JPH0254705A - Production of fine metal powder - Google Patents

Production of fine metal powder

Info

Publication number
JPH0254705A
JPH0254705A JP20338688A JP20338688A JPH0254705A JP H0254705 A JPH0254705 A JP H0254705A JP 20338688 A JP20338688 A JP 20338688A JP 20338688 A JP20338688 A JP 20338688A JP H0254705 A JPH0254705 A JP H0254705A
Authority
JP
Japan
Prior art keywords
metal
hydrocarbon
gaseous
molecule
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20338688A
Other languages
Japanese (ja)
Inventor
Masao Ishiwatari
石渡 正男
Fumio Takemura
文男 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP20338688A priority Critical patent/JPH0254705A/en
Publication of JPH0254705A publication Critical patent/JPH0254705A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce fine reduced metal powder having high purity and extremely small particle size by introducing a metal compd. soln. and hydrocarbon having an oxygen atom in the molecule into high-temp. combustion gas flow and executing reduction and thermal decomposition in the state of the specific value or above of gaseous H2 and CO. CONSTITUTION:The soln. or dispersion of the metal compd. is introduced simultaneously with or separately from the hydrocarbon having the oxygen atom in the molecule into the high temp. combustion gas flow formed by causing the complete combustion of a natural gas, etc., to effect the reduction and thermal decomposition in the state of respectively >=8% H2 and CO gaseous compsns. The chloride, nitrate, etc., of iron, cobalt and nickel selected from transition metals are used as the metal compd. and alcohols such as ethanol and propanol are used as the hydrocarbon. The metal compd. introduced into the gaseous flow is stagnated for at least about 50ms in the furnace. The fine metal powder having the high purity and uniform granular shapes is effectively obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高純度で極めて微細な粒子径を有する還元金
属OFAを効率よく製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for efficiently producing reduced metal OFA having high purity and extremely fine particle size.

〔従来の技術〕[Conventional technology]

鉄、コバルト、ニッケルなどの金属微粉は、トナー、磁
性材成分、粉末冶金原料、樹脂、顔料等の充填材、触媒
あるいは印刷材成分といった多様の材料用途があること
から、製造研究も盛んに行われている。
Fine metal powders such as iron, cobalt, and nickel are used in a variety of materials such as toners, magnetic material components, powder metallurgy raw materials, resins, fillers such as pigments, catalysts, and printing material components, and therefore manufacturing research is being actively conducted. It is being said.

従来知られている還元金属微粉の製造手段は、概ね化学
的方法と物理的方法とに大別することができる。このう
ち化学的方法には、強磁性金属のシュウ酸塩を高温下に
水素気流中で還元する方法、強磁性金属のカルボニル化
合物を熱分解する方法、強磁性金属の水溶液中に還元性
物質を入れて還元する方法、ゲーサイトあるいはγ−F
ezO=を高温水素気流中で還元する方法、金属ハロゲ
ン化物の蒸気を水素気流中で還元する方法(特開昭62
−192507号公報)、水銀電極を使って強磁性金属
を水銀中に電析させたのち加熱して水銀を分離する方法
、などがある、また、物理的方法としては、金属成分を
ガス中で蒸発させる方法(ガス中蒸発法)あるいはアト
マイズする方法(アトマイゼージョン法)が知られてい
る。
Conventionally known means for producing reduced metal fine powder can be broadly classified into chemical methods and physical methods. Chemical methods include reducing oxalates of ferromagnetic metals in a hydrogen stream at high temperatures, thermally decomposing carbonyl compounds of ferromagnetic metals, and adding reducing substances to aqueous solutions of ferromagnetic metals. How to put in and reduce, goethite or γ-F
A method for reducing ezO= in a high-temperature hydrogen stream, a method for reducing metal halide vapor in a hydrogen stream (Japanese Patent Application Laid-Open No. 1983-1999)
-192507 Publication), a method in which a ferromagnetic metal is electrodeposited in mercury using a mercury electrode, and then heated to separate the mercury.Also, as a physical method, metal components are deposited in a gas. A method of evaporating (evaporation in gas method) or a method of atomizing (atomization method) is known.

