JPH025803B2 - - Google Patents

Info

Publication number
JPH025803B2
JPH025803B2 JP11845785A JP11845785A JPH025803B2 JP H025803 B2 JPH025803 B2 JP H025803B2 JP 11845785 A JP11845785 A JP 11845785A JP 11845785 A JP11845785 A JP 11845785A JP H025803 B2 JPH025803 B2 JP H025803B2
Authority
JP
Japan
Prior art keywords
temperature
seconds
aging
steel
cementite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11845785A
Other languages
Japanese (ja)
Other versions
JPS61276935A (en
Inventor
Kazuo Koyama
Hiroshi Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11845785A priority Critical patent/JPS61276935A/en
Publication of JPS61276935A publication Critical patent/JPS61276935A/en
Publication of JPH025803B2 publication Critical patent/JPH025803B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、製鋼での真空脱ガスによる脱炭や、
Ti,Nbなどの元素を使わないで、非時効性の冷
延鋼板を、連続焼鈍、それも短時間の過時効処理
にて製造する方法に関するものである。 (従来の技術) 軟質冷延鋼板は、その良加工性のために、自動
車用を中心として厳しい成形加工を経て、最終製
品とされる鋼板として使用されている。ところ
が、この加工性は経時劣化する場合があり、この
経時劣化を時効性と称している。軟質冷延鋼板の
うちでも、特に厳しい成形を受ける用途に使われ
るものは、この時効性はあつてはならない。 この時効性は、鋼中に侵入型に固溶したC,N
が最終工程の調質圧延で、導入された可動転位を
固着するために生ずるもので、降伏点の上昇、破
断伸びの低下、降伏点伸びの発生といつた劣化を
生ずるからである。 この時効性の原因であるC,Nのうち、Nは微
量故にアルミニウムキルド鋼とすることで、窒化
アルミニウムの形で固定したり、またはB添加に
より、窒化ほう素として固定することができるの
で、Nによる時効は回避できる。 一方、固溶Cは、低温でのセメンタイト固溶限
が極めて小さいので、箱焼鈍のように時間をかけ
て冷却すれば、ほとんど残留しない。しかし連続
焼鈍では、短時間で冷却するために固溶Cが残留
し、そのため大きなC時効が生ずる。この固溶C
を低減するため、一般に連続焼鈍後急冷して過冷
度を高め、その後過時効と呼ばれるセメンタイト
析出処理を施す。 このセメンタイト析出処理は、核生成段階と成
長段階とからなり、しかも実用鋼の場合、不純物
が多く含まれているので、核生成も不純物等をサ
イトとした不均一核生成が生じていると考えられ
る。焼鈍後の冷却速度を極めて大きくとれば、結
晶粒内に微細なセメンタイトが生成することは多
く報告されている。 例えば、鉄と鋼、第62年(1976)第6号624〜
643ページに記載の論文中のphoto.1.(C)には、
2000℃/sで700℃から水冷し、次いで過時効処
理を行つた鋼板に、微細な炭化物が認められる由
が報告されている。炭化物密度が大きければ、そ
の成長のために要する拡散距離が少なくなり、固
溶炭素の低減が速やかに進行するが、一方この微
細炭化物による析出硬化や分散硬化により、鋼自
身が硬質、低延性となる。 従つて、この粒内炭化物密度は、ある適当な範
囲にコントロールする必要があるが、上記報告で
はそのことに考慮を払つていない。また、2000
℃/sという急冷では焼入歪のため鋼板形状がく
ずれるという欠点があり、さらに、このような急
冷では水冷が必然となり、そのため水温まで冷却
の後、過時効温度まで昇温しなければならないと
いう熱エネルギー上のロスや、水冷のための表面
酸化の問題が残る。 結晶粒内微細セメンタイトの析出コントロール
に関し、その核生成段階を認識し、これを考慮し
たものとして、特開昭51−20715号公報と、特開
昭55−44584号公報記載の提案がある。セメンタ
イト核生成処理として、前者は焼鈍後20℃/s以
上の冷却速度で急冷して、200〜350℃の温度範囲
に10秒以上保持する。また後者は、250〜400℃の
温度にすくなくとも600℃以下の温度範囲を、35
℃/s以上の冷却速度で冷却し、その温度で10秒
以下保持する。 しかしながらこれだけの条件では、核生成コン
トロールとしては不十分で、特に本発明の目指す
非時効性鋼板を得ることは困難である。時効性は
時効指数(AI)または100℃、60分の促進時効で
の降伏点伸び(YP−El)で示されることが多い
が、非時効性となすためには、少なくともAIで
3Kgf/mm2以下、かつYP−Elで0.4%以下、好ま
しくはAIで2Kgf/mm2以下かつYP−Elで0でな
ければならない。 これに対して特開昭51−20715号公報では、そ
の実施例によると、Alは一番小さくてAlキルド
鋼の場合で3.8Kgf/mm2であり、また特開昭55−
44584号公報においても、同じくAlキルド鋼の場
合で、YP−Elが下がつてもせいぜい0.5%であ
る。これらは、上述のセメンタイト核生成コント
ロールの不十分さを裏付けている。 このような状況下で本発明者らは先に、特願昭
59−19343号にて、連続焼鈍中に硫化マンガン
(MnS)を主とした不純物上へのセメンタイト核
生成を促進し、適度な結晶粒内セメンタイト粒数
が得られるように、成分および連続焼鈍後の冷
却・過時効条件を限定することによつて、実質箱
焼鈍により製造したものと同程度の軟質、非時効
性冷延鋼板を、連続焼鈍にて製造する方法を提案
した。 しかしながらこの発明の場合、核生成に要する
時間や、時には再加熱に要する時間が加わり、全
体の過時効時間は、特願昭59−19343号発明でも
3分以下というものは実現していない。 近年、薄鋼板の連続焼鈍はますます高速化して
おり、500mpm程度のものも現われている。こう
したなかで、例えば5分の過時効を必要とするな
らば、ストリツプ長で2500mにあたる過時効炉が
必要となるわけで、過時効時間の減少は大きな課
題となつていた。 (発明が解決しようする問題点) 本発明は、特願昭59−19343号発明の欠点を克
服して、その特徴であるセメンタイトの核生成を
徹底的に生かす成長の最適化を果すことで、全過
時効時間が3分以内の連続焼鈍にて軟質、非時効
性冷延鋼板を製造する方法を提供することを目的
とする。 (問題点を解決するための手段) 本発明の要旨とするところは下記のとおりであ
る。 C0.01〜0.05%、Mn0.05〜0.25%、S0.003〜
0.015%、Al0.005〜0.10%、N0.0050%以下、必
要に応じて、B0.0005〜0.0040%を含有し、残部
Feおよび不可避的不純物からなる鋼を熱間圧延
し、650℃以上の温度で巻取り、その後冷間圧延
し、次いで連続焼鈍を行うに当たり、700〜850℃
の温度で再結晶焼鈍後、650℃以上の温度から
1000℃/S以下の冷却速度(v)で急冷し、続い
て温度T(℃)で保持時間t1(秒)として10〜30秒
保定してセメンタイトの核生成を行わせ、その際
前記温度T(℃)を200℃以上でかつ−70×(log
v/1000)2+340と−70×(logv/1000)2+250の間
(但 しvは前記の冷却速度)の温度とすることによ
り、4×104〜2×106個/mm2のセメンタイト核を
生ぜしめ、次いで下記(1)〜(3)式を満足する温度
T1まで3℃/S以上でt2(秒)時間にて再加熱し、
次いで同じく下記式を満足する温度T2まで直線
状に(180−t1―t2)(秒)〜(150−t1−t2)(秒)
で冷却することを特徴とする連続焼鈍による非時
効性冷延鋼板の製造方法。 T1≦450℃、200℃≦T2≦330℃ …(1) T1≧T2 …(2) T1≧−0.45T2+455℃ …(3) 好ましくは、 350℃≦T1≦400℃ −T2+620℃≦T1≦−1.7T2+860℃ 中でも、結晶粒内に微細な炭化物を核生成させ
たあと、特定のT1温度まで小規模に再加熱し、
続いて特定のT2温度まで徐冷し、このT1,T2
特定の関係を持たせた場合に限り、本発明の効果
である全過時効時間3分以内で、AI3Kgf/mm2
内の実質非時効性冷延鋼板が製造できるところに
特徴がある。 鋼中炭素の拡散は高温ほど大きく、平衡値まで
減少するのに短時間ですむが、一方、高温ほど平
衡状態での固溶炭素量が高い。従つて、一般論と
してこれをつなぐ傾斜過時効方式が考えられる。
例えば特公昭55−34852号公報の第3図、第4図
(破線のヒートパターン)、第6図、第7図がそう
である。しかし、これらは上述の一般論を出るも
のではなく、従つて到達すべき非時効化レベル
も、本発明において目標としている箱焼鈍並とい
うレベルからははるかに遠いものである。 本発明は、炭素析出としてフエライト結晶粒界
析出と結晶粒内の不均一核生成、成長析出を競合
させて短時間で炭素析出を完了させ、非時効化を
計るものである。いずれも炭化物の成長に関する
ものであるが、両者の成長は境界条件を異にする
ためその速度は異なる。従つて、両速度過程を結
び、最短時間で炭素析出を完了するT1,T2温度
およびその関係は、単純なる傾斜過時効で得られ
るものではない。 本発明者らは、このような考察と多数の実験に
基づき、ついに第1図で示す条件により3分以内
で非時効化できることを究明した。 第2図には、本発明において重要なT1,T2
条件に関して、その数値を限定するに到つた実験
結果を示す。また、第3図は本発明の連続焼鈍熱
サイクルを模式的に示したものである。用いた鋼
は、C0.018〜0.025%、Mn0.11〜0.18%、S0.008
〜0.011%、Al0.018〜0.027%、N0.0011〜0.0016
%を含有し、之を1050〜1100℃に加熱後、Ar3
