JPH0253002A - Production of multilayer film for soft x-ray and vacuum ultraviolet ray - Google Patents

Production of multilayer film for soft x-ray and vacuum ultraviolet ray

Info

Publication number
JPH0253002A
JPH0253002A JP20507088A JP20507088A JPH0253002A JP H0253002 A JPH0253002 A JP H0253002A JP 20507088 A JP20507088 A JP 20507088A JP 20507088 A JP20507088 A JP 20507088A JP H0253002 A JPH0253002 A JP H0253002A
Authority
JP
Japan
Prior art keywords
sec
film
layers
layer
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20507088A
Other languages
Japanese (ja)
Inventor
Takashi Iizuka
隆 飯塚
Masato Niibe
正人 新部
Masami Hayashida
林田 雅美
Yoshiaki Fukuda
福田 恵明
Shigetaro Ogura
小倉 繁太郎
Yutaka Watanabe
豊 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP20507088A priority Critical patent/JPH0253002A/en
Publication of JPH0253002A publication Critical patent/JPH0253002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To obtain a smooth boundary face and good film thickness controllability with good reproducibility by specifying the range of input power and the film forming speed of molybdenum layers and silicon layers. CONSTITUTION:The molybdenum layers 2, 4, 6... and the silicon layers 3, 5, 7... are alternately laminated on a substrate 1 and a protective layer A is provided. The input power is set at 150W-300W; an argon pressure is set in a 7.0X10<-4>-4.0X10<-3>Torr range and the film forming speeds of the molybdenum layers and the silicon layers are respectively set at 0.5-1.0Angstrom /sec and 0.4-1.0Angstrom /sec range, respectively, as the film forming conditions. Since the energy of the particles arriving on the substrate 1 is relatively large, the smoothness of the boundary face is good and the film thickness controllability of the respective layers is good. The device having the smoothness indispensable for a reflecting mirror and the controllability of the film thickness is produced in this way with the good reproducibility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学装置、特にX線から真空紫外線と称される
波長200nm以下の光を対象とし、入射角が鏡面に対
し垂直に近い正入射反射鏡の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is directed to optical devices, particularly to light from X-rays to vacuum ultraviolet light with a wavelength of 200 nm or less, and whose incident angle is normal incidence close to perpendicular to a mirror surface. The present invention relates to a method for manufacturing a reflecting mirror.

〔従来の技術〕[Conventional technology]

従来、軟X線、真空紫外線と称される短波長の光を垂直
に近い角度で反射させるためには多層膜反射鏡が用いら
れていた。また、その作製方法に関しては高周波マグネ
トロン、直流マグネトロン等のスパッタ法やEB蒸着法
、イオンブレーティング法、有機金属気相成長法(MO
CVD法)等が提案されており、そのうち、その生産性
や膜質等の面から高周波マグネトロン及び直流マグネト
ロンスパッタ法が主流となってきている。
Conventionally, multilayer film reflectors have been used to reflect short wavelength light called soft X-rays and vacuum ultraviolet rays at an angle close to perpendicular. In addition, regarding the manufacturing method, sputtering method using high frequency magnetron, direct current magnetron, etc., EB evaporation method, ion blating method, metal organic vapor phase epitaxy (MO
Among them, high frequency magnetron and direct current magnetron sputtering methods have become mainstream in terms of productivity and film quality.

また、従来高周波マグネトロンスパッタ法に関する作製
条件はアルゴン圧力は1.Ox 103Torrであっ
たが入力パワーは100Wと低くおさえられていた。(
S、Ogura  et  al、  ”Multil
ayer  softX−raymirrors fa
bricated  by  electronbea
m  and  sputtering  depos
itionMR3Symp、 Proceeding、
 May  3O−June3、Tokyo  (19
88))その際、モリブデン、ケイ素各層の成膜速度は
0.2〜0.5Å/sec、 0.2〜0.4Å/se
cであった。
Furthermore, the production conditions for the conventional high-frequency magnetron sputtering method are as follows: argon pressure is 1. Ox 103 Torr, but the input power was kept low at 100W. (
S., Ogura et al.
ayer softX-raymirrors fa
bricated by electronbea
m and sputtering depos
itionMR3Symp, Proceeding,
May 3O-June 3, Tokyo (19
88)) At that time, the deposition rate of each layer of molybdenum and silicon was 0.2 to 0.5 Å/sec, 0.2 to 0.4 Å/sec.
It was c.

また、前記引用文献に於いて直流マグネトロンスパッタ
法に関する作製条件はアルゴン圧力は、4、OX I 
0−3Torrであったが入力パワーは100〜140
Wと低かった。その際、モリブデン、ケイ素各層の成膜
速度はそれぞれ0.3〜0.4人/ s e c 。
In addition, in the cited document, the production conditions for the DC magnetron sputtering method are as follows: argon pressure is 4, OX I
It was 0-3 Torr, but the input power was 100-140
It was as low as W. At that time, the deposition rate for each layer of molybdenum and silicon was 0.3 to 0.4 people/sec.

0.2〜0.4人/ s e cであった。It was 0.2 to 0.4 people/sec.

〔発明が解決しようとしている問題点〕しかし、従来こ
れら多層膜反射鏡の作製時にはその成膜速度や、その要
因となるアルゴン圧力。
[Problems to be solved by the invention] However, in the past, when manufacturing these multilayer film reflectors, there were problems with the film formation speed and the argon pressure that was a factor therein.