〔発明が解決しようとする課M] 上記した化学的方法のなかでは、気相還元を採る方法が
効率的であるが、この場合には還元ガスとして爆発危険
性のある水素を使用しなければならない工業プロセス上
の問題点がある。そのうえ、化学的方法は総じてシャー
プな粒子径分布が得られないという特性的な不足面があ
る。また、物理的方法には高価な設備装置類が必要とな
り、コスト的に割高になる難点がある。
[Problem M to be solved by the invention] Among the chemical methods mentioned above, the method using gas phase reduction is efficient, but in this case, hydrogen, which has a risk of explosion, must be used as the reducing gas. There are problems with industrial processes that cannot be avoided. Moreover, chemical methods generally have a characteristic shortcoming in that a sharp particle size distribution cannot be obtained. In addition, physical methods require expensive equipment and have the disadvantage of being relatively expensive.

本発明は、上記の課題を解消するためになされたもので
、その目的とするところは、水素ガスを使わない気相還
元法によって高純度かつ粒子性状の整った金属微粉の効
率的な製造法を捉供するにある。
The present invention has been made to solve the above problems, and its purpose is to efficiently produce metal fine powder with high purity and uniform particle properties by a gas phase reduction method that does not use hydrogen gas. It is to capture and provide.

[課題を解決するための手段] この目的を達成するための本発明による金属微粉の製造
法は、高温燃焼ガス流に、金属化合物の溶液もしくは分
散液を、分子中に酸素原子を有する炭化水素と同時また
は別々に導入してH2、C0のガス組成が各8%以上の
状態下で還元熱分解させることを構成上の特徴とする。
[Means for Solving the Problems] A method for producing metal fine powder according to the present invention to achieve this object is to add a solution or dispersion of a metal compound to a high-temperature combustion gas stream, and add a hydrocarbon having oxygen atoms in its molecules to a high-temperature combustion gas stream. It is characterized in that it is introduced simultaneously or separately and reductive thermal decomposition is carried out under conditions in which the gas compositions of H2 and CO are each 8% or more.

高温燃焼ガス流は、軽質炭化水素あるいは天然ガスなど
の常用燃料を密閉空間中で完全燃焼させることによって
形成するが、装置としては頭部燃焼室と円筒反応室が連
結した形態のカーボンブラック発生炉のような構造炉が
有効に適用される。
The high-temperature combustion gas stream is formed by completely burning a common fuel such as light hydrocarbons or natural gas in a closed space. Structured furnaces such as the following can be effectively applied.

炉内の温度は、少なくとも金属化合物が導入される位置
において当該金属の融点以上に保持する必要があり、よ
り高温にすることにより還元金属の一層の微粒化を進め
ることができる。
The temperature inside the furnace needs to be maintained at least at the melting point of the metal at the position where the metal compound is introduced, and by increasing the temperature higher, further atomization of the reduced metal can be promoted.

高温燃焼ガス流に導入する金属化合物は遷移金属から選
択することが適切で、例えば、鉄、コバルトまたはニッ
ケルの塩化物、硝酸塩、硫酸塩などの使用が最も望まし
い。これら金属化合物は、水溶液あるいは適宜な有機溶
媒に均質に懸濁させた分散液として炉内に導入されるが
、目的により2種以上を複合的に導入することもできる
The metal compounds introduced into the hot combustion gas stream are suitably selected from transition metals, for example chlorides, nitrates, sulphates, etc. of iron, cobalt or nickel are most preferably used. These metal compounds are introduced into the furnace as an aqueous solution or a dispersion liquid homogeneously suspended in an appropriate organic solvent, but two or more types can also be introduced in combination depending on the purpose.

分子中に酸素原子を有する炭化水素は、熱分解過程でフ
リーカーボンを生成し難い成分組成をもつもので、典型
的な物質はアルコール類である。
Hydrocarbons having oxygen atoms in their molecules have a composition that makes it difficult to generate free carbon during thermal decomposition, and typical substances are alcohols.