態点以上で熱間圧延を終了し、700℃±20℃で巻
取つた。続いて、80%の冷延率で0.8mm厚の冷延
板とした後、次に示すような条件で連続焼鈍を施
し、0.8%の調質圧延後、時効指数(AI)を測定
した。 連続焼鈍条件:昇温速度10℃/S、保定820℃
×1分±10秒、保定温度→700℃まで5℃/S、
700℃→270℃まで150℃/S、270℃で25秒保定、
270℃→T1温度まで5℃/S、T1温度からT2
度まで{150−25−(T1−270)÷5}秒で冷却、
T2温度から室温まで30℃/Sで冷却。 すなわち、核生成を含め総計2.5分の過時効を
行つた。 なお、AIは、10%予歪を与えた後、100℃×60
分の時効を行い、この時効前後での降伏点強度の
上昇代で表わす。 これらの条件は、当然本発明構成要件の範囲に
含まれるものである。第2図より明らかに本発明
の下限時間である2分過時効でAI=3Kgf/mm2
以下となる領域が存在する。この結果より範囲と
して求めたものが第1図の範囲(ア)である。こ
れでもつてこの範囲を本発明の限定範囲とする。 もとより、この領域は、その他の条件が変化す
れば若干変わり得る。こうした意味から、より安
定性を求めるには、より低AIとなる第1図範囲
(イ)が好ましい。なお、領域(ア)においてT1
の上限温度は450℃とする。これを越えると再加
熱に要する熱エネルギーおよび時間が大きくな
り、経済的でない。より経済性を求めるなら400
℃未満とすることが望ましい。 また、温度T1からT2までは一様に冷却するこ
とが好ましいが、多少のずれ、例えばけん垂線状
の冷却をとることはさしつかえない。さらに、ま
たT1温度は350℃以上とすることが好ましい。け
だし、本発明では低温の核生成で粒内セメンタイ
トを発生させるからである。このセメンタイトは
析出強化して鋼の延性を害する可能性がある。本
発明に従い350℃以上に加熱すると、このセメン
タイトは地との整合性を失ない延性を回復するが
350℃未満では、この回復は不十分である。 さて、これまで述べてきたように、本発明の
T1,T2に関する条件は、その前段の高温からの
急冷とその冷却速度に応じた粒内セメンタイトの
核生成が前提となる。まず、急冷開始温度は650
℃以上、好ましくは700〜730℃とする必要があ
る。急冷の目的は炭素の過飽和度を高めるため
で、650℃未満からの急冷では炭素の過飽和の程
度は小さい。この意味から、焼鈍温度が炭素の平
衡固溶度の最も大きい723℃より高い場合に、こ
の温度まで1〜5℃/Sで徐冷することが好まし
い。 次に、この温度から1000℃/S以下の冷却速度
v(℃/S)で、−70×(logv/1000)2+340から−7
0 ×(logv/1000)2+250の間の温度域に急冷し、この 温度域で10〜30秒保定する。vが1000℃/S超と
なると焼入れのため転位密度が高まり、鋼の延性
を損ねる。また、鋼板形状を保つことも難しい。
vが小さくなるほど、核生成のための保定温度域
は低温となるが、この上限値を超えると十分な粒
内セメンタイトの核生成が生じない。また、下限
値未満でも拡散が小さいため十分な核生成が生じ
ない。なお、この温度Tは200℃以上でなければ
ならない。けだし200℃未満では整合度の大きい
セメンタイトやε炭化物が生成して、やはり鋼の
延性を損ねるからである。核生成のための保定時
間は10〜30秒を必要とする。10秒未満では核生成
が十分でなく、30秒の上限値で飽和傾向にあり、
長すぎる保定は過時効時間の総計を3分以下とす
るための障害となる。 しかして核生成温度からT1までは3℃/S以
上の速度で昇温する必要がある。3℃/S未満で
は時間が長くなり、本発明の目的を達成し難い。
なお上限は現在の工業レベルから50℃/S程度と
考えられる。 鋼の成分および熱延条件が本発明の範囲内で、
このような核生成条件が整つたなら、これで4×
104〜2×106個/mm2のセメンタイト核を生ぜしめ
ることができ、前述のようなT1,T2条件で目的
が達成される。 なお、vは極端に一様冷却でない場合を除き、
平均冷却速度でよい。 鋼の化学成分には次のような限定が必要であ
る。Cは0.01〜0.05%と、低炭素鋼としては比較
的低目にする必要がある。本発明は、第2図から
も明らかなように、粒内セメンタイトを利用して
非時効化を計るものであるが、この粒内炭化物
は、Elを劣化させる傾向にあるため、全体の延性
を補う意味で、Cの上限を低くしてある。この意
味で、Cの上限を0.03%とし、かつPを0.01%未
満とすることは好ましい条件である。Cの下限
は、急冷開始前のCの過飽和度を高めるために決
められる。より安定して粒内セメンタイトを得る
には、Cは0.015%以上とすることが好ましい。 MnおよびSは、MnSがセメンタイトの不均一
核生成サイトの主要なものとなるため極めて重要
である。それぞれの下限値0.05%および0.003%
は、MnSの量を確保するために必要であり、そ
れぞれ上限を0.25%および0.015%とするのは、
MnSの溶解度が限られ、これ以上では過度な
MnSの分散状態を得ることができないためであ
る。 本発明は、炭素時効を最小化するところにその
特徴があり、そのため同じく大きな時効劣化を生
じさせる窒素については、その処置が必要であ
る。そのためにAlを0.005%以上添加し、かつN
を0.0050%以下として、NをAlNとして固定する
必要がある。Nは低ければ低いほど望ましく、
0.0020%以下とすることが最も好ましい。また、
もつと強固にNを安定な窒化物として固定する場
合には、Bを0.0005〜0.0040%添加する。 熱間圧延条件においては巻取条件が重要であ
る。これは通常のAlN析出処理とともに、本発
明ではMnS分散処理も関与していると推定され、
そのために650℃以上の高温とする必要がある。
その他の熱間圧延条件としては、通常とられてい
る条件でよいが、加熱温度については、熱延組織
の粗大化を防ぐために、1000〜1150℃の低温とす
ることが好ましい。冷間圧延は通常行なわれてい
るように、60〜90%の圧下率でよいが、安定して
高ランクフオード値(値)を得るためには、75
%以上の高圧下が望ましい。 次に連続焼鈍では700〜850℃の再結晶焼鈍を行
う。700℃未満では再結晶が不十分で、かつまた
炭化物の溶解が不十分となり、この後いくら急冷
しても炭素の過飽和度が高まらない。また、850
℃を超えると、オーステナイト量が増し、集合組
織がランダム化し値が下がり、また結晶粒が粗
大化する。なお、炭化物の溶解を十分とするため
に、焼鈍温度からこの溶解度の最も大きい720℃
付近まで、5℃/S以下に徐冷することが好まし
いのは前述の通りである。焼鈍時間は通常行なわ
れているように、20秒〜3分でよい。 なお製鋼法としては連続鋳造法、インゴツト法
の何れでもよい。また、連続焼鈍における急冷手
段としても、ガスジエツト冷却、気水冷却、金属
接触冷却、温水中冷却、水冷却、塩浴浸漬等手段
は問わない。 実施例 1 0.018%C−0.12%Mn−0.006%S−0.005%P
−0.043%Al−0.0015%Nを含有する鋼を、転炉
にて溶製し、連続鋳造にてスラブとした。このス
ラブを1080℃に加熱後、熱間圧延した。熱延条件
としては仕上終了温度880℃、巻取温度700℃〜
720℃(一部600℃)とした。 このコイルを80%冷間圧延して、0.8mm厚とし
た後連続焼鈍を行つた。連続焼鈍条件および1%
調質圧延後の機械試験値を第1表に示す。 No.1,2,5,9および10の鋼は、本発明に従
つた鋼であり、いずれも全過時効時間が3分以内
で、時効後の降伏点強度が18Kgf/mm2以下、伸び
45%以上、YP−El≦0.2、AI≦3Kgf/mm2とい
う、箱焼鈍並の特性が得られている。これに対
し、上記以外の鋼は、アンダーラインを施した項
目において本発明構成要件と異なつており、従つ
て全過時効時間が3分以内という制限下では、十
分な特性、特に耐時効性(YP−ElとAI)が得ら
れていない。
(Industrial Application Field) The present invention is applicable to decarburization by vacuum degassing in steel manufacturing,
This relates to a method for manufacturing non-aging cold rolled steel sheets by continuous annealing, without using elements such as Ti and Nb, and also by short-term overaging treatment. (Prior Art) Because of its good workability, soft cold-rolled steel sheets are used as final products, mainly for automobiles, after undergoing severe forming processes. However, this workability may deteriorate over time, and this deterioration over time is called aging. Among soft cold-rolled steel sheets, those used for applications that undergo particularly severe forming should not have this aging property. This aging property is due to the interstitial solid solution of C and N in the steel.
