JPH024933A - Manufacture of cutting tool made of diamond-coated tungsten carbide base sintered hard alloy - Google Patents

Manufacture of cutting tool made of diamond-coated tungsten carbide base sintered hard alloy

Info

Publication number
JPH024933A
JPH024933A JP63155955A JP15595588A JPH024933A JP H024933 A JPH024933 A JP H024933A JP 63155955 A JP63155955 A JP 63155955A JP 15595588 A JP15595588 A JP 15595588A JP H024933 A JPH024933 A JP H024933A
Authority
JP
Japan
Prior art keywords
powder
tungsten carbide
cutting tool
diamond
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63155955A
Other languages
Japanese (ja)
Inventor
Noribumi Kikuchi
菊池 則文
Hiroaki Yamashita
山下 博明
Hiroshi Nakahara
中原 啓
Hironori Yoshimura
吉村 寛範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP63155955A priority Critical patent/JPH024933A/en
Publication of JPH024933A publication Critical patent/JPH024933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To manufacture the title cutting tool made of a sintered hard alloy on which an artificial diamond-coated layer is formed at a high depositing speed with good adhesion by subjecting a green compact to which prescribed ratios of WC powder, Co powder and C powder are blended to primary sintering and HIP under specific conditions and thereafter forming an artificial diamond-coated layer thereon. CONSTITUTION:WC powder, Co powder and C powder are blended in prescribed blending compsn. and are mixed under ordinary conditions into a green compact, which is subjected to primary sintering at 1400 to 1500 deg.C in vacuum. The primary sintered material is then subjected to hot isostatic pressing at 1300 to 1500 deg.C under 100 to 1000 atmospheric pressure to extinguish pores. In such a manner, the matrix of the WC base sintered hard alloy contg., by weight, 0.1 to <1% Co and trace amounts of finely and uniformly dispersed free carbon equivalent to Co1 to Co8 by ISO standards and the balance WC with inevitable impurities and having >=99% theoretical density ratio is formed. An artificial diamond-coated layer is formed onto the surface of the matrix by a low pressure-vapor phase synthesizing method, by which the coated layer having good adhesion can swiftly be formed to manufacture a cutting tool.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、人工ダイヤモンド被覆層の析出形成速度が
速く、かつこれの密着性も良好なダイヤモンド被覆炭化
タングステン(以下wcで示す)基材硬合金製切削工具
の製造法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to a diamond-coated tungsten carbide (hereinafter referred to as wc) substrate hardness, which has a fast precipitation formation rate and good adhesion of the artificial diamond coating layer. This invention relates to a method of manufacturing an alloy cutting tool.

〔従来の技術〕[Conventional technology]

近年、Aρ合金やCu合金、さらに非金属なとの切削に
すぐれた切削性能を発揮する切削工具として、ダイヤモ
ンド被覆WC基超硬合金製切削工具が提案されている。
In recent years, diamond-coated WC-based cemented carbide cutting tools have been proposed as cutting tools that exhibit excellent cutting performance for cutting Aρ alloys, Cu alloys, and even nonmetals.

このダイヤモンド被覆WC基超硬合金製切削工具は、例
えば特開昭63−45372号公報に記載されるように
、 原料粉末として、WC粉末、Co粉末、および炭素粉末
を用い、これら原料粉末を所定の配合組成に配合し、通
常の条件で、混合し、圧粉体にプレス成形した後、この
圧粉体を、 真空中、1400〜1500℃の温度で焼結して、Co
:1〜4%、 微細均一に分散する遊離炭素:l5O (International  5tandard]
zation  Organization)規格でC
01〜C08に相当する微量、を含有し、残りがWCと
不可避不純物からなる組成(以上重量%、以下%は重量
%を示す)を有するWCC超超硬合金基体を製造し、 ついで、基体の表面に、CH4などのガスの熱分解によ
る化学蒸着法(CVD法)や、カーボンイオンを基体に
衝突させる物理蒸着法(PVD法)などの低圧気相合成
法により人工ダイヤモンド被覆層を形成することにより
製造されている。
This diamond-coated WC-based cemented carbide cutting tool uses WC powder, Co powder, and carbon powder as raw material powders, and these raw material powders are mixed in a predetermined manner, as described in, for example, Japanese Patent Application Laid-Open No. 63-45372. Co
: 1-4%, finely and uniformly dispersed free carbon: 15O (International 5 standard)
zation Organization) standard.
01 to C08, and the remainder consists of WC and unavoidable impurities (the above weight %, below % shows weight %). Forming an artificial diamond coating layer on the surface using a low-pressure vapor phase synthesis method such as a chemical vapor deposition method (CVD method) using thermal decomposition of a gas such as CH4 or a physical vapor deposition method (PVD method) that bombards a substrate with carbon ions. Manufactured by.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

