JPH0256892A - Electroluminescence panel - Google Patents

Electroluminescence panel

Info

Publication number
JPH0256892A
JPH0256892A JP63207828A JP20782888A JPH0256892A JP H0256892 A JPH0256892 A JP H0256892A JP 63207828 A JP63207828 A JP 63207828A JP 20782888 A JP20782888 A JP 20782888A JP H0256892 A JPH0256892 A JP H0256892A
Authority
JP
Japan
Prior art keywords
insulating substrate
film
transparent insulating
layer
optical interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63207828A
Other languages
Japanese (ja)
Inventor
Etsuo Ogino
悦男 荻野
Yuichi Aoki
裕一 青木
Koji Nakanishi
功次 中西
Shiro Kobayashi
史朗 小林
Toshitaka Shigeoka
重岡 利孝
Katsuhisa Enjoji
勝久 円城寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP63207828A priority Critical patent/JPH0256892A/en
Publication of JPH0256892A publication Critical patent/JPH0256892A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Abstract

PURPOSE:To improve the contrast by inserting a light interference layer between a transparent insulating substrate and a transparent electrode or between the transparent electrode and a luminous layer. CONSTITUTION:At least a layer of an optical interference film 6 having the refraction factor and film thickness so that the total reflected light quantity from the interface existing between a transparent insulating substrate 1 and a luminous layer 3 is decreased for the external light incoming from the transparent insulating substrate side by the optical interference is provided between the transparent insulating substrate 1 and the luminous layer 3. Since the optical interference film 6 is provided between the transparent insulating film and the luminous layer 3, the reflected light of the external light from the interfaces of the transparent insulating substrate 1, optical interference film 6, a transparent electrode 2, and the luminous layer 3 respectively interferes optically with each other, and the reflection of the light from the element section of an electroluminescence EL element is reduced. The contrast is thereby improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エレクトロルミネセンスパネル(以後ELパ
ネルと略称する)に関し、特に表示品質が向上したEL
デイスプレィパネルに関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an electroluminescent panel (hereinafter abbreviated as EL panel), and in particular to an EL panel with improved display quality.
Regarding display panels.

〔従来の技術〕[Conventional technology]

近年コンピューターの普及に伴い、デイスプレィデバイ
スの需要が高まっており特に現在量も広く使われている
CRTの厚味が大きすぎると云う欠点を改善しようと云
う動きが盛んである。平面デイスプレィ装置として現在
実用化の域に達しているものには、代表的なものを挙げ
るとLCD(液晶デイスプレィ)、PD(プラズマデイ
スプレィ)、ELD(エレクトロルミネセントディスプ
レイ)、螢光表示管の4種類があり、ELDは中でも輝
度の高さ、応答性の良さ、コントラストの良さ及び視野
角の広さに於いて群を抜いている。
With the spread of computers in recent years, the demand for display devices has increased, and in particular, there has been a growing movement to improve the drawback that the CRT, which is currently widely used, is too thick. Typical flat display devices that have reached the stage of practical use include LCDs (liquid crystal displays), PDs (plasma displays), ELDs (electroluminescent displays), and fluorescent display tubes. There are four types, and ELD stands out in terms of high brightness, good response, good contrast, and wide viewing angle.

このようなELDとして、ガラス基板上に透明電極(例
えばITO)、発光層(例えばZnS : Mn)、電
流制限層(例えばMn0z) 、背面電極(例えばAn
を順次積層した構造(例えば GB2176340A、
 GB2176341A)が知られている。
Such an ELD has a transparent electrode (e.g. ITO), a light emitting layer (e.g. ZnS:Mn), a current limiting layer (e.g. Mn0z), a back electrode (e.g. An
A structure in which GB2176340A, GB2176340A,
GB2176341A) is known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来のELデイスプレィパネルにお
いては、EL素子を構成する各層の界面からの反射光量
及びELパネル前面からの反射光量が大きいため、コン
トラストが悪く、又、眼性疲労の原因となっていた。
However, in the above-mentioned conventional EL display panel, the amount of light reflected from the interface of each layer that makes up the EL element and the amount of light reflected from the front of the EL panel is large, resulting in poor contrast and causing eye strain. Ta.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記従来の問題点を解決するためになされた
ものであって、透明絶縁基板上に、透明電極、発光層、
電流制限層および背面電極を設けたエレクトロルミネセ
ンスパネルにおいて、該透明絶縁基板と発光層との間に
、光学干渉によって、透明絶縁基板側から入射した外部
光に対して透明絶縁基板と発光層との間に存在する界面
からの合計の反射光量が減少する様な屈折率および膜厚
を有する少なくともINの光学干渉膜を設けている。
The present invention has been made to solve the above-mentioned conventional problems, and includes a transparent electrode, a light emitting layer,
In an electroluminescent panel provided with a current limiting layer and a back electrode, optical interference occurs between the transparent insulating substrate and the light emitting layer to prevent external light incident from the transparent insulating substrate side. An optical interference film of at least IN is provided, which has a refractive index and film thickness such that the total amount of reflected light from the interface existing between the two is reduced.