This is because the movable dislocations introduced in the final step of temper rolling are fixed, resulting in deterioration such as an increase in the yield point, a decrease in elongation at break, and the occurrence of elongation at the yield point. Of the C and N that cause this aging property, N can be fixed in the form of aluminum nitride by making aluminum killed steel because it is in a small amount, or can be fixed in the form of boron nitride by adding B. The statute of limitations due to N can be avoided. On the other hand, solid solution C has a very small solid solubility limit in cementite at low temperatures, so if it is cooled over time as in box annealing, almost no solid solution remains. However, in continuous annealing, solid solution C remains due to cooling in a short time, resulting in large C aging. This solid solution C
In order to reduce this, generally, after continuous annealing, the steel is rapidly cooled to increase the degree of supercooling, and then a cementite precipitation treatment called overaging is performed. This cementite precipitation process consists of a nucleation stage and a growth stage, and since practical steel contains many impurities, it is thought that nucleation occurs through heterogeneous nucleation using impurities as sites. It will be done. It has been often reported that if the cooling rate after annealing is extremely high, fine cementite is formed within the crystal grains. For example, Tetsu to Hagane, No. 62 (1976) No. 624-
In photo.1.(C) in the paper on page 643,
It has been reported that fine carbides are observed in steel sheets that have been water-cooled from 700°C at 2000°C/s and then over-aged. If the density of carbides is large, the diffusion distance required for their growth will be shortened, and the reduction of solute carbon will proceed quickly. However, due to precipitation hardening and dispersion hardening caused by these fine carbides, the steel itself will become hard and have low ductility. Become. Therefore, it is necessary to control this intragranular carbide density within a certain appropriate range, but the above report does not take this into account. Also, 2000
Rapid cooling at °C/s has the disadvantage that the shape of the steel sheet collapses due to quenching distortion.Furthermore, such rapid cooling requires water cooling, which means that after cooling to water temperature, the temperature must be raised to the overaging temperature. Problems of thermal energy loss and surface oxidation due to water cooling remain. Regarding the control of precipitation of fine cementite within crystal grains, there are proposals described in JP-A-51-20715 and JP-A-55-44584 that take into consideration the nucleation stage. As a cementite nucleation treatment, the former is rapidly cooled at a cooling rate of 20° C./s or more after annealing, and held in a temperature range of 200 to 350° C. for 10 seconds or more. The latter also has a temperature range of 250 to 400 °C and a temperature range of at least 600 °C, 35
Cool at a cooling rate of ℃/s or higher and hold at that temperature for 10 seconds or less. However, these conditions are insufficient to control nucleation, and it is particularly difficult to obtain the non-aging steel sheet that the present invention aims at. Aging property is often indicated by aging index (AI) or yield point elongation (YP-El) after accelerated aging at 100℃ for 60 minutes, but in order to be non-aging property, at least AI is 3Kgf/mm. 2 or less and YP-El 0.4% or less, preferably AI 2 Kgf/mm 2 or less and YP-El 0. On the other hand, in Japanese Patent Application Laid-open No. 51-20715, according to its examples, the smallest amount of Al is 3.8 Kgf/mm 2 in the case of Al-killed steel;
In the case of Al-killed steel as well, in Publication No. 44584, even if YP-El decreases, it is at most 0.5%. These confirm the insufficiency of the cementite nucleation control described above. Under these circumstances, the inventors first filed a patent application
No. 59-19343, in order to promote cementite nucleation on impurities mainly manganese sulfide (MnS) during continuous annealing, and to obtain an appropriate number of cementite grains within the grains, the composition and after continuous annealing were By limiting the cooling and overaging conditions, we proposed a method for producing cold-rolled steel sheets with continuous annealing that is virtually as soft and non-aging as those produced by box annealing. However, in the case of this invention, the time required for nucleation and sometimes the time required for reheating are added, and even the invention of Japanese Patent Application No. 59-19343 has not achieved a total aging time of 3 minutes or less. In recent years, continuous annealing of thin steel sheets has become faster and faster, with some annealing speeds of around 500mpm appearing. Under