しかし、上記の従来ダイヤモンド被覆WC基超硬合金製
切削工具の製造法においては、人工ダイヤモンド被覆層
の形成に比較的長時間を必要とするものであり、より速
い析出形成速度での人工ダイヤモンド被覆層の形成が望
まれている。
However, in the conventional method for manufacturing diamond-coated WC-based cemented carbide cutting tools described above, it takes a relatively long time to form the artificial diamond coating layer, and the artificial diamond coating layer can be formed at a faster precipitation rate. Formation of layers is desired.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上述のような観点から、より速
い析出形成速度での人工ダイヤモンド被覆層の形成を可
能とすべく研究を行なった結果、WCC超超硬合金基体
結合相を構成するCO含有量を1%未満と少なくすると
、ダイヤモンドの析出形成速度が一段と速くなり、一方
CO含有量の低減によって前記基体の強度は著しく低下
するようになるが、WCC超超硬合金基体製造に際して
、焼結を、 (a)  まず、圧粉体に、真空中、1400〜150
0°Cの温度て1次焼結を施し、 (b)  ついで、この1次焼結材に、温度: 130
0〜1500℃、圧力=100〜1000気圧の条件で
熱間静水圧プレス(HI P)を施す、 以上(a)および(b)の2段階によって行なうと、9
5〜98%の理論密度比であった1次焼結材が上記(b
)段階のHIP処理でポアが消滅して、99%以上の理
論密度比をもつようになって、1〜4%の高含有Coの
場合と同等の強度をもつようになり、さらに上記の通り
微量の遊離炭素の微細均一な分散含有によって人工ダイ
ヤモンドの密着性が一段と向上するようになるという知
見を得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to enable the formation of an artificial diamond coating layer at a faster precipitation formation rate. When the CO content is reduced to less than 1%, the diamond precipitate formation rate becomes even faster, while the strength of the substrate decreases significantly due to the reduction of the CO content. Sintering: (a) First, the green compact is heated to 1400 to 150 in vacuum.
Primary sintering is performed at a temperature of 0°C, (b) Then, this primary sintered material is heated at a temperature of 130°C.
If hot isostatic pressing (HIP) is performed under the conditions of 0 to 1500°C and pressure = 100 to 1000 atm, the above two steps (a) and (b) will result in 9.
The primary sintered material with a theoretical density ratio of 5 to 98% was the above (b
) The pores disappear in the HIP treatment at stage 1, and the theoretical density ratio becomes 99% or more, and the strength becomes equivalent to that of high Co content of 1 to 4%. They discovered that the adhesion of artificial diamonds can be further improved by containing minute amounts of free carbon in a fine, uniformly dispersed manner.