好適なアルコール類としては、エタノール、プロパツー
ル、ペンタノール、エチレングリコール、プロピレング
リコールなどを挙げることができる。
Suitable alcohols include ethanol, propatool, pentanol, ethylene glycol, propylene glycol, and the like.

これらアルコール類は、炉内で熱分解したあとのH2、
coのガス組成として各8%以上になるような量で導入
することが重要である。金属化合物を導入する炉内位置
のH2およびCOのガス組成がそれぞれ8%を下潮ると
、得られる金属が酸化物系に転化し、適正な還元金属微
粉とならない。
These alcohols are H2 after being thermally decomposed in the furnace,
It is important to introduce Co in an amount such that the gas composition is 8% or more. If the gas composition of H2 and CO at the location in the furnace where the metal compound is introduced drops below 8% each, the resulting metal will convert to an oxide type and will not become an appropriate reduced metal fine powder.

金属化合物の溶液もしくは分散液と分子中に酸素原子を
有する炭化水素は、噴霧状態で同時または別々のルート
から高温燃焼ガス流に導入する。
The solution or dispersion of the metal compound and the hydrocarbon having oxygen atoms in its molecules are introduced into the hot combustion gas stream in atomized form simultaneously or by separate routes.

別々のルートから導入する場合には、金属化合物をアル
コール類の導入位置よりも下流域の炉内に導入すること
になる。しかし、高温雰囲気の安定維持ならびに作業性
の面からは、金属化合物を直接、アルコール類に溶解あ
るいは分散した状態で導入する方法の方が有利である。
If the metal compounds are introduced through separate routes, the metal compounds will be introduced into the furnace downstream of the alcohol introduction position. However, from the viewpoint of maintaining a stable high-temperature atmosphere and workability, it is more advantageous to introduce the metal compound directly into the alcohol in a dissolved or dispersed state.

なお、導入した金属化合物は、炉内に少なくとも50m
5の時間滞留させることが望ましく、50IIS未満の
滞留時間では金属@粉の還元が不充分となる。
In addition, the introduced metal compound should be placed in the furnace at least 50m long.
A residence time of less than 50 IIS is desirable; a residence time of less than 50 IIS will result in insufficient reduction of the metal powder.

〔作 用〕[For production]

本発明によれば、分子中に酸素原子を有する炭化水素を
高温燃焼ガス流に導入することにより、炉内はH2なら
びに00分圧の高い還元性雰囲気に保持されるとともに
、若干の熱分解カーボンが浮遊する状態を形成する。水
溶液または分散液として炉内に噴霧された金属化合物は
、急速に熱分解して金属微粒子に転化するが、この際、
炉内を浮遊するカーボンが生成した各金属微粒子面に被
着して相互の融着を防止し、同時に還元性雰囲気下の滞
留によって純度の高い還元金属微粉の連続的な生成が可
能となる。
According to the present invention, by introducing hydrocarbons having oxygen atoms in their molecules into the high-temperature combustion gas stream, the inside of the furnace is maintained in a reducing atmosphere with high H2 and 00 partial pressures, and a small amount of pyrolyzed carbon forms a floating state. The metal compound sprayed into the furnace as an aqueous solution or dispersion rapidly thermally decomposes and converts into fine metal particles.
Carbon floating in the furnace adheres to the surface of each metal fine particle produced, preventing mutual fusion, and at the same time, by staying in a reducing atmosphere, it becomes possible to continuously generate reduced metal fine powder with high purity.

また、炉内温度、金属化合物の導入量と炉内滞留時間な
どの生成条件を制御することにより粒子径その他の性状
を容易に調整することができ、更に、2種類以上の金属
化合物を導入することで合金の微粉末を生成することも
できる。
In addition, particle size and other properties can be easily adjusted by controlling the production conditions such as the temperature inside the furnace, the amount of metal compounds introduced, and the residence time in the furnace. It is also possible to produce fine powder of the alloy.