these circumstances, if overaging for 5 minutes, for example, is required, an overaging furnace with a strip length of 2,500 m is required, so reducing the overaging time has become a major issue. (Problems to be Solved by the Invention) The present invention overcomes the drawbacks of the invention of Japanese Patent Application No. 59-19343, and optimizes the growth by thoroughly utilizing its characteristic nucleation of cementite. The object of the present invention is to provide a method for producing a soft, non-aging cold-rolled steel sheet by continuous annealing with a total aging time of 3 minutes or less. (Means for solving the problems) The gist of the present invention is as follows. C0.01~0.05%, Mn0.05~0.25%, S0.003~
Contains 0.015%, Al0.005~0.10%, N0.0050% or less, B0.0005~0.0040% as required, the balance
When steel consisting of Fe and unavoidable impurities is hot rolled, coiled at a temperature of 650°C or higher, then cold rolled, and then continuously annealed at a temperature of 700 to 850°C.
After recrystallization annealing at a temperature of 650℃ or higher
Rapid cooling is performed at a cooling rate (v) of 1000°C/S or less, followed by holding at a temperature T (°C) for a holding time t 1 (seconds) of 10 to 30 seconds to cause cementite nucleation. T(℃) is 200℃ or higher and -70×(log
By setting the temperature between +340 (logv/1000) 2 and -70 x (logv/1000) 2 +250 (where v is the cooling rate mentioned above), 4 × 10 4 to 2 × 10 6 pieces/mm 2 of cementite Temperature that generates nuclei and then satisfies the following formulas (1) to (3)
Reheat at 3℃/S or more for t2 (seconds) to T1 ,
Then, linearly from (180−t 1 −t 2 ) (seconds) to (150−t 1 −t 2 )(seconds) until the temperature T 2 that also satisfies the following formula
A method for producing a non-aging cold-rolled steel sheet by continuous annealing, characterized by cooling at . T 1 ≦450℃, 200℃≦T 2 ≦330℃ …(1) T 1 ≧T 2 …(2) T 1 ≧−0.45T 2 +455℃ …(3) Preferably, 350℃≦T 1 ≦400 ℃ −T 2 +620℃≦T 1 ≦−1.7T 2 +860℃ Above all, after nucleating fine carbides within the crystal grains, reheating on a small scale to a specific T 1 temperature,
Subsequently, it is slowly cooled to a specific T2 temperature, and only when a specific relationship is established between T1 and T2 , the total overaging time is within 3 minutes, which is the effect of the present invention, and within AI3Kgf/ mm2. It is characterized by the fact that it can produce virtually non-aging cold rolled steel sheets. The higher the temperature, the greater the diffusion of carbon in steel, and it takes a shorter time to reduce to the equilibrium value, but on the other hand, the higher the temperature, the higher the amount of solid solute carbon in the equilibrium state. Therefore, in general terms, a gradient overaging method that connects this can be considered.
For example, FIG. 3, FIG. 4 (heat pattern indicated by broken line), FIG. 6, and FIG. 7 of Japanese Patent Publication No. 55-34852 are examples. However, these do not go beyond the above-mentioned general theory, and therefore, the non-aging level to be achieved is also far from the level equivalent to box annealing, which is the target of the present invention. The present invention aims at non-aging by causing ferrite grain boundary precipitation to compete with heterogeneous nucleation and growth precipitation within the crystal grains to complete carbon precipitation in a short time. Both relate to the growth of carbide, but the growth speeds of the two are different because the boundary conditions are different. Therefore, the T 1 and T 2 temperatures and their relationship that connect both rate processes and complete carbon precipitation in the shortest time cannot be obtained by simple gradient overaging. Based on such considerations and numerous experiments, the present inventors finally discovered that non-aging can be achieved within 3 minutes under the conditions shown in FIG. FIG. 2 shows the experimental results that led to limiting the values of T 1 and T 2 which are important in the present invention. Moreover, FIG. 3 schematically shows the continuous annealing thermal cycle of the present invention. The steel used was C0.018~0.025%, Mn0.11~0.18%, S0.008
~0.011%, Al0.018~0.027%, N0.0011~0.0016
After heating it to 1050-1100°C, hot rolling was completed above the Ar 3 transformation point and coiling at 700°C ± 20°C. Subsequently, a cold-rolled sheet with a thickness of 0.8 mm was obtained at a cold rolling rate of 80%, and then subjected to continuous annealing under the conditions shown below, and after skin pass rolling at 0.8%, the aging index (AI) was measured. Continuous annealing conditions: Temperature increase rate 10℃/S, holding temperature 820℃