したがって、この発明は、上記知見にもとづいてなされ
たものであって、 原料粉末として、WC粉末、Co粉末、および炭素粉末
を用い、これら原料粉末を所定の配合組成に配合し、通
常の条件で、混合し、圧粉体に成形した後、 (a)  この圧粉体に、真空中、1400〜1500
℃の温度で1次焼結を施し、 (b)  ついで、この1次焼結材に、温度: 130
0〜1500℃、圧力=100〜1000気圧の条件で
熱間静水圧プレスを施してポアの消滅をはかる、以上(
a)および(b)の2段階焼結を施して、Co:0.1
〜1重量%未満、 微細均一に分散する遊離炭素:ISO規格でC01〜C
08に相当する微量、 を含有し、残りがWCと不可避不純物からなる組成を有
し、かつ99%以上の理論密度比を有するWCC超超硬
合金基体を製造し、 このWCC超超硬合金基体表面に、低圧気相合成法によ
り人工ダイヤモンド被覆層を形成することからなるダイ
ヤモンド被覆WC基超硬合金製切削工具の製造法に特徴
を有するものである。
Therefore, this invention has been made based on the above knowledge, and uses WC powder, Co powder, and carbon powder as raw material powders, blends these raw material powders into a predetermined composition, and under normal conditions. , mixed and formed into a green compact, (a) This green compact is heated to 1400 to 1500 in vacuum.
(b) This primary sintered material is then subjected to primary sintering at a temperature of 130 °C.
The above (
Co:0.1 by performing two-step sintering of a) and (b)
~Less than 1% by weight, finely and uniformly dispersed free carbon: C01~C according to ISO standards
Producing a WCC cemented carbide substrate having a composition containing a trace amount corresponding to 08, with the remainder consisting of WC and unavoidable impurities, and having a theoretical density ratio of 99% or more, the WCC cemented carbide substrate The present invention is characterized by a method for manufacturing a diamond-coated WC-based cemented carbide cutting tool, which comprises forming an artificial diamond coating layer on the surface by a low-pressure vapor phase synthesis method.

つぎに、この発明の方法において、製造条件を上記の通
りに限定した理由を説明する。
Next, the reason why the manufacturing conditions are limited as described above in the method of this invention will be explained.

(a)1次焼結温度 その温度が1400℃未満では焼結が不十分で、ポアや
Co相プールが多く存在するようになり、この結果後工
程のHIP処理でポアを消滅させる効果が十分に発揮さ
れず、一方その温度が1500℃を越えると、WC粒の
粗大化およびCoの蒸発飛散が起るようになり、所望の
強度を確保することができないことから、その温度を1
400〜1500℃と定めた。
(a) Primary sintering temperature If the temperature is lower than 1400°C, sintering will be insufficient and many pores and Co phase pools will exist, resulting in the HIP treatment in the post-process being effective in eliminating pores. On the other hand, if the temperature exceeds 1500°C, the WC grains become coarser and the Co evaporates and scatters, making it impossible to secure the desired strength.
The temperature was set at 400-1500°C.

(b)HIP条件 その温度が1300℃未満でも、その圧力が100気圧
未満でもポアの消滅を十分に行なうことができず、した
がって99%以上の理論密度比をもった基体を製造する
ことかできず、一方その温度が1.500℃を越えると
、WC粒が粗大化するようになって強度が低下し、また
その圧力が1000気圧を越えると、かえってガスのま
き込みが生じ、ポア発生の原因となることから、それぞ
れ温度: 1300〜1500℃、圧力=100〜10
00気圧と定めた。
(b) HIP conditions Even if the temperature is less than 1300°C or the pressure is less than 100 atm, pores cannot be sufficiently eliminated, and therefore a substrate with a theoretical density ratio of 99% or more cannot be manufactured. On the other hand, if the temperature exceeds 1,500°C, the WC grains will become coarser and the strength will decrease, and if the pressure exceeds 1,000 atm, gas will be drawn in and pores will be generated. Temperature: 1300 to 1500℃, pressure = 100 to 10
The pressure was set at 00 atm.

(c)  Co含有量 Co含有量が0.1%未満では、所望の強度を確保する
ことができないばかりでなく、靭性も低く、切削時に切
刃に欠損が発生し易く、一方Co含有量が1%以上にな
ると、ダイヤモンドの析出形成速度が急激に低下するよ
うになることから、その含有量を0.1〜1%未満と定
めた。
(c) Co content If the Co content is less than 0.1%, it is not only impossible to secure the desired strength, but also the toughness is low, and the cutting edge is likely to be damaged during cutting. If the content exceeds 1%, the rate of diamond precipitate formation rapidly decreases, so the content was set at 0.1 to less than 1%.