該光学干渉層は、透明絶縁基板と透明導電膜の間、透明
導電膜と発光層の間又はその両方等の位置に設けること
ができる。内でも透明絶縁基板と透明導電膜との間に設
けることが、EL素子駆動の電気的な弊害防止条件がな
く自由にその材料、膜層を選択できるので好ましい。
The optical interference layer can be provided at a position such as between the transparent insulating substrate and the transparent conductive film, between the transparent conductive film and the light emitting layer, or both. Of these, it is preferable to provide the film between the transparent insulating substrate and the transparent conductive film, since there is no requirement to prevent electrical problems in driving the EL element and the material and film layer can be freely selected.

該光学干渉層は単層であっても複層であってもかまわな
い。しかしながら複層にすると製造コストが増加するこ
とになるので単層とすることが好ましい。
The optical interference layer may be a single layer or a multilayer. However, since a multi-layer structure increases manufacturing costs, a single layer structure is preferable.

該光学干渉層としては、AlzOl、Ti12.5if
t、MgFz (Pr 6o11 + Ti(h)、Z
r0z等の透明材料が使用される。
As the optical interference layer, AlzOl, Ti12.5if
t, MgFz (Pr 6o11 + Ti(h), Z
A transparent material such as r0z is used.

基板ガラス面から見た裏面反射率Rrevmは、例えば
、■透明絶縁基板と透明導電膜との間に一層の光学干渉
膜を設ける場合、設ける光学干渉膜の屈折率nおよび厚
さd、透明絶縁基板の屈折率n5Ul+%透明導電膜の
屈折率nl?。、厚さdlTo、および消衰係数RI?
。、発光層の屈折率12N3を用いて、■発光層と透明
導電膜との間、および透明導電膜と透明絶縁基板との間
の両方に各々1石の光学干渉膜を設ける場合、発光層と
透明導電膜との間の光学干渉膜1の屈折率n1および膜
厚d1、および透明導電膜と透明絶縁基板との間の光学
干渉膜2の屈折率n2および膜厚d2および前述の特性
を用いて、 光学干渉膜の屈折率nおよび厚さdは、上記裏面反射率
Rrevmが減少する様に設定される。
The back surface reflectance Rrevm as seen from the substrate glass surface is determined by, for example, Refractive index of substrate n5Ul+%Refractive index of transparent conductive film nl? . , thickness dlTo, and extinction coefficient RI?
. , using a refractive index of 12N3 for the emissive layer, (1) when providing one optical interference film each between the emissive layer and the transparent conductive film and between the transparent conductive film and the transparent insulating substrate, the emissive layer and Using the refractive index n1 and film thickness d1 of the optical interference film 1 between the transparent conductive film and the refractive index n2 and film thickness d2 of the optical interference film 2 between the transparent conductive film and the transparent insulating substrate and the above-mentioned characteristics. The refractive index n and thickness d of the optical interference film are set so that the back surface reflectance Rrevm decreases.

透明絶縁基板と透明導電膜との間に光学干渉膜を設ける
場合には、前記、光学干渉層の等価屈折率としては、透
明絶縁性基板の屈折率と透明電極の屈折率との中間の値
である必要がある。仮に、透明電極の屈折率よりも大き
な値の場合は、透明絶縁性基板と光学干渉層との界面か
らの反射光量が透明絶縁性基板と透明電極との界面から
の反射光量よりも大きくなり、本発明の目的に不適な結
果となる。
When an optical interference film is provided between a transparent insulating substrate and a transparent conductive film, the equivalent refractive index of the optical interference layer is a value intermediate between the refractive index of the transparent insulating substrate and the refractive index of the transparent electrode. It must be. If the refractive index is larger than the refractive index of the transparent electrode, the amount of light reflected from the interface between the transparent insulating substrate and the optical interference layer will be greater than the amount of light reflected from the interface between the transparent insulating substrate and the transparent electrode. This results in an unsuitable result for the purpose of the present invention.