×1 minute ±10 seconds, holding temperature → 5℃/S until 700℃,
150℃/S from 700℃ to 270℃, held at 270℃ for 25 seconds,
Cooling from 270℃ to T 1 temperature at 5℃/s, from T 1 temperature to T 2 temperature in {150−25−(T 1 −270) ÷ 5} seconds,
Cooled from T2 temperature to room temperature at 30℃/S. That is, overaging was performed for a total of 2.5 minutes including nucleation. In addition, AI is 100℃×60 after applying 10% pre-strain.
Aging is performed for 50 minutes, and the increase in yield point strength is expressed before and after this aging. These conditions are naturally included in the scope of the constituent features of the present invention. From Figure 2, it is clear that AI = 3Kgf/mm 2 at 2 minutes of aging, which is the lower limit of the present invention.
The following areas exist. The range determined from this result is range (a) in FIG. Even so, this range is the limited range of the present invention. Of course, this range may change slightly if other conditions change. In this sense, to seek greater stability, the lower AI range (A) in Figure 1 is preferable. In addition, in area (a) T 1
The upper limit temperature is 450℃. If it exceeds this, the thermal energy and time required for reheating will increase, making it uneconomical. 400 if you want more economy
It is desirable to keep it below ℃. Further, although it is preferable to cool uniformly from temperature T 1 to T 2 , it is possible to cool to some extent, for example, in a vertical line. Furthermore, it is preferable that the T 1 temperature is 350°C or higher. However, in the present invention, intragranular cementite is generated by low-temperature nucleation. This cementite can precipitate strengthen and impair the ductility of the steel. When heated above 350°C according to the present invention, this cementite regains its ductility without losing its consistency with the ground.
Below 350°C, this recovery is insufficient. Now, as mentioned above, the present invention
The conditions for T 1 and T 2 are based on rapid cooling from a high temperature in the preceding stage and nucleation of intragranular cementite in accordance with the cooling rate. First, the quenching start temperature is 650
The temperature needs to be at least 0.degree. C., preferably 700 to 730.degree. The purpose of rapid cooling is to increase the degree of carbon supersaturation, and the degree of carbon supersaturation is small when rapidly cooled from less than 650°C. From this point of view, when the annealing temperature is higher than 723°C, where the equilibrium solid solubility of carbon is the highest, it is preferable to slowly cool the material to this temperature at a rate of 1 to 5°C/S. Next, from this temperature, at a cooling rate v (°C/S) of 1000°C/S or less, -70 x (logv/1000) 2 +340 to -7
Rapidly cool to a temperature range between 0 × (logv/1000) 2 +250 and hold in this temperature range for 10 to 30 seconds. When v exceeds 1000°C/S, the dislocation density increases due to quenching, impairing the ductility of the steel. It is also difficult to maintain the shape of the steel plate.
As v becomes smaller, the holding temperature range for nucleation becomes lower; however, if this upper limit is exceeded, sufficient nucleation of intragranular cementite does not occur. In addition, even if it is less than the lower limit, sufficient nucleation does not occur because diffusion is small. Note that this temperature T must be 200°C or higher. This is because if the temperature is below 200°C, cementite and ε carbide with a high degree of consistency are formed, which also impairs the ductility of the steel. Retention time for nucleation requires 10-30 seconds. If it is less than 10 seconds, nucleation is not sufficient, and it tends to saturate at the upper limit of 30 seconds.
Too long retention becomes an obstacle to keeping the total overage time to 3 minutes or less. Therefore, it is necessary to raise the temperature from the nucleation temperature to T1 at a rate of 3° C./S or more. If the temperature is less than 3° C./S, the time will be long and it will be difficult to achieve the object of the present invention.
The upper limit is considered to be about 50°C/S based on the current industrial level. The steel composition and hot rolling conditions are within the scope of the present invention,
If such nucleation conditions are established, this will result in 4×