〔実施例〕〔Example〕

直径80mm、長さ2500mの円筒型反応炉の炉頭部
に空気導入ダクトと燃焼バーナーを装着し、アルコール
導入ノズルと金属化合物ノズルをそれぞれの先端部分が
炉頭部から200ma+および800mn+下流側に位
置するように挿入セットした。
An air introduction duct and combustion burner are installed at the head of a cylindrical reactor with a diameter of 80 mm and a length of 2500 m, and the tips of the alcohol introduction nozzle and metal compound nozzle are located 200 m+ and 800 m+ downstream from the reactor head. I inserted and set it to do so.

この反応炉を用い、プロパンガスを燃料として表1に示
す各条件を適用して還元金属粉を製造した。なお、滞留
時間の表示は、金属化合物の導入時から水冷による反応
停止時までの経過時間とした。
Using this reactor and using propane gas as fuel, reduced metal powder was produced under the conditions shown in Table 1. Note that the residence time was expressed as the elapsed time from the time of introduction of the metal compound to the time of termination of the reaction by water cooling.

それぞれの例で得られた還元金属粉の性状特性を、表1
に併載した。このうち、比較例1はアルコールを導入し
ない例であり、比較例2は炉内のH2、COガスの分圧
が8%を下潮る例である。
Table 1 shows the physical characteristics of the reduced metal powder obtained in each example.
Published in . Among these, Comparative Example 1 is an example in which no alcohol is introduced, and Comparative Example 2 is an example in which the partial pressure of H2 and CO gas in the furnace drops below 8%.

表1の結果から、実施例1〜5は、いずれも0゜5μm
以下の粒子径を有する高純度の性状を呈していたが、実
施例5は炉内滞留時間が50m5未満であった関係で0
分の含有量が若干高めの値を示した。これに対し、比較
例1.2は酸化傾向が大きく、純度も劣るものであった
From the results in Table 1, Examples 1 to 5 were all 0°5 μm.
It exhibited high purity properties with the following particle diameters, but in Example 5, the residence time in the furnace was less than 50 m5, so
The content of 100% was slightly higher. On the other hand, Comparative Example 1.2 had a large oxidation tendency and was poor in purity.

なお、上記の実施例は、アルコール類にプロビレコング
リコールおよびプロパツールを、また金属化合物に硝酸
ニッケルを使用した標準的な例を示したものであるが、
その他のアルコール類および金属化合物を用いた場合に
も同様の結果が得られた。
Note that the above example shows a standard example in which probirecon glycol and propatool were used as alcohols, and nickel nitrate was used as a metal compound.
Similar results were obtained using other alcohols and metal compounds.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明に従えば水素ガスを使わない気相
還元法によって高純度かつ粒子性状の整った金属微粉を
効率的に製造することが可能となる。
As described above, according to the present invention, it is possible to efficiently produce metal fine powder with high purity and uniform particle properties by a gas phase reduction method that does not use hydrogen gas.

したがって、トナー、磁性材成分、粉末冶金原料をはじ
め、あらゆる用途に適合する高性能の金属微粉を工業的
に量産化しえる効果がもたらされ特許出願人  東海カ
ーボン株式会社
Therefore, it is possible to industrially mass-produce high-performance metal fine powder suitable for all kinds of uses, including toner, magnetic material components, and raw materials for powder metallurgy.Patent applicant: Tokai Carbon Co., Ltd.

Claims (1)

【特許請求の範囲】 1、高温燃焼ガス流に、金属化合物の溶液もしくは分散
液を、分子中に酸素原子を有する炭化水素と同時または
別々に導入してH_2、COガス組成が各8%以上の状
態下で還元熱分解させることを特徴とする金属微粉の製
造法。 2、金属化合物が、遷移金属の無機塩である請求項1記
載の金属微粉の製造法。 3、分子中に酸素原子を有する炭化水素が、アルコール
類である請求項1記載の金属微粉の製造法。
[Claims] 1. A solution or dispersion of a metal compound is introduced into a high-temperature combustion gas stream simultaneously or separately with a hydrocarbon having an oxygen atom in its molecule, so that the H_2 and CO gas compositions are each 8% or more. A method for producing fine metal powder, characterized by carrying out reductive pyrolysis under conditions of. 2. The method for producing metal fine powder according to claim 1, wherein the metal compound is an inorganic salt of a transition metal. 3. The method for producing metal fine powder according to claim 1, wherein the hydrocarbon having an oxygen atom in its molecule is an alcohol.
JP20338688A 1988-08-16 1988-08-16 Production of fine metal powder Pending JPH0254705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20338688A JPH0254705A (en) 1988-08-16 1988-08-16 Production of fine metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20338688A JPH0254705A (en) 1988-08-16 1988-08-16 Production of fine metal powder