入力パワーに関して考慮されておらず、そのため各層界
面の平滑性の問題や膜厚の制御性等にばらつきが生じ、
その結果、多層膜の十分な再現性が得られなかった。
The input power is not taken into consideration, which causes problems with the smoothness of the interface between each layer and variations in the controllability of the film thickness.
As a result, sufficient reproducibility of the multilayer film could not be obtained.

前述引用文献中の結果を例にとれば、比較的低い入力パ
ワーで作製した多層膜であったために界面の平滑性、膜
厚制御性ともまだ実用化には足りないレベルであった。
Taking the results in the above-mentioned cited document as an example, since the multilayer film was produced with relatively low input power, both the interface smoothness and film thickness controllability were still at a level insufficient for practical use.

本発明は上記問題点に鑑み成されたものであり、その目
的は平滑な界面と良好な膜厚制御性を再現性良く得る方
法を提供することにある。
The present invention has been made in view of the above problems, and its purpose is to provide a method for obtaining a smooth interface and good film thickness controllability with good reproducibility.

〔問題点を解決するための手段(及び作用)〕本発明の
上記目的はモリブデンとケイ素の交互層より成る多層膜
反射鏡の作製時において、入力パワーのある特定な範囲
を用い、かつ放電の起こり得る限界付近のアルゴン圧領
域を使用してモリブデン層、ケイ素層の成膜速度をそれ
ぞれ0.5〜1.0Å/sec、  0.4〜1.0人
/ s e cとすることにより達成される。
[Means for Solving the Problems (and Effects)] The above object of the present invention is to use a certain range of input power and discharge discharge when manufacturing a multilayer reflector made of alternating layers of molybdenum and silicon. Achieved by using an argon pressure region near the possible limit and setting the deposition rate of the molybdenum layer and silicon layer to 0.5 to 1.0 Å/sec and 0.4 to 1.0 person/sec, respectively. be done.

上記範囲内の成膜速度で作製した多層膜は成膜時、基板
上に到達する粒子のエネルギーが比較的大きいため、界
面の平滑性が良好であり、また、各層の膜厚制御性も良
好なものとなる。上記範囲よりも遅い成膜速度で作製し
た場合、基板上に到達する粒子のエネルギーが小さいた
めに島状構造等を形成し、その結果生ずる界面の凸凹は
反射率を太き(低下させてしまう。また、上記範囲より
も速い成膜速度で作製した場合、各層の膜厚制御性が恕
(なり、反射率を大きく低下させる原因となる。
Multilayer films produced at a film formation rate within the above range have relatively high energy of particles reaching the substrate during film formation, resulting in good interface smoothness and good film thickness controllability for each layer. Become something. If the film is formed at a deposition rate slower than the above range, the energy of the particles reaching the substrate is small, forming an island structure, etc., and the resulting unevenness of the interface increases (decreases) the reflectance. Furthermore, if the film is formed at a faster rate than the above range, the film thickness controllability of each layer becomes poor, which causes a large decrease in reflectance.

〔実施例〕〔Example〕

第1図は本発明により作製した軟X線、真空紫外線用多
層膜反射鏡の一実施態様の模式図である。
FIG. 1 is a schematic diagram of one embodiment of a multilayer reflector for soft X-rays and vacuum ultraviolet rays manufactured according to the present invention.

第1図に示す本発明の軟X線、真空紫外線用多層膜反射
鏡は使用波長に比べて十分滑らかに研磨された平面もし
くは曲面(例えばrms値で10Å以下)を有する基板
1上にモリブデン層2.4. 6・・・、およびケイ素
層3. 5. 7・・・が交互に積層されて構成される
。また、最終層の上には吸収の少ない安定な材料による
保護層Aを設けてもよい。
The multilayer reflector for soft X-rays and vacuum ultraviolet rays of the present invention shown in FIG. 2.4. 6... and silicon layer 3. 5. 7... are stacked alternately. Further, a protective layer A made of a stable material with low absorption may be provided on the final layer.

本発明の軟X線、真空紫外線用多層膜反射鏡がもたらす
反射率は交互層を形成するモリブデンとケイ素の屈折率
の差、各層の吸収率、積層される層の数、照射する光の
波長等によって異なる。
The reflectance provided by the multilayer reflector for soft X-rays and vacuum ultraviolet rays of the present invention is determined by the difference in refractive index between molybdenum and silicon forming alternating layers, the absorption rate of each layer, the number of laminated layers, and the wavelength of the irradiated light. etc.

各々の層の膜厚d、、d2・・・は使用波長のほぼ1/
4であり、交互に同一の材質よりなる積層膜であって、
その膜厚は各層間の境界における反射光がすべて強め合
うように干渉する条件を満たすか、もしくは各層内にお
ける吸収損と位相ずれによる反射率低下を比較したとき
に多層膜全体としてα反射率の低下が、より少なくなる
条件を満たすかのいずれか、あるいは両方により決まる
ものとする。その際、膜厚は同一材料層についてはすべ
て等しくするか、もしくは膜厚を各層毎に変化させ反射
率が最大となるような必ずしも等しくはない厚さとして
も良い。
The film thickness d, d2... of each layer is approximately 1/ of the wavelength used.
4, and is a laminated film made of the same material alternately,
The film thickness satisfies the condition that all the reflected light at the boundaries between each layer constructively interferes with each other, or the α reflectance of the multilayer film as a whole satisfies the condition that all reflected light at the boundaries between the layers constructively interferes with each other, or when comparing the decrease in reflectance due to absorption loss and phase shift within each layer. It is assumed that the decrease is determined by satisfying one or both of the following conditions. In this case, the film thickness may be the same for all layers of the same material, or the film thickness may be changed for each layer so that the thickness is not necessarily equal so that the reflectance is maximized.