本発明のEL素子の透明絶縁基板の発光層に対する反対
側表面に通常のレンズに使用される様な反射防止層を設
けることは、本発明の効果と相乗効果によってより良好
な表示品質を実現できるので好ましい。
Providing an antireflection layer such as that used in ordinary lenses on the surface of the transparent insulating substrate opposite to the light emitting layer of the EL element of the present invention can achieve better display quality due to the effects of the present invention and a synergistic effect. Therefore, it is preferable.

パネル前面に成膜される反射防止層としては、例えば、
低屈折材料(例えばMgh)1層からなるもの、高屈折
材料/中間屈折材料/低屈折材料(例えばPr60++
 + Ti1t/^12203/ Mgh)  3層か
ら成るもの、高屈折材料/低屈折材料/高屈折材料/低
屈折材料(PrrO+ I”Ti0z/ Mgh/ P
r6[+ t +Ti1t/Mgh) 4層から成るも
の、あるいは5層以上の全て透明誘電体薄膜によって形
成されたものであったり、薄い吸収膜を利用して、透過
率を調整させる機能を、付加した多層反射防止層であっ
ても良い。
For example, the antireflection layer formed on the front surface of the panel includes:
Consisting of one layer of low refractive material (e.g. Mgh), high refractive material/intermediate refractive material/low refractive material (e.g. Pr60++)
+ Ti1t/^12203/ Mgh) consisting of three layers, high refractive material/low refractive material/high refractive material/low refractive material (PrrO+ I"Ti0z/ Mgh/ P
r6 [+ t +Ti1t/Mgh) It is composed of 4 layers or 5 or more layers all made of transparent dielectric thin films, or it is added with a function to adjust the transmittance by using a thin absorption film. It may also be a multilayer antireflection layer.

〔作用〕[Effect]

本発明によれば、透明絶縁膜と発光層との間に光学干渉
膜を設けているために、透明絶縁性基板、光学干渉膜、
透明電極、発光層のそれぞれの界面からの外部からの光
の反射光がお互いに光学的に干渉し合い、EL素子の素
子部からの光の反射が低減される。そのためコントラス
トが良くなり、眼性疲労が軽減できる。
According to the present invention, since the optical interference film is provided between the transparent insulating film and the light emitting layer, the transparent insulating substrate, the optical interference film,
The reflected light from the outside from the respective interfaces of the transparent electrode and the light emitting layer optically interfere with each other, and the reflection of light from the element portion of the EL element is reduced. This improves contrast and reduces eye strain.

〔実施例〕 以下、本発明の実施例について、説明する。〔Example〕 Examples of the present invention will be described below.

〈実施例1〉 ガラス基板1上に、真空蒸着法により酸化アルミ(A 
1 zoo)を膜厚が83nmとなるように成膜した。
<Example 1> Aluminum oxide (A
1 zooo) was deposited to a film thickness of 83 nm.

この時のA l tax膜6の屈折率はエリプソメトリ
−法により測定した結果1.67であった。次に、透明
電極2としてインジウム・すず酸化物(ITO)を反応
性スパッタ法を用いて、500nmの厚さに成膜した。
The refractive index of the Al tax film 6 at this time was 1.67 as measured by ellipsometry. Next, as the transparent electrode 2, indium tin oxide (ITO) was formed into a film with a thickness of 500 nm using a reactive sputtering method.

更に、これらのA (l zOユ膜6及びITO膜2が
成膜された面とは反対の面に高屈折材料(PrbO1+
 +Ti0z膜、屈折率ng =2.10)と低屈折材
料(MgFz、屈折率nL=1.38)の交互4N膜か
ら成る反射防止層7を真空蒸着法により成膜した。
Furthermore, a high refractive material (PrbO1+
The antireflection layer 7 was formed by a vacuum evaporation method, consisting of alternating 4N films of +Ti0z film, refractive index ng = 2.10) and a low refractive material (MgFz, refractive index nL = 1.38).