(rl)  遊離炭素含有量 遊離炭素には、基体表面に析出したダイヤモンドの黒鉛
化を阻止すると共に、これの基体への密着性を一段と向
上させる作用があるが、その含有割合がISO規格でC
01未満では前記作用に所望の効果が得られず、一方そ
の含有割合が同C08を越えると、基体の強度が低下す
るようになることから、その含有割合をISO規格でC
01〜C08に相当する微量とした。
(rl) Free carbon content Free carbon has the effect of preventing graphitization of diamond deposited on the substrate surface and further improving its adhesion to the substrate.
If the content is less than C01, the desired effect cannot be obtained, while if the content exceeds C08, the strength of the substrate will decrease.
The amount was set to be a trace amount corresponding to 01 to C08.

(e)  理論密度比 この発明のWCC超超硬合金基体、Co含有量か1%未
満と低いので、HIP処理では基体が99%以上の理論
密度比をもつようにして、Co:1〜4%を含有し、か
つ95〜98%程度の理論密度比を有する従来WCC超
超硬合金基体同等の強度をもつようにする必要があり、
したがって99%未満の理論密度比では所定の強度を確
保することができないものである。
(e) Theoretical density ratio Since the Co content of the WCC cemented carbide substrate of the present invention is low at less than 1%, the HIP treatment is performed so that the substrate has a theoretical density ratio of 99% or more. % and has a theoretical density ratio of about 95 to 98%.
Therefore, with a theoretical density ratio of less than 99%, it is not possible to secure a predetermined strength.

〔実 施 例〕〔Example〕

つぎに、この発明の方法を実施例により具体的に説明す
る。
Next, the method of the present invention will be specifically explained using examples.

原料粉末として、いずれも1〜3.2μsの範囲内の所
定の平均粒径を有するWC粉末、およびC。
As raw material powders, WC powder and C each have a predetermined average particle size within the range of 1 to 3.2 μs.

粉末、さらに微細なカーボンブラックを用意し、これら
原料粉末を所定の配合組成に配合し、ポルミルにて72
時時間式混合し、乾燥した後、1.5ton/c−の圧
力で圧粉体にプレス成形し、ついで、この圧粉体をそれ
ぞれ第1表に示される条件で焼結して、同じく第1表に
示される組成、抗折力(強度評価)、および理論密度比
を有するWCC超超硬合金基体を製造し、この基体を、
研磨してCIS (超硬工具協会)規格S P P 4
22のスローアウェイチップ形状とした状態で、これの
表面に、CVD法の1種である熱電子放射法を用い、反
応容器:直径+20+n+nの石英管、使用フィラメン
ト:金属タングステン、フィラメント温度: 2000
℃、 基体温度=700℃、 雰囲気: 20torrのCH4+H2、反応ガス割合
: CH4+H2=0.005、反応時間:12時間、 の条件でダイヤモンド被覆を行ない、同じく第1表に示
される平均層厚のダイヤモンド被覆層を形成することに
よって本発明法1〜9および従来法1〜4をそれぞれ実
施し、ダイヤモンド被覆WC基超硬合金製切削工具(以
下、被覆切削工具という)を製造した。
Powder and even finer carbon black are prepared, these raw material powders are blended into a predetermined composition, and 72
After mixing and drying, it is press-formed into a green compact at a pressure of 1.5 ton/c-, and then this green compact is sintered under the conditions shown in Table 1. A WCC cemented carbide substrate having the composition, transverse rupture strength (strength evaluation), and theoretical density ratio shown in Table 1 was manufactured, and this substrate was
Polish and meet CIS (Cemented Carbide Tools Association) standards S P P 4
Thermionic radiation method, which is a type of CVD method, was applied to the surface of the 22 throw-away chip, reaction vessel: quartz tube with diameter +20+n+n, filament used: metallic tungsten, filament temperature: 2000.
℃, substrate temperature = 700 ℃, atmosphere: CH4 + H2 of 20 torr, reaction gas ratio: CH4 + H2 = 0.005, reaction time: 12 hours. Methods 1 to 9 of the present invention and conventional methods 1 to 4 were carried out by forming a coating layer, respectively, to produce diamond-coated WC-based cemented carbide cutting tools (hereinafter referred to as coated cutting tools).