以上のような構成をもつ多層膜反射鏡を得るためには1
人レベル以下での厳密な膜厚制御が要求される。
In order to obtain a multilayer reflector with the above configuration, 1.
Strict film thickness control below human level is required.

作製した多層膜の界面の平滑性に関しては、X線(Cu
−にα、波長1.54人)を用いた小角散乱法により、
1次回折ピークの反射率を測定することによって調べる
ことができる。1次回折ピークとは多層膜に対して臨界
角よりわずかに大きい角度でX線を入射した際に多層膜
の周期長に対応して生ずるピークであり、層界面に凸凹
があるとその程度に応じてX線は乱反射され、強め合う
干渉条件を満たさなくなるため、相対的にピーク強度は
落ちる。
Regarding the smoothness of the interface of the produced multilayer film, X-ray (Cu
- by α, wavelength 1.54) using small-angle scattering method,
This can be investigated by measuring the reflectance of the first-order diffraction peak. The first-order diffraction peak is a peak that occurs in response to the periodic length of the multilayer film when X-rays are incident on the multilayer film at an angle slightly larger than the critical angle. Accordingly, the X-rays are diffusely reflected, and the constructive interference condition is no longer satisfied, so the peak intensity is relatively reduced.

このことを利用して界面の平滑性を定■的に知ることが
でき、また、この結果は透過電子顕微鏡(TEM)観察
によって得た断面写真の結果とも良い一致を示している
Utilizing this fact, the smoothness of the interface can be determined in a constant manner, and this result also shows good agreement with the results of cross-sectional photographs obtained by transmission electron microscopy (TEM) observation.

また、膜厚の制御性に関してはX線(Cu−にα。In addition, regarding the controllability of film thickness, X-ray (α for Cu-).

波長1.54人)を用いた小角散乱法により各ピークの
形状及び確認可能な高次ピークの次数を測定することに
よって調べることができる。膜厚の制御性が悪いと各界
面で反射されたX線の位相がずれて互いに強め合う干渉
条件を満たさな(なってしまい、その結果、ピークが複
数に分離したり、ピーク強度が減少したりしてしまい高
次のピークは確認できなくなる。
This can be investigated by measuring the shape of each peak and the order of observable higher-order peaks by small-angle scattering using a wavelength of 1.54 cm. If the controllability of the film thickness is poor, the phase of the X-rays reflected at each interface will shift and the mutually reinforcing interference condition will not be satisfied (as a result, the peak will separate into multiple peaks or the peak intensity will decrease). As a result, higher-order peaks cannot be confirmed.

[実施例1] ダイアモンド砥粒でフローティング研磨し、面精度λ/
20(λ=6328人)1表面粗さ4.6人r m s
に仕上げた石英基板を洗剤洗いの後、イソプロピルアル
コール中での超音波洗浄、トリクロロエチレン中での超
音波洗浄によって清浄化し、その基板上に純度99.9
99%のモリブデンターゲットと純度99.9999%
のケイ素ターゲットを用いてモリブデン層31人とケイ
素層39人を交互に計41層(MO=21層、Si:2
0層)積層した。その際、成膜条件はアルゴン圧力1 
、OX 10−3T orr、入力パワー+50Wでモ
リブデン、ケイ素各層の成膜速度はそれぞれ0.5Å/
sec、  0.4Å/secであった。
[Example 1] Floating polishing with diamond abrasive grains, surface accuracy λ/
20 (λ=6328 people) 1 surface roughness 4.6 people r m s
After washing the quartz substrate finished with detergent, it was cleaned by ultrasonic cleaning in isopropyl alcohol and ultrasonic cleaning in trichlorethylene.
99% molybdenum target and purity 99.9999%
A total of 41 layers (MO=21 layers, Si:2
0 layer) laminated. At that time, the film forming conditions were argon pressure 1
, OX 10-3T orr, input power +50W, the deposition rate of each molybdenum and silicon layer is 0.5 Å/
sec, 0.4 Å/sec.

このようにして得られた多層膜に対して界面の平滑性を
測定する手段として、X線(Cu −Ka。
As a means of measuring the smoothness of the interface of the multilayer film thus obtained, X-ray (Cu-Ka) was used.

波長1.54人)を用いた小角散乱法により1次回折ピ
ークの反射率を測定したところ、膜面に垂直方向から8
9.306°の入射角で71.0%の反射率を得た。
When the reflectance of the first-order diffraction peak was measured by the small-angle scattering method using a wavelength of 1.54, it was found that
A reflectance of 71.0% was obtained at an incident angle of 9.306°.

また、この多層膜に対し、波長135.7人の軟X線を
垂直方向から11’ の角度で入射したところ、41.
3%の反射率を得、波長126.6人の軟X線を垂直方
向から25°の角度で入射したところ46.2%の反射
率を得た。
Furthermore, when soft X-rays with a wavelength of 135.7 were incident on this multilayer film at an angle of 11' from the vertical direction, the result was 41.
A reflectance of 3% was obtained, and when soft X-rays with a wavelength of 126.6 were incident at an angle of 25° from the vertical direction, a reflectance of 46.2% was obtained.