Publications (1)

Publication Number Publication Date
JPH0254705A true JPH0254705A (en) 1990-02-23

Family

ID=16473181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20338688A Pending JPH0254705A (en) 1988-08-16 1988-08-16 Production of fine metal powder

Country Status (1)

Country Link
JP (1) JPH0254705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068231A1 (en) * 2004-12-22 2006-06-29 Taiyo Nippon Sanso Corporation Method for producing superfine metal powder
WO2009013997A1 (en) 2007-07-23 2009-01-29 Taiyo Nippon Sanso Corporation Process for producing ultrafine metal powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068231A1 (en) * 2004-12-22 2006-06-29 Taiyo Nippon Sanso Corporation Method for producing superfine metal powder
JP2009108414A (en) * 2004-12-22 2009-05-21 Taiyo Nippon Sanso Corp Method for producing metallic ultra-fine powder and burner, and apparatus for producing metallic ultra-fine powder
US8062406B2 (en) 2004-12-22 2011-11-22 Taiyo Nippon Sanso Corporation Process for producing metallic ultrafine powder
WO2009013997A1 (en) 2007-07-23 2009-01-29 Taiyo Nippon Sanso Corporation Process for producing ultrafine metal powder
US8882878B2 (en) 2007-07-23 2014-11-11 Taiyo Nippon Sanso Corporation Method of producing ultra-fine metal particles

Similar Documents

Publication Publication Date Title
Young et al. Generation and behavior of fine particles in thermal plasmas—A review
Gürmen et al. Synthesis of nanosized spherical cobalt powder by ultrasonic spray pyrolysis
EP1727767B1 (en) Method for producing carbon nanotubes
CN101084080B (en) Method for producing superfine metal powder
JPH0625701A (en) Particulate metal powder
Martelli et al. Production of iron-oxide nanoparticles by laser-induced pyrolysis of gaseous precursors
Li et al. Metallic iron nanoparticles: Flame synthesis, characterization and magnetic properties
Senzaki et al. Preparation of strontium ferrite particles by spray pyrolysis
Sung et al. Preparation of ultrathin TiO2 coating on boron particles by thermal chemical vapor deposition and their oxidation-resistance performance
EP0278743B1 (en) Magnetic carbon black, process for preparing the same, and method of modifying magnetic carbon black
Zheng et al. Preparation and characterization of spherical V2O3 nanopowder
KR20060112546A (en) A production process of fe nano powder with silica coating by chemical vapor condensation
US3273962A (en) Process for producing oxides in the form of hollow shells
JPH0254705A (en) Production of fine metal powder
JPH02167898A (en) Production of graphite whisker
Axelbaum et al. A flame process for synthesis of unagglomerated, low-oxygen nanoparticles: Application to Ti and TiB 2
JPS58207938A (en) Manufacture of fine ceramic particle
Kasper et al. Controlled formation of chain aggregates from very small metal oxide particles
US20080193763A1 (en) Carbonaceous Materials
JPS63307201A (en) Wet metallurgical method for producing finely divided iron base powder
KR20030013351A (en) Carbon Nanotube synthesis method using Local Heating Pyrolysis
KR100593268B1 (en) A manufacturing process of Fe nano powder with carbide coating by Chemical Vapor Condensation
Zaharieva et al. Plasma-chemical synthesis of nanosized powders-nitrides, carbides, oxides, carbon nanotubes and fullerenes
US3431205A (en) Process for production of metal bearing carbon black
JPS60181319A (en) Manufacture of carbon fiber by vapor-phase process