続いて、先に成膜されたITO膜2をホトリソグラフィ
ー法により所定の形状にパターニングした後に、発光層
としてMnが0.3重量%ドープされたZnS膜3を約
1μmの厚みに真空蒸着法により成膜した。
Subsequently, after patterning the previously formed ITO film 2 into a predetermined shape by photolithography, a ZnS film 3 doped with 0.3% by weight of Mn as a light emitting layer is deposited to a thickness of about 1 μm by vacuum evaporation. The film was formed by

次に、Mn0z粉末をバインダー樹脂とシンナーとの混
合液に分散させた塗料を、スプレー法により塗装、乾燥
させ膜厚が15μmの電流制限層4を形成した。
Next, a paint in which MnOz powder was dispersed in a mixture of binder resin and thinner was applied by a spray method and dried to form a current limiting layer 4 having a thickness of 15 μm.

次に、背面電極5として、^2を真空蒸着法で約0.5
μmの厚みに形成した後、ダイヤモンド針ヲ用いて、I
TOのパターンとは垂直にスクライブすることにより所
定の背面電極パターンを形成した。以上の様にして作製
したELデイスプレィパネル(第1図)の表示面側から
分光光度計により反射率を測定した結果、従来のパネル
に比較して大幅に低減することができた。酸化アルミ膜
6および反射防止層7を持たない従来のELパネルの分
光反射率を第3図に、本発明によるELパネルの分光反
射率を第4図に示す。
Next, as the back electrode 5, approximately 0.5
After forming it to a thickness of μm, I
A predetermined back electrode pattern was formed by scribing perpendicularly to the TO pattern. The reflectance of the EL display panel (FIG. 1) produced as described above was measured from the display surface side using a spectrophotometer, and the reflectance was found to be significantly lower than that of a conventional panel. FIG. 3 shows the spectral reflectance of a conventional EL panel without the aluminum oxide film 6 and antireflection layer 7, and FIG. 4 shows the spectral reflectance of the EL panel according to the present invention.

〈実施例2〉 ガラス基板上lに真空蒸着法により酸化アルミ(^l 
zo:+)を膜厚が77r+mとなるように成膜した。
<Example 2> Aluminum oxide (^l) was deposited on a glass substrate by vacuum evaporation method.
zo:+) was formed to have a film thickness of 77r+m.

この時のへ1203膜6の屈折率はエリプソメトリ−法
により測定した結果1.67であった。次に透明電極2
としてITOを反応性スパッタ法を用いて450nmの
厚さに成膜した。更に、これらのAN、Q、膜6及びI
TO膜2が成膜された面とは反対の面に実施例1で示し
た反射防止N7を真空蒸着法により成膜し、続いて先に
成膜されたITO膜2をホトリソグラフィー法により所
定の形状にパターニングした後、ITO膜2上2上Pr
、0. 、 + Ti1t)膜8を膜厚が39no+と
なるように成膜した。
The refractive index of the He1203 film 6 at this time was 1.67 as measured by ellipsometry. Next, transparent electrode 2
A film of ITO was formed to a thickness of 450 nm using a reactive sputtering method. Furthermore, these AN, Q, membrane 6 and I
The antireflection N7 shown in Example 1 was formed by vacuum evaporation on the surface opposite to the surface on which the TO film 2 was formed, and then the previously formed ITO film 2 was deposited in a predetermined position by photolithography. After patterning into the shape of Pr
,0. , +Ti1t) film 8 was formed to have a film thickness of 39no+.

この時の(PrhO+t +Ti0z)膜の屈折率は2
.12であった。更に発光層としてMnが0.3重量%
ドープされたZnS膜3を約1μmの厚みに真空蒸着法
により成膜した。次にMnO□粉末をバインダー樹脂と
シンナーの混合液に分散させた塗料をスプレー法により
塗装、乾燥させ、膜厚が15μmの電流制限層4を形成
した。次に背面電極5として、Alを真空蒸着法で約0
.5μmの厚味に形成した後、ダイヤモンド針を用いて
ITOのパターンとは垂直にスクライブすることにより
所定の背面電極パターンを形成した。
At this time, the refractive index of the (PrhO+t +Ti0z) film is 2
.. It was 12. Furthermore, 0.3% by weight of Mn is added as a light-emitting layer.
A doped ZnS film 3 having a thickness of about 1 μm was formed by vacuum evaporation. Next, a paint in which MnO□ powder was dispersed in a mixture of binder resin and thinner was applied by a spray method and dried to form a current limiting layer 4 having a thickness of 15 μm. Next, as the back electrode 5, Al was deposited by vacuum evaporation to approximately 0.
.. After forming it to a thickness of 5 μm, a predetermined back electrode pattern was formed by scribing perpendicularly to the ITO pattern using a diamond needle.