次に、これと膜厚7層数ともに等しい多層膜をアルゴン
圧力は一定に保ったまま入力パワーを70Wに減少し、
モリブデン、ケイ素各層の成膜速度それぞれ0.2Å/
sec、 0.18人/ s e cの成膜条件下で作
製し、これにX線(Cu−Ka、波長1.54人)を入
射して1次回折ピーク反射率を測定したところ、反射率
は著しく低下し46.3%しか得られず、また、波長1
35.5人の軟X線を垂直方向から25°の角度で入射
したところ、17.5%の反射率しか得られなかった。
Next, with a multilayer film with the same thickness of 7 layers and the same number of layers, the input power was reduced to 70W while keeping the argon pressure constant.
Deposition rate of molybdenum and silicon layers each 0.2 Å/
sec, 0.18 people/sec, and when X-rays (Cu-Ka, wavelength 1.54 people) were incident on this film and the first-order diffraction peak reflectance was measured, the reflection was The rate decreased significantly and was only 46.3%, and the wavelength 1
When soft X-rays of 35.5 people were incident at an angle of 25 degrees from the vertical direction, a reflectance of only 17.5% was obtained.

また、前述の引用文献によれば同様の膜厚9層数をもつ
多層膜に対し、波長123.5人の軟X線を膜面に垂直
方向から25°の角度で入射したところ21,8%の反
射率しか得られなかった。
In addition, according to the above-mentioned literature, when soft X-rays with a wavelength of 123.5 were incident on the film surface at an angle of 25° from the perpendicular direction to a multilayer film with a similar film thickness of 9 layers, 21.8 % reflectance was obtained.

尚、以下の実施例に関しては本実施例と同様の方法で研
磨した基板を同様の方法で清浄化して用いるものとする
。また、以下の実施例において述べる高周波マグネトロ
ンスパッタ、直流マグネトロンスパッタとも本実施例で
用いたものと同一のターゲット(モリブデン、ケイ素と
も)を用いたものとする。
In the following examples, a substrate polished in the same manner as in this example is used after being cleaned in the same manner. Furthermore, the same target (both molybdenum and silicon) as used in this example was used for high frequency magnetron sputtering and DC magnetron sputtering described in the following example.

[実施例2] 面精度λ/20(λ=6328人)、表面粗さ5.0人
r m sに研磨した石英基板上に膜厚30人のモリブ
デン層と膜厚38人のケイ素層を交互に計41層(Mo
:21層、Si:20層)高周波マグネトロンスパッタ
法により積層した。その際、成膜条件はアルゴン圧力1
.OX 10−×10−3Torr、入力パワー280
Wで、モリブデン、ケイ素各層の成膜速度はそれぞれ0
.95Å/sec、 0.85Å/secであった。
[Example 2] A molybdenum layer with a thickness of 30 mm and a silicon layer with a thickness of 38 mm were formed on a quartz substrate polished to a surface accuracy of λ/20 (λ = 6328 mm) and a surface roughness of 5.0 mm. A total of 41 layers (Mo
(Si: 21 layers, Si: 20 layers) were laminated by high frequency magnetron sputtering. At that time, the film forming conditions were argon pressure 1
.. OX 10-×10-3 Torr, input power 280
With W, the deposition rate of each molybdenum and silicon layer is 0.
.. They were 95 Å/sec and 0.85 Å/sec.

以上のようにして得られた多層膜に対して各層膜厚の制
御性を調べる手段として、波長1.54人のX線(Cu
−にα)を用いた小角散乱法により高次回折ピークの数
を計ったところ12次ピークまで確認できた。これに対
し、膜厚9層数ともに等しい多層膜をアルゴン圧力は同
一に保ったまま、入力パワーを500Wに上げてモリブ
デン、ケイ素各層の成膜速度それぞれ1.7Å/sec
、  1.5人/ s e cの成膜条件下で作製し、
これにX線(Cu−にα)の小角散乱を測定したところ
、ピークが乱れ、5次程度までの高次ピークしか確認で
きなかった。
As a means of investigating the controllability of the thickness of each layer for the multilayer film obtained as described above, we used human X-rays (Cu
When the number of higher-order diffraction peaks was counted by the small-angle scattering method using - and α), up to the 12th-order peak could be confirmed. On the other hand, by increasing the input power to 500 W while keeping the argon pressure the same for a multilayer film with the same thickness of 9 layers, the deposition rate for each layer of molybdenum and silicon was 1.7 Å/sec.
, produced under film-forming conditions of 1.5 people/sec,
When small-angle scattering of X-rays (α in Cu-) was measured on this, the peaks were disordered and only high-order peaks up to about 5th order could be confirmed.

[実施例3] 面積度λ15(λ= 6328人)9表面粗さ1.3人
rmsに研磨した石英基板上に膜厚26人のモリブデン
層と膜厚39人のケイ素層を交互に計41層(Mo−2
1層、Si:20層)高周波マグネトロンスパッタ法に
より積層した。その際、成膜条件はアルゴン圧カフ、O
X 10−’Torr、入力バワー150Wで、モリブ
デン、ケイ素各層の成膜速度はそれぞれ0.65Å/s
ec、  0.45人/ s e cであった。
[Example 3] A molybdenum layer with a thickness of 26 thick and a silicon layer with a thickness of 39 thick were alternately deposited on a quartz substrate polished to an area density of λ15 (λ = 6328 rms) 9 and a surface roughness of 1.3 rms. layer (Mo-2
1 layer, Si: 20 layers) Laminated by high frequency magnetron sputtering method. At that time, the film formation conditions were an argon pressure cuff, an O
At X 10-' Torr and input power of 150 W, the deposition rate of each layer of molybdenum and silicon was 0.65 Å/s.
ec, 0.45 people/sec.