It is possible to generate 10 4 to 2×10 6 cementite nuclei/mm 2 , and the purpose is achieved under the T 1 and T 2 conditions described above. In addition, v is unless the cooling is extremely uniform.
The average cooling rate is sufficient. The chemical composition of steel requires the following limitations. C needs to be kept relatively low for a low carbon steel, at 0.01 to 0.05%. As is clear from Fig. 2, the present invention uses intragranular cementite to achieve non-aging, but since this intragranular carbide tends to deteriorate El, it reduces the overall ductility. To compensate, the upper limit of C is lowered. In this sense, it is a preferable condition that the upper limit of C is 0.03% and the upper limit of P is less than 0.01%. The lower limit of C is determined in order to increase the degree of supersaturation of C before the start of rapid cooling. In order to obtain intragranular cementite more stably, the C content is preferably 0.015% or more. Mn and S are extremely important as MnS is the main heterogeneous nucleation site for cementite. Respective lower limit values 0.05% and 0.003%
are necessary to ensure the amount of MnS, and the upper limits are 0.25% and 0.015%, respectively.
The solubility of MnS is limited, and if it exceeds it, it becomes excessive.
This is because it is not possible to obtain a dispersed state of MnS. The present invention is characterized by minimizing carbon aging, so it is necessary to take measures to deal with nitrogen, which also causes large aging deterioration. For this purpose, 0.005% or more of Al is added and N
It is necessary to set N to 0.0050% or less and fix N as AlN. The lower N is, the more desirable it is.
Most preferably it is 0.0020% or less. Also,
In order to firmly fix N as a stable nitride, 0.0005 to 0.0040% of B is added. Coiling conditions are important in hot rolling conditions. This is presumed to be due to the MnS dispersion treatment in the present invention as well as the usual AlN precipitation treatment.
For this reason, it is necessary to set the temperature to 650°C or higher.
Other hot rolling conditions may be those normally used, but the heating temperature is preferably a low temperature of 1000 to 1150°C in order to prevent coarsening of the hot rolled structure. Cold rolling can be carried out at a rolling reduction of 60 to 90%, as is usually done, but in order to stably obtain a high rank Ford value (value), a reduction of 75% is sufficient.
% or higher pressure is desirable. Next, in continuous annealing, recrystallization annealing is performed at 700 to 850°C. Below 700°C, recrystallization is insufficient and dissolution of carbides is also insufficient, and the degree of carbon supersaturation does not increase no matter how rapidly it is cooled thereafter. Also, 850
When the temperature exceeds ℃, the amount of austenite increases, the texture becomes random, the value decreases, and the crystal grains become coarser. In addition, in order to sufficiently dissolve the carbide, the annealing temperature is set at 720℃, which has the highest solubility.
As mentioned above, it is preferable to slowly cool the temperature to about 5°C/S or less. The annealing time may be 20 seconds to 3 minutes, as is commonly done. The steel manufacturing method may be either a continuous casting method or an ingot method. Further, the rapid cooling means in continuous annealing may be any means such as gas jet cooling, air/water cooling, metal contact cooling, hot water cooling, water cooling, salt bath immersion, etc. Example 1 0.018%C-0.12%Mn-0.006%S-0.005%P
Steel containing -0.043% Al - 0.0015% N was melted in a converter and made into a slab by continuous casting. This slab was heated to 1080°C and then hot rolled. Hot rolling conditions include finishing temperature of 880°C and coiling temperature of 700°C.
The temperature was 720℃ (600℃ in some parts). This coil was cold rolled by 80% to a thickness of 0.8 mm, and then continuously annealed. Continuous annealing conditions and 1%
Table 1 shows the mechanical test values after temper rolling. Steels No. 1, 2, 5, 9, and 10 are steels according to the present invention, and all have a total overaging time of 3 minutes or less, a yield point strength of 18 Kgf/mm 2 or less after aging, and an elongation.
Properties comparable to box annealing, such as 45% or more, YP-El≦0.2, and AI≦3Kgf/mm 2 , are obtained. On the other hand, steels other than those mentioned above differ from the constituent requirements of the present invention in the underlined items, and therefore have sufficient properties, especially aging resistance ( YP−El and AI) are not obtained.