以上の様にして作製したELデイスプレィパネル(第2
図)の表示面側から分光光度計により反射率を測定した
結果、大幅な反射率の低減を達成することができた。本
実施例のELパネルの分光反射率を第5図に示す。
The EL display panel (second
As a result of measuring the reflectance using a spectrophotometer from the display surface side of Figure), we were able to achieve a significant reduction in reflectance. FIG. 5 shows the spectral reflectance of the EL panel of this example.

上記実施例においては、透明電極、発光層、電流制限層
および背面電極からなる基本的な混成型EL素子の構造
を用いているが、本発明は上記実施例に限らず発光層と
電流制限層との間に黒色層を設けた構造(例えばGB2
176341A等)等上記基本構造の変形に対しても実
施でき、同等な効果が得られる。
In the above embodiments, a basic hybrid EL element structure consisting of a transparent electrode, a light emitting layer, a current limiting layer and a back electrode is used, but the present invention is not limited to the above embodiments. A structure in which a black layer is provided between the
176341A, etc.), and similar effects can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来のELデイスプレィパネルに比べ
て外部反射光を大幅に削減でき、10001uxの光の
下で、コントラストを従来の30:1から100:1に
向上させることができた。又、光干渉層が、透明絶縁性
基板と透明電極との間又は透明電極と発光層の間に挿入
された構造となっているため、光干渉層が透明基板また
は透明電極から発光層へイオンが拡散するのを防ぐため
、EL素子の寿命の低下、輝度の低下等を防ぐことがで
きる。
According to the present invention, external reflected light can be significantly reduced compared to conventional EL display panels, and the contrast can be improved from the conventional 30:1 to 100:1 under 10,001 ux light. In addition, since the optical interference layer has a structure inserted between the transparent insulating substrate and the transparent electrode or between the transparent electrode and the light emitting layer, the optical interference layer does not transfer ions from the transparent substrate or the transparent electrode to the light emitting layer. Since the EL element is prevented from being diffused, it is possible to prevent a decrease in the life of the EL element, a decrease in brightness, etc.

この結果、従来よりも高コントラスト、長寿命なELデ
イスプレィパネルを提供することが出来る。
As a result, it is possible to provide an EL display panel with higher contrast and longer life than conventional ones.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ実施例1.実施例2で示した
本発明による混成型EL素子の断面図であり、 第3図は、従来の混成型ELデイスプレィパネルの分光
反射特性、 第4図は、実施例1の混成型ELデイスプレィパネルの
分光反射特性、 第5図は、実施例2の混成型ELデイスプレィパネルの
分光反射特性を各々示す図である。 第 図
FIG. 1 and FIG. 2 show Example 1, respectively. 3 is a cross-sectional view of a hybrid EL device according to the present invention shown in Example 2, FIG. 3 is a spectral reflection characteristic of a conventional hybrid EL display panel, and FIG. Spectral Reflection Characteristics of Spray Panel FIG. 5 is a diagram showing the spectral reflection characteristics of the hybrid EL display panel of Example 2. Diagram

Claims (1)

【特許請求の範囲】[Claims] (1) 透明絶縁基板上に、透明電極、発光層、電流制
限層および背面電極を設けたエレクトロルミネセンスパ
ネルにおいて、該透明絶縁基板と発光層との間に、光学
干渉によって、透明絶縁基板側から入射した外部光に対
して透明絶縁基板と発光層との間に存在する界面からの
合計の反射光量が減少する様な屈折率および膜厚を有す
る少なくとも1層の光学干渉膜を設けたことを特徴とす
るエレクトロルミネセンスパネル。
(1) In an electroluminescent panel in which a transparent electrode, a light-emitting layer, a current limiting layer, and a back electrode are provided on a transparent insulating substrate, optical interference occurs between the transparent insulating substrate and the light-emitting layer on the transparent insulating substrate side. Provided with at least one optical interference film having a refractive index and film thickness such that the total amount of reflected light from the interface existing between the transparent insulating substrate and the light emitting layer is reduced with respect to external light incident from the transparent insulating substrate and the light emitting layer. An electroluminescent panel featuring
JP63207828A 1988-08-22 1988-08-22 Electroluminescence panel Pending JPH0256892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63207828A JPH0256892A (en) 1988-08-22 1988-08-22 Electroluminescence panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63207828A JPH0256892A (en) 1988-08-22 1988-08-22 Electroluminescence panel