以上のようにして得られた各層膜に対し、波長1.54
人のX線(Cu−にα)を用いた小角散乱法により1次
回折ピークの反射率を測定したところ、膜面に垂直方向
から89.318°の入射角で69 、796の反射率
を得た。
For each layer film obtained as above, the wavelength was 1.54.
When the reflectance of the first-order diffraction peak was measured by the small-angle scattering method using human X-rays (α for Cu-), the reflectance was 69.796 at an incident angle of 89.318° from the direction perpendicular to the film surface. Obtained.

次に、これと膜厚9層数ともに等しい多層膜をアルゴン
圧力は6.OX I O−”Torrとし、入力パワー
は同一に保ったままモリブデン、ケイ素各層の成膜速度
それぞれ0.12Å/sec、 0.07Å/secの
成膜条件下で作製し、これに波長1.54人のX線(C
uKα)を入射して1次回折ピーク反射率を測定したと
ころ反射率は著しく減少し、34.3%しか得られなか
った。
Next, a multilayer film with the same film thickness of 9 and the same number of layers is prepared at an argon pressure of 6. OX I O-'' Torr, the molybdenum and silicon layers were formed at a deposition rate of 0.12 Å/sec and 0.07 Å/sec, respectively, while keeping the input power the same. X-rays of 54 people (C
When the first-order diffraction peak reflectance was measured by inputting uKα), the reflectance decreased significantly and was only 34.3%.

[実施例4] 面積度λ/20(λ−6328人)9表面粗さ5.2人
r m sに研磨した石英基板上に膜厚37人のモリブ
デン層と膜厚73人のケイ素層を交互に計41層(Mo
 : 21層、Si:20層)直流マグネトロンスパッ
タ法により作製した。その際、成膜条件はアルゴン圧力
4.0 X I 0−3Torr、入力パワー+50W
で、モリブデン、ケイ素各層の成膜速度は0.7Å/s
ec。
[Example 4] A molybdenum layer with a thickness of 37 mm and a silicon layer with a thickness of 73 mm were formed on a quartz substrate polished to an area density of λ/20 (λ - 6328 mm) 9 and a surface roughness of 5.2 mm s. A total of 41 layers (Mo
: 21 layers, Si: 20 layers) Fabricated by DC magnetron sputtering method. At that time, the film forming conditions were argon pressure 4.0 x I 0-3 Torr, input power +50W.
The deposition rate for each layer of molybdenum and silicon is 0.7 Å/s.
ec.

0.55人/ s e cであった。It was 0.55 people/sec.

このようにして得られた多層膜に対して、波長1.54
人のX線(Cu−にα)を用いた小角散乱法により1次
回折ピークの反射率を測定したところ、膜面に垂直方向
から89.526°の入射角で63.8%の反射率を得
た。
For the multilayer film thus obtained, the wavelength was 1.54.
When the reflectance of the first-order diffraction peak was measured by the small-angle scattering method using human X-rays (α for Cu-), the reflectance was 63.8% at an incident angle of 89.526° from the direction perpendicular to the film surface. I got it.

また、この多層膜に対し、波長188人の軟X線を垂直
方向から、30°の角度で入射したところ、39.2%
の反射率を得、波長127.8人の軟X線を垂直方向か
ら55°の角度で入射したところ、52.3%の反射率
を得た。
In addition, when soft X-rays with a wavelength of 188 people were incident on this multilayer film from the vertical direction at an angle of 30°, 39.2%
When soft X-rays with a wavelength of 127.8 were incident at an angle of 55° from the vertical direction, a reflectance of 52.3% was obtained.

また、前述の文献(S、Ogura et al、“M
u I t i l a y e rsoft  x−
ray  m1rrors  fabrication
  byelectron beam and spu
ttering depositionMPS  Sy
mp、 Proceeding、 May  3O−J
une3、 ]’okyo  (1988))によれば
、膜厚2層数ともに同等の多層膜をアルゴン圧力4.O
X 10−’Torr。
In addition, the above-mentioned literature (S, Ogura et al., “M
U I t i l a y e r soft x-
ray m1rrors fabrication
byelectron beam and spu
tering depositionMPS Sy
mp, Proceeding, May 3O-J
According to ``Une3, ]'okyo (1988)), a multilayer film with the same thickness and number of layers was heated to an argon pressure of 4. O
X 10-'Torr.

入力パワー100W、成膜速度モリブデン、ケイ素それ
ぞれ0.35Å/sec、 0.3Å/secの成膜条
件下で作製し、波長128.0人の軟X線を膜面に垂直
方向から55°の角度で入射したところ、44.0%の
反射率しか得られなかった。
The film was fabricated under the following conditions: input power 100W, film formation rate 0.35 Å/sec and 0.3 Å/sec for molybdenum and silicon, respectively, and soft X-rays with a wavelength of 128.0 were applied at an angle of 55° from the perpendicular direction to the film surface. When the light was incident at an angle, only a reflectance of 44.0% was obtained.

