles impregnated with 0.82 wt% iron of Example 3 were used as a carbon substrate, and hydrogen gas with a benzene concentration of 12.1 vol% was similarly added to the carbon substrate for 40 min without adding H 3 S.
Pyrolysis was carried out at 1100° C. for 30 minutes at a flow rate of ml/min. In this case, the density of carbon cilia produced was approximately twice as high as that in the case where no iron was impregnated, but similarly it was not possible to grow them densely enough to cover the entire surface of the activated carbon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1に用いた原料の微小炭素粒
子、第2図は第1図の微小炭素粒子上でプロピレ
ンを熱分解して炭素繊毛を密生させた1個の海胆
状炭素微粒子の走査型電子顕微鏡写真。第3図は
実施例2に用いた原料の微小炭素粒子、第4図は
第3図の微小炭素粒子上でプロピレンを熱分解し
て炭素繊毛を密生させた1個の海胆状炭素微粒子
の走査型電子顕微鏡写真。第5図は参考例1に用
いた原料の微小炭素粒子、第6図は第5図の微小
炭素粒子上でプロピレンを熱分解した場合の状態
を示す走査型電子顕微鏡写真。第7図および第8
図は実施例3の活性炭微粉上でベンゼンを熱分解
して炭素繊毛を密生させた毬栗状炭素微粉の走査
型電子顕微鏡写真。
Figure 1 is a scan of the fine carbon particles used as the raw material in Example 1, and Figure 2 is a scan of one sea bile-like carbon fine particle obtained by thermally decomposing propylene on the fine carbon particle shown in Figure 1 and densely covered with carbon cilia. Electron micrograph. Figure 3 is a scan of the fine carbon particles that were the raw material used in Example 2, and Figure 4 is a scan of one sea bile-like carbon particle obtained by thermally decomposing propylene on the fine carbon particle in Figure 3 to form dense carbon cilia. Electron micrograph. FIG. 5 is a scanning electron micrograph showing the state when propylene is thermally decomposed on the fine carbon particles of the raw material used in Reference Example 1, and FIG. 6 is a photograph showing the state when propylene is thermally decomposed on the fine carbon particles of FIG. Figures 7 and 8
The figure is a scanning electron micrograph of a chestnut-shaped fine carbon powder obtained by thermally decomposing benzene on the activated carbon fine powder of Example 3 to form dense carbon cilia.

Claims (1)

【特許請求の範囲】[Claims] 1 球状または非球状の微小炭素粉体の表面に、
平均直径が10μm以下の微小炭素繊毛を表面積1
mm2当り100本以上の高密度で生成させたことを特
徴とする微小炭素繊毛が密生した炭素粉体。
1. On the surface of spherical or non-spherical micro carbon powder,
Microscopic carbon cilia with an average diameter of 10 μm or less are covered by a surface area of 1
A carbon powder with densely grown microscopic carbon cilia, which is characterized by being produced at a high density of 100 or more per mm2 .
JP57035266A 1982-03-08 1982-03-08 Carbon powder having thickly grown fine carbon cilia Granted JPS58156513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57035266A JPS58156513A (en) 1982-03-08 1982-03-08 Carbon powder having thickly grown fine carbon cilia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57035266A JPS58156513A (en) 1982-03-08 1982-03-08 Carbon powder having thickly grown fine carbon cilia

Publications (2)

Publication Number Publication Date
JPS58156513A JPS58156513A (en) 1983-09-17
JPH0258203B2 true JPH0258203B2 (en) 1990-12-07

Family

ID=12436993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57035266A Granted JPS58156513A (en) 1982-03-08 1982-03-08 Carbon powder having thickly grown fine carbon cilia

Country Status (1)

Country Link
JP (1) JPS58156513A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713190B2 (en) * 1987-04-03 1995-02-15 昭和電工株式会社 Composite granule of fiber and resin and method for producing the same
JPH0745538Y2 (en) * 1987-05-06 1995-10-18 三菱重工業株式会社 Reactor for methane decomposition
JP2006320840A (en) * 2005-05-19 2006-11-30 Mazda Motor Corp Catalyst for cleaning exhaust gas and its manufacturing method

Also Published As

Publication number Publication date
JPS58156513A (en) 1983-09-17

Similar Documents

Publication Publication Date Title
JP2641712B2 (en) Composite materials containing novel carbon fibrils
JP5702043B2 (en) Catalyst for producing carbon nanotubes by decomposing gaseous carbon compounds with heterogeneous catalysts
Tessonnier et al. Recent progress on the growth mechanism of carbon nanotubes: a review
JP5624627B2 (en) Catalyst for synthesizing hydrocarbons from CO and H2 and method for producing the same
US7862795B2 (en) Method for preparing single walled carbon nanotubes
JPH0377288B2 (en)
KR20100056998A (en) COMPOSITE CONSISTING OF NANOTUBES OR NANOFIBRES ON A β-SIC FILM
GB2217701A (en) Porous carbonaceous material useful in catalyst manufacture
US5814290A (en) Silicon nitride nanowhiskers and method of making same
KR100875861B1 (en) Catalyst for producing carbon nanocoils, its production method and method for producing carbon nanocoils
CN111468118A (en) Carbon-coated transition metal nanocomposite and preparation method and application thereof
JPH0258203B2 (en)
KR20220083396A (en) Supported Catalyst for Preparing Carbon Nanotubes
JPH0310566B2 (en)
RU2146648C1 (en) Method of preparing carbon nanotubes
KR20010104262A (en) Carbon fibrils and method for producing same
CN111468154A (en) Carbon-coated transition metal nanocomposite and preparation method and application thereof
KR19990048895A (en) Method for producing microcarbon fiber using basic metal oxide supported iron group transition metal catalyst
CN115069238A (en) Single manganese metal catalyst and preparation method and application thereof
JP4048138B2 (en) Coin-stacked nanographite, method for producing the same, and catalyst for the production thereof
JPH01119340A (en) Catalyst using superfine carbon fiber
KR20200012563A (en) Method for preparing carbonnanotube
Chai et al. Catalyzed decomposition of methane into COx-free hydrogen and filamentous carbons over NiO-CuO/SiO2: effect of NiO-CuO loadings
KR20040080868A (en) Hairy nano carbon material
JP2009041127A (en) Method for producing vapor-grown carbon fiber, and vapor-grown carbon fiber