【表】【table】

【表】 実施例 2 第2表に示す成分を有する鋼を溶製し、加熱温
度1050℃、仕上圧延終了温度880〜895℃、巻取温
度700〜730℃で熱間圧延した後、冷延率80%で
0.8mm厚の冷延板とした。続いて800℃、1分の再
結晶焼鈍を行つた後、700℃まで3℃/sで冷却
し、この温度から270℃まで一様に250℃/sで冷
却し、20秒保定した。引続き、5秒で370℃まで
昇温した後、140秒で270℃まで一様に冷却し、そ
の後水冷した後、1.0%の調質圧延を行い、機械
試験値を求めた。結果を第2表に示す。 本発明に従つた鋼種A,Bでは全過時効時間
165秒で十分な軟質非時効特性を示すが、Mn,
Sの条件が異なる鋼種D,Eでは、セメンタイト
核生成サイトが不十分で、大きな時効性を示す。
また、炭素の少ない鋼種Cでは、連続焼鈍の急冷
時に、炭素の過飽和度が足りず、やはり大きな時
効劣化を示す。また、炭素量の高い鋼種Fでは、
時効性は良いものの軟質・高延性とは言えない。
[Table] Example 2 Steel having the components shown in Table 2 was melted, hot-rolled at a heating temperature of 1050°C, a final rolling temperature of 880-895°C, and a coiling temperature of 700-730°C, and then cold-rolled. at a rate of 80%
A cold-rolled plate with a thickness of 0.8 mm was used. Subsequently, recrystallization annealing was performed at 800°C for 1 minute, then cooled to 700°C at a rate of 3°C/s, and from this temperature uniformly cooled to 270°C at a rate of 250°C/s, and held for 20 seconds. Subsequently, the temperature was raised to 370°C in 5 seconds, then uniformly cooled to 270°C in 140 seconds, and then water-cooled, followed by 1.0% temper rolling and mechanical test values were determined. The results are shown in Table 2. For steel types A and B according to the present invention, the total aging time
Although it shows sufficient soft non-aging characteristics in 165 seconds, Mn,
Steel types D and E, which have different S conditions, have insufficient cementite nucleation sites and exhibit large aging resistance.
In addition, in steel type C containing less carbon, the degree of supersaturation of carbon is insufficient during rapid cooling during continuous annealing, and as a result, large aging deterioration occurs. In addition, for steel type F with a high carbon content,
Although it has good aging properties, it cannot be said to be soft or highly ductile.

【表】 * 第1表と同条件
(発明の効果) 本発明によれば、以上の実施例から明らかなよ
うに、製鋼に負担をかけず経済的にかつ、真の意
味での短時間の連続焼鈍で軟質非時効性冷延鋼板
を製造することができる。 これにより、従来高級の非時効性鋼板は箱焼鈍
で、低級鋼は連続焼鈍と作り別けられ、連続焼鈍
により高級鋼を製造するには、高価なIF鋼を用
いて作つていたものが、高価なIF鋼を用いるこ
となしにコンパクトな連続焼鈍で製造可能となつ
た。その結果、連続焼鈍の良い点、すなわち高生
産性、均一な品質、省エネルギー、省力、短期納
期、高強度鋼板が製造しやすいなどの点を享受で
き、IF鋼を用いないことと相俟つて、経済的効
果は極めて大きい。
[Table] *Same conditions as in Table 1 (effects of the invention) According to the present invention, as is clear from the above embodiments, steel manufacturing can be made economically and in a short time in the true sense without putting a burden on steelmaking. Soft, non-aging cold rolled steel sheets can be produced by continuous annealing. As a result, high-grade non-aging steel plates were conventionally box-annealed, and lower-grade steels were produced by continuous annealing.In order to produce high-grade steel by continuous annealing, expensive IF steel was used to produce high-grade steel. It has become possible to manufacture compact continuous annealing without using expensive IF steel. As a result, we can enjoy the advantages of continuous annealing, such as high productivity, uniform quality, energy savings, labor savings, short delivery times, and easy production of high-strength steel sheets, and this combined with not using IF steel, The economic effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は温度T1およびT2での本発明範囲を示
す図、第2図はT1およびT2を変化させたときに
得られた時効指数の値を示す図、第3図は本発明
の連続焼鈍熱サイクルの模式図である。
Figure 1 is a diagram showing the range of the present invention at temperatures T 1 and T 2 , Figure 2 is a diagram showing the aging index values obtained when varying T 1 and T 2 , and Figure 3 is a diagram showing the range of the present invention at temperatures T 1 and T 2. FIG. 2 is a schematic diagram of a continuous annealing thermal cycle of the invention.

Claims (1)