[実施例5] 面積度λ15(λ=6328人)9表面粗さ1.5人r
msに研磨した石英基板上に膜厚36人のモリブデン層
と膜厚37人のケイ素層を交互に計41層(Mo:21
層、Si:20層)直流マグネトロンスパッタ法により
積層した。その際、成膜条件はアルゴン圧力3.Ox 
1O−3Torr、入力パワー270Wで、モリブデン
、ケイ素各層の成膜速度はそれぞれ1.0Å/sec、
  0.85人/ s e cであった。
[Example 5] Area degree λ15 (λ=6328 people) 9 Surface roughness 1.5 people r
A molybdenum layer with a thickness of 36 mm and a silicon layer with a thickness of 37 mm were alternately deposited on a quartz substrate polished to
layer, Si: 20 layers) Laminated by DC magnetron sputtering method. At that time, the film forming conditions were argon pressure 3. Ox
At 1O-3Torr and input power of 270W, the deposition rate of each layer of molybdenum and silicon was 1.0 Å/sec, respectively.
It was 0.85 people/sec.

以上のようにして得られた各層膜に対して、波長1.5
4人のX線(Cu−にα)を用いた小角散乱測定を行な
ったところ9次までの高次回折ピークが確認できた。
For each layer film obtained as above, wavelength 1.5
When small-angle scattering measurements were performed using four X-rays (α for Cu-), high-order diffraction peaks up to the 9th order were confirmed.

次に、これと膜厚、層数ともに等しい多層膜をアルゴン
圧力は一定に保ったまま、入力パワーを500Wに上げ
、モリブデン、ケイ素各層の成膜速度それぞれ1.85
Å/sec、 1.6人/ s e cの成膜条件下で
作製し、これに波長1.54人のX線(Cu−にα)を
入射して小角散乱測定を行なったところ、4次程度まで
の高次回折ピークしか確認できなかった。
Next, a multilayer film with the same film thickness and number of layers was formed by increasing the input power to 500 W while keeping the argon pressure constant, and depositing the molybdenum and silicon layers at a deposition rate of 1.85.
It was fabricated under film formation conditions of Å/sec, 1.6 people/sec, and when small-angle scattering measurements were performed by injecting X-rays with a wavelength of 1.54 people (α on Cu-), 4. Only higher-order diffraction peaks up to the following order could be confirmed.

[実施例6] 面積度λ15(λ=6328人)1表面粗さ1.6人r
msに研磨した石英基板上に膜厚34人のモリブデン層
と膜厚38人のケイ素層を計41層(Mo:2113、
Si:20層)直流マグネトロンスパッタ法により積層
した。その際、成膜条件はアルゴン圧カ6.OX 10
 ’Torr、入力バワー15パワで、モリブデン、ケ
イ素各層の成膜速度はそれぞれ0.55Å/sec、 
 0.45人/ s e cであった。
[Example 6] Area degree λ15 (λ=6328 people) 1 surface roughness 1.6 people r
A total of 41 layers (Mo: 2113,
(Si: 20 layers) Laminated by DC magnetron sputtering method. At that time, the film forming conditions were argon pressure, 6. OX10
'Torr, input power 15 power, deposition rate of each layer of molybdenum and silicon is 0.55 Å/sec,
It was 0.45 people/sec.

以上のようにして得られた各層膜に対して、波長1.5
4人のX線(Cu−にα)を用いた小角散乱法により、
1次回折ピークの反射率を測定したところ、膜面に垂直
方向から89.39°の入射角で63.0%の反射率を
得た。
For each layer film obtained as above, wavelength 1.5
By small-angle scattering method using 4 people's X-rays (α for Cu-),
When the reflectance of the first-order diffraction peak was measured, a reflectance of 63.0% was obtained at an incident angle of 89.39° from the direction perpendicular to the film surface.

次に、これと膜厚、層数ともに等しい多層膜をアルゴン
圧力を3.OX 1O−2Torrとし、入力パワーは
一定に保ったまま、モリブデン、ケイ素各層の成膜速度
それぞれ0.08Å/sec、 0.06人/ s e
 cの成膜条件下で作製(7、波長1.54人のX線(
Cu−にα)を入射して1次回折ピーク反射率を測定し
たところ、著しく減少し、28.5%の反射率しか得ら
れなかった。
Next, a multilayer film with the same thickness and number of layers was heated to 3.5 degrees with argon pressure. With OX 1O-2 Torr and input power kept constant, the deposition rate for each layer of molybdenum and silicon was 0.08 Å/sec, 0.06 person/s e
Fabricated under the film formation conditions of c (7, wavelength 1.54 human X-rays (
When α) was incident on Cu- and the first-order diffraction peak reflectance was measured, it decreased significantly and only 28.5% reflectance was obtained.

「実施例7] 面精度λ/20(λ−6328人)1表面粗さ4.9人
rmsに研磨した石英基板上に膜厚34人のモリブデン
層と膜厚41人のケイ素層を交互に計41層(Mo:2
1層、Si:20層)と、その上に保護層として炭素1
0人を高周波マグネトロンスパッタ法により積層した。
"Example 7" A molybdenum layer with a thickness of 34 and a silicon layer with a thickness of 41 were alternately deposited on a quartz substrate polished to a surface accuracy of λ/20 (λ-6328 rms) and a surface roughness of 4.9 rms. Total of 41 layers (Mo: 2
1 layer, Si: 20 layers) and carbon 1 layer as a protective layer on top of it.
0 was laminated by high frequency magnetron sputtering method.

その際、成膜条件はアルゴン圧力3、OX I O−”
Torr、入力パワー200Wで、モリブデン、ケイ素
各層の成膜速度はそれぞれ0.55Å/sec、  0
.45人/ s e cであった。
At that time, the film forming conditions were argon pressure 3, OX I O-"
Torr and input power of 200 W, the deposition rate of each layer of molybdenum and silicon was 0.55 Å/sec, 0
.. There were 45 people/sec.