Publications (1)

Publication Number Publication Date
JPH0256892A true JPH0256892A (en) 1990-02-26

Family

ID=16546190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63207828A Pending JPH0256892A (en) 1988-08-22 1988-08-22 Electroluminescence panel

Country Status (1)

Country Link
JP (1) JPH0256892A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276191A (en) * 1988-12-02 1990-11-13 Natl Res Council Of Canada Optical interfering el device
US5243822A (en) * 1989-05-23 1993-09-14 Angelo Vismara Hydraulic rotary pump-turbine as a torque converter
WO2001006816A1 (en) * 1999-07-19 2001-01-25 Luxell Technologies Inc. Optical interference layer for electroluminescent devices
US6548956B2 (en) 1994-12-13 2003-04-15 The Trustees Of Princeton University Transparent contacts for organic devices
US6596134B2 (en) 1994-12-13 2003-07-22 The Trustees Of Princeton University Method of fabricating transparent contacts for organic devices
WO2003094254A3 (en) * 2002-05-06 2004-02-05 Luxell Technologies Inc Electroluminescent device
JP2005317208A (en) * 2004-04-26 2005-11-10 Nippon Sheet Glass Co Ltd Organic electroluminescent display device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276191A (en) * 1988-12-02 1990-11-13 Natl Res Council Of Canada Optical interfering el device
US5243822A (en) * 1989-05-23 1993-09-14 Angelo Vismara Hydraulic rotary pump-turbine as a torque converter
US6548956B2 (en) 1994-12-13 2003-04-15 The Trustees Of Princeton University Transparent contacts for organic devices
US6596134B2 (en) 1994-12-13 2003-07-22 The Trustees Of Princeton University Method of fabricating transparent contacts for organic devices
US7173369B2 (en) 1994-12-13 2007-02-06 The Trustees Of Princeton University Transparent contacts for organic devices
US7714504B2 (en) 1994-12-13 2010-05-11 The Trustees Of Princeton University Multicolor organic electroluminescent device formed of vertically stacked light emitting devices
US8324803B2 (en) 1994-12-13 2012-12-04 The Trustees Of Princeton University Transparent contacts for organic devices
WO2001006816A1 (en) * 1999-07-19 2001-01-25 Luxell Technologies Inc. Optical interference layer for electroluminescent devices
WO2003094254A3 (en) * 2002-05-06 2004-02-05 Luxell Technologies Inc Electroluminescent device
JP2005317208A (en) * 2004-04-26 2005-11-10 Nippon Sheet Glass Co Ltd Organic electroluminescent display device

Similar Documents

Publication Publication Date Title
Singh et al. Improving the contrast ratio of OLED displays: An analysis of various techniques
US6211613B1 (en) High contrast electroluminescent displays
US9402305B2 (en) Transparent conducting article comprising first and second conductive layers and an intervening inorganic dielectric layer having a plurality of apertures therein
EP1149402B1 (en) Low reflectivity contrast enhancement filter
US6091184A (en) Optical element and display device provided with said optical element
CN207529935U (en) A kind of OLED display
US7162141B1 (en) Electro-conductive anti-reflection coating
US20070177289A1 (en) Optical filter and plasma display panel employing the same
CN207529936U (en) A kind of novel OLED display
JPH0256892A (en) Electroluminescence panel
JPH0728055A (en) Liquid crystal display and production thereof
KR100250694B1 (en) Lcd device and method for the same
KR20010068549A (en) flat panel display device having antireflection layer
US20060050207A1 (en) Liquid crystal display unit
MY119036A (en) Display device
JP2792492B2 (en) Liquid crystal display
KR100384291B1 (en) Organic electro luminescence display element with low reflectivity of cathode
US5943108A (en) Matrix type liquid crystal display with substrate having blue filter for masking at least 75% of total planar area of auxiliary electrodes
JPH0733433Y2 (en) Thin film EL device
KR200368470Y1 (en) Panel structure of color organic light emitting diode
US20050023973A1 (en) Light emitting unit for displaying light of different colors from two sides
JP2001116919A (en) Color filter with transparent conductive film and method of producing the same
KR100342194B1 (en) Organic electroluminescent device and method for fabricating thereof
KR970000902B1 (en) Low-reflection coating glass and its process
JP3280090B2 (en) White conductive film and method for producing the same