【特許請求の範囲】 1 C0.01〜0.05%、Mn0.05〜0.25%、S0.003〜
0.015%、Al0.005〜0.10%、N0.0050%以下、必
要に応じて、B0.0005〜0.0040%を含有し、残部
Feおよび不可避的不純物からなる鋼を熱間圧延
し、650℃以上の温度で巻取り、その後冷間圧延
し、次いで連続焼鈍を行うに当たり、700〜850℃
の温度で再結晶焼鈍後、650℃以上の温度から
1000℃/s以下の冷却速度(v)で急冷し、続い
て温度T(℃)で保持時間t1(秒)として10〜30秒
保定してセメンタイトの核生成を行わせ、その際
前記温度T(℃)を200℃以上でかつ−70×(log
v/1000)2+340と−70×(logv/1000)2+250の間
(但 しvは前記の冷却速度)の温度とすることによ
り、4×104〜2×106個/mm2のセメンタイト核を
生ぜしめ、次いで下記(1)〜(3)式を満足する温度
T1まで3℃/s以上でt2(秒)時間にて再加熱し、
次いで同じく下記式を満足する温度T2まで直線
状に(180−t1−t2)(秒)〜(150−t1−t2)(秒)
で冷却することを特徴とする連続焼鈍による非時
効性冷延鋼板の製造方法。 T1≦450℃、200℃≦T2≦330℃ …(1) T1≧T2 …(2) T1≧−0.45T2+455℃ …(3)
[Claims] 1 C0.01~0.05%, Mn0.05~0.25%, S0.003~
Contains 0.015%, Al0.005~0.10%, N0.0050% or less, B0.0005~0.0040% as required, the balance
When steel consisting of Fe and unavoidable impurities is hot rolled, coiled at a temperature of 650°C or higher, then cold rolled, and then continuously annealed at a temperature of 700 to 850°C.
After recrystallization annealing at a temperature of 650℃ or higher
Rapid cooling is performed at a cooling rate (v) of 1000°C/s or less, followed by holding at a temperature T (°C) for a holding time t 1 (seconds) of 10 to 30 seconds to cause cementite nucleation. T(℃) is 200℃ or higher and -70×(log
By setting the temperature between +340 (logv/1000) 2 and -70 x (logv/1000) 2 +250 (where v is the cooling rate mentioned above), 4 × 10 4 to 2 × 10 6 pieces/mm 2 of cementite Temperature that generates nuclei and then satisfies the following formulas (1) to (3)
Reheat at 3℃/s or more for t2 (seconds) to T1 ,
Then, linearly from (180−t 1 −t 2 ) (seconds) to (150−t 1 −t 2 )(seconds) until the temperature T 2 that also satisfies the following formula
A method for producing a non-aging cold-rolled steel sheet by continuous annealing, characterized by cooling at . T 1 ≦450℃, 200℃≦T 2 ≦330℃ …(1) T 1 ≧T 2 …(2) T 1 ≧−0.45T 2 +455℃ …(3)
JP11845785A 1985-05-31 1985-05-31 Production of cold rolled steel sheet having non-aging characteristic by continuous annealing Granted JPS61276935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11845785A JPS61276935A (en) 1985-05-31 1985-05-31 Production of cold rolled steel sheet having non-aging characteristic by continuous annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11845785A JPS61276935A (en) 1985-05-31 1985-05-31 Production of cold rolled steel sheet having non-aging characteristic by continuous annealing

Publications (2)

Publication Number Publication Date
JPS61276935A JPS61276935A (en) 1986-12-06
JPH025803B2 true JPH025803B2 (en) 1990-02-06

Family

ID=14737120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11845785A Granted JPS61276935A (en) 1985-05-31 1985-05-31 Production of cold rolled steel sheet having non-aging characteristic by continuous annealing

Country Status (1)

Country Link
JP (1) JPS61276935A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139849A (en) * 1985-12-13 1987-06-23 Kobe Steel Ltd Hot rolled soft steel sheet having superior workability
JPH0672257B2 (en) * 1988-04-14 1994-09-14 新日本製鐵株式会社 Method for producing cold rolled steel sheet with excellent workability by continuous annealing
JPH0293051A (en) * 1988-09-28 1990-04-03 Nippon Steel Corp Production of aging resistant galvanized steel sheet by hot dip type continuous galvanizing method
JPH0293025A (en) * 1988-09-28 1990-04-03 Nippon Steel Corp Production of cold rolled steel sheet excellent in aging resistance by continuous annealing
JPH0826402B2 (en) * 1991-01-22 1996-03-13 新日本製鐵株式会社 Method for producing Al-killed cold-rolled steel sheet with excellent surface properties by continuous annealing
BE1012934A3 (en) * 1999-10-13 2001-06-05 Ct Rech Metallurgiques Asbl Manufacturing method of steel strip for cold rolled deep.

Also Published As

Publication number Publication date
JPS61276935A (en) 1986-12-06

Similar Documents

Publication Publication Date Title
KR890003975B1 (en) Dual phase-structured hot rolled high tensile strenght steel sheet and a method of producing the same
US3936324A (en) Method of making high strength cold reduced steel by a full continuous annealing process
JPH025803B2 (en)
JPH0555573B2 (en)
JPS613843A (en) Manufacture of high ductility and high strength cold rolled steel sheet
JPH03170618A (en) Highly efficient production of cold-rolled steel sheet extremely excellent in workability
JPH108143A (en) Production of thin steel sheet excellent in workability and hardenability in coating/backing
JPH058256B2 (en)
JPH0545654B2 (en)
KR100435467B1 (en) A method for manufacturing high strength cold rolled steel sheet having superior ductility by continuous annealing
JPS5913030A (en) Manufacture of cold rolled al killed steel plate with superior deep drawability
JPH0545652B2 (en)
JPS6367524B2 (en)
JPH0452229A (en) Highly efficient production of cold rolled steel sheet extremely excellent in workability
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPS6349726B2 (en)
JPS5945735B2 (en) Method for manufacturing high-strength cold-rolled steel sheets with excellent ductility through continuous annealing
JPS6046165B2 (en) A method for producing high-strength cold-rolled steel sheets with high bake hardenability, excellent aging resistance, and press workability by continuous annealing.
JPH01149923A (en) Production of high-strength and high-toughness steel sheet having excellent weldability
JPS6240319A (en) Manufacture of steel sheet having superior deep drawability by continuous annealing
JPS59219407A (en) Manufacture of cold rolled steel sheet with superior drawability
JPS60100630A (en) Production of high-strength light-gage steel sheet having good ductility and bending workability
JPH0421723A (en) Production of cold rolled steel sheet from thin cast slab
JPH01177322A (en) Manufacture of cold rolled steel sheet extremely excellent in deep drawability
JPS6126726A (en) Manufacture of over 80 kilo high-strength hot-rolled steel sheet having excellent elongation and tensibility

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term