以上のようにして得られた各層膜に対し、波長1.54
人のX線(Cu−にα)を用いた小角散乱法により、1
次回折ピークの反射率を測定したところ、膜面に垂直方
向から89.42°の入射角で63.7%の反射率を得
た。
For each layer film obtained as above, the wavelength was 1.54.
By small-angle scattering method using human X-rays (α for Cu-), 1
When the reflectance of the next diffraction peak was measured, a reflectance of 63.7% was obtained at an incident angle of 89.42° from the direction perpendicular to the film surface.

次に、これと膜厚、層数ともに等しい多層膜をアルゴン
圧力を7.OX 10−3Torrとし、入力パワーは
一定に保ったまま、モリブデン、ケイ素各層の成膜速度
それぞれ0.13Å/sec、 0.08人/seeの
成膜条件下で作製し、これに波長1.54人のX線(C
u−にα)を入射したところ、1次回折ピーク反射率は
著しく減少し36.2%しか得られなかった。
Next, a multilayer film with the same thickness and number of layers was heated to 7.5 degrees with argon pressure. OX was set at 10-3 Torr, the input power was kept constant, and the film formation rate for each of the molybdenum and silicon layers was 0.13 Å/sec and 0.08 people/see. X-rays of 54 people (C
When α) was incident on u-, the first-order diffraction peak reflectance decreased significantly and was only 36.2%.

[実施例8] 面精度λ/20(λ−6328人)9表面粗さ4.5人
r m sに研磨した石英基板上に膜厚28人のモリブ
デン層と膜厚40人のケイ素層を交互に計41層(Mo
:21層、Si:20層)直流マグネトロンスパッタ法
により積層した。その際、成膜条件はアルゴン圧力6.
OX 1O−3Torr、入力パワー250Wで、モリ
ブデン、ケイ素各層の成膜速度はそれぞれ1.0人/ 
s e c 、  0 、87Å/secであった。
[Example 8] A molybdenum layer with a thickness of 28 mm and a silicon layer with a thickness of 40 mm were formed on a quartz substrate polished to a surface accuracy of λ/20 (λ - 6328 mm) and a surface roughness of 4.5 mm s. A total of 41 layers (Mo
(Si: 21 layers, Si: 20 layers) were laminated by direct current magnetron sputtering. At that time, the film forming conditions were argon pressure 6.
At OX 1O-3Torr and input power of 250W, the deposition rate for each layer of molybdenum and silicon was 1.0 people/man/year.
sec, 0, 87 Å/sec.

以上のようにして得られた多層膜に対し、波長1.54
人のX線(Cu −Kα)を用いた小角散乱法により、
1次回折ピークの反射率を測定したところ、膜面に垂直
方向から89.355° の入射角で64.8%の反射
率を得た。
For the multilayer film obtained as described above, the wavelength was 1.54.
By small-angle scattering method using human X-rays (Cu-Kα),
When the reflectance of the first-order diffraction peak was measured, a reflectance of 64.8% was obtained at an incident angle of 89.355° from the direction perpendicular to the film surface.

次に、これと膜厚、層数ともに等しい多層膜をアルゴン
圧力を3.OX 10−”Torrとし、入力パワーは
一定に保ったまま、モリブデン、ケイ素各層の成膜速度
それぞれ0.15人/ s e c 、 O、12Å/
secの成膜条件下で作製し、波長1.54人のX線(
CuKα)を入射して1次回折ピーク反射率を測定した
ところ、著しく減少し、31゜2%の反射率しか得られ
なかった。
Next, a multilayer film with the same thickness and number of layers was heated to 3.5 degrees with argon pressure. With OX 10-” Torr and input power kept constant, the deposition rate for each layer of molybdenum and silicon was 0.15 people/sec, O, 12 Å/
It was produced under film formation conditions of
When the first-order diffraction peak reflectance was measured by injecting CuKα), the reflectance decreased significantly and only a reflectance of 31.2% was obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の軟X線、真空紫外線用多
層膜反射鏡の作製方法によれば、反射鏡に不可欠な界面
の平滑性と膜厚の制御性を兼ね備えたデバイスを再現性
よく作製することができるばかりでな(、本発明で述べ
た成膜条件内で作製された反射鏡は良質な上に、製産性
も良好であるという特徴を有する。
As explained above, according to the method for manufacturing a multilayer reflector for soft X-rays and vacuum ultraviolet rays of the present invention, a device that has both interface smoothness and film thickness controllability, which are essential for a reflector, can be produced with good reproducibility. Not only can it be manufactured, but a reflecting mirror manufactured under the film forming conditions described in the present invention is of good quality and has good productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の作製方法によって作製された軟X線、
真空紫外線用多層膜反射鏡の一実施態様の層構造を示す
模式断面図である。 ■・・・基板       2,4・・・モリブデン層
3.5・・・ケイ素層   A・・・保護層dl、d2
+  d3・・・層の厚さ
Figure 1 shows soft X-rays produced by the production method of the present invention.
FIG. 2 is a schematic cross-sectional view showing the layer structure of an embodiment of a multilayer reflector for vacuum ultraviolet rays. ■... Substrate 2, 4... Molybdenum layer 3.5... Silicon layer A... Protective layer dl, d2
+ d3...Layer thickness

Claims (2)

【特許請求の範囲】[Claims] (1)モリブデンとケイ素の交互層から成る軟X線、真
空紫外線用多層膜の製造方法において、高周波マゲネト
ロンスパツタ法を用い、その成膜条件として入力パワー
を150W〜300W、アルゴン圧力を7.0×10^
−^4Torr〜4.0×10^−^3Torrの範囲
内に設定することにより、モリブデン層、ケイ素層の成
膜速度をそれぞれ0.5〜1.0Å/sec、0.4〜
1.0Å/secとしたことを特徴とする軟X線、真空
紫外線用多層膜の製造方法。
(1) In the manufacturing method of a multilayer film for soft X-rays and vacuum ultraviolet light consisting of alternating layers of molybdenum and silicon, a high-frequency magnetron sputtering method is used, and the film forming conditions are an input power of 150 W to 300 W, and an argon pressure of 7 .0×10^
By setting within the range of -^4 Torr to 4.0 x 10^-^3 Torr, the deposition rate of the molybdenum layer and silicon layer can be set to 0.5 to 1.0 Å/sec and 0.4 to 0.4 Torr, respectively.
A method for producing a multilayer film for soft X-rays and vacuum ultraviolet rays, characterized in that the radiation density is 1.0 Å/sec.
(2)モリブデンとケイ素の交互層から成る軟X線、真
空紫外線用多層膜の製造方法において、直流マグネトロ
ンスパッタ法を用い、その成膜条件として入力パワーを
150〜300W、アルゴン圧力を3.0×10^−^
3Torr〜7.0×10^−^3Torrの範囲内に
設定することによりモリブデン層、ケイ素層の成膜速度
をそれぞれ0.5〜1.0Å/sec、0.4〜1.0
Å/secとしたことを特徴とする軟X線、真空紫外線
用多層膜の製造方法。
(2) In the method of manufacturing a multilayer film for soft X-rays and vacuum ultraviolet light consisting of alternating layers of molybdenum and silicon, a direct current magnetron sputtering method is used, and the film forming conditions are an input power of 150 to 300 W and an argon pressure of 3.0 ×10^−^
By setting within the range of 3 Torr to 7.0×10^-^3 Torr, the deposition rate of the molybdenum layer and silicon layer can be set to 0.5 to 1.0 Å/sec and 0.4 to 1.0 Å/sec, respectively.
A method for producing a multilayer film for soft X-rays and vacuum ultraviolet rays, characterized in that the film is Å/sec.
JP20507088A 1988-08-17 1988-08-17 Production of multilayer film for soft x-ray and vacuum ultraviolet ray Pending JPH0253002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20507088A JPH0253002A (en) 1988-08-17 1988-08-17 Production of multilayer film for soft x-ray and vacuum ultraviolet ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20507088A JPH0253002A (en) 1988-08-17 1988-08-17 Production of multilayer film for soft x-ray and vacuum ultraviolet ray

Publications (1)

Publication Number Publication Date
JPH0253002A true JPH0253002A (en) 1990-02-22

Family

ID=16500931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20507088A Pending JPH0253002A (en) 1988-08-17 1988-08-17 Production of multilayer film for soft x-ray and vacuum ultraviolet ray

Country Status (1)

Country Link
JP (1) JPH0253002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059905A3 (en) * 2001-01-26 2002-09-26 Zeiss Carl Semiconductor Mfg Narrow-band spectral filter and the use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059905A3 (en) * 2001-01-26 2002-09-26 Zeiss Carl Semiconductor Mfg Narrow-band spectral filter and the use thereof
US7154666B2 (en) 2001-01-26 2006-12-26 Carl Zeiss Smt Ag Narrow-band spectral filter and the use thereof

Similar Documents

Publication Publication Date Title
US4583822A (en) Quintic refractive index profile antireflection coatings
JP3732853B2 (en) Photomask blank
US11720013B2 (en) Graded interface in Bragg reflector
JP2883100B2 (en) Half mirror or beam splitter for soft X-ray and vacuum ultraviolet
JP2723955B2 (en) Multilayer reflector for soft X-ray and vacuum ultraviolet
KR102644109B1 (en) Reflective mask blanks and reflective masks
JPH075296A (en) Mutlilayered film for soft x-ray
JP5916821B2 (en) Hafnium oxide coating
JPH0253002A (en) Production of multilayer film for soft x-ray and vacuum ultraviolet ray
JPS6388502A (en) Reflection mirror consisting of multi-layered film for soft x-ray and vacuum ultraviolet ray
JP2692881B2 (en) Method for producing multilayer film for soft X-ray or vacuum ultraviolet ray and optical element
JPS63106703A (en) Optical element
JP2003043193A (en) Multilayer film reflecting mirror and method of manufacturing multilayer film reflecting mirror
JPS58223101A (en) Production of polygonal mirror
JPS6388503A (en) Reflection mirror consisting of multi-layered film for soft x-ray and vacuum ultraviolet ray
JPS61196201A (en) Formation of film by low temperature vapor deposition
JP2993261B2 (en) X-ray multilayer reflector
JP2535038B2 (en) Multi-layer film mirror for X-ray / VUV
JPH02244153A (en) Lowering of structural dimensional change based on reflection generated in cover layer
JP2535037B2 (en) Multi-layer film mirror for X-ray / VUV
JPH04351999A (en) Multilayer film reflecting mirror and its manufacture
JP2535036B2 (en) Multi-layer film mirror for X-ray / VUV
JP2001108802A (en) Antireflection film
JPS63266398A (en) X-ray reflecting mirror
JPS62238504A (en) Laser reflecting mirror