ついで、この結果得られた各種の被覆切削工具について
、 被削材:AΩ−18%Si合金の丸棒、切削速度: t
oo m/min 。
Next, regarding the various coated cutting tools obtained as a result, Work material: AΩ-18% Si alloy round bar, Cutting speed: t
oom/min.

送  リ+0.15n+n+/刃、 切込み:1+n+n。Feedback +0.15n+n+/blade, Depth of cut: 1+n+n.

の条件て旋削切削試験を行ない、切刃の逃げ面摩耗幅か
0.3n++nに至るまでの切削時間を測定した。
A lathe cutting test was conducted under the following conditions, and the cutting time until the flank wear width of the cutting edge reached 0.3n++n was measured.

この結果を第1表に示した。The results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明法1〜9により製造
された被覆切削工具は、基体のCo含有量が低いにもか
かわらず、従来法1〜4で製造された被覆切削工具にお
ける高Co含有の基体に比して高強度および高密度を有
し、かつ本発明法1〜9においては、同一の人工ダイヤ
モンド被覆層形成条件にもかかわらず、従来法1〜4に
おける場合よりも一段と速い析出形成速度での人工ダイ
ヤモンド被覆層の形成が可能であり、この当然の結果と
して切削試験では相対的に長い切削時間を示すことが明
らかである。
From the results shown in Table 1, it can be seen that the coated cutting tools manufactured by the methods 1 to 9 of the present invention have a higher Co content than the coated cutting tools manufactured by the conventional methods 1 to 4, although the Co content in the substrate is low. It has higher strength and density than a Co-containing substrate, and in Methods 1 to 9 of the present invention, it has a higher strength and density than in conventional methods 1 to 4, despite the same artificial diamond coating layer formation conditions. It is clear that the formation of artificial diamond coatings with high precipitate formation rates is possible and that a corollary of this is that cutting tests show relatively long cutting times.

上述のように、この発明の方法によれば、人工ダイヤモ
ンド被覆層の析出形成が速く、かつこれの密着性も良好
なダイヤモンド被覆WC基超硬合金製切削工具を製造す
ることができるのである。
As described above, according to the method of the present invention, it is possible to produce a diamond-coated WC-based cemented carbide cutting tool in which the artificial diamond coating layer is rapidly deposited and has good adhesion.

Claims (1)

【特許請求の範囲】[Claims] (1)原料粉末として、炭化タングステン粉末、Co粉
末、および炭素粉末を用い、これら原料粉末を所定の配
合組成に配合し、通常の条件で、混合し、圧粉体に成形
した後、 (a)この圧粉体に、真空中、1400〜1500℃の
温度で1次焼結を施し、 (b)ついで、この1次焼結材に、温度:1300〜1
500℃、圧力:100〜1000気圧の条件で熱間静
水圧プレスを施してポアの消滅をはかる、 以上(a)および(b)の2段階焼結を施して、Co:
0.1〜1重量%未満、 微細均一に分散する遊離炭素:ISO規格でC01〜C
08に相当する微量、 を含有し、残りが炭化タングステンと不可避不純物から
なる組成を有し、かつ99%以上の理論密度比を有する
炭化タングステン基超硬合金の基体を製造し、 この炭化タングステン基超硬合金基体の表面に、低圧気
相合成法により人工ダイヤモンド被覆層を形成すること
を特徴とするダイヤモンド被覆炭化タングステン基超硬
合金製切削工具の製造法。
(1) Tungsten carbide powder, Co powder, and carbon powder are used as raw material powders. These raw material powders are blended into a predetermined composition, mixed under normal conditions, and formed into a green compact. (a ) This green compact is subjected to primary sintering at a temperature of 1400 to 1500°C in vacuum, (b) This primary sintered material is then subjected to primary sintering at a temperature of 1300 to 1500°C.
Hot isostatic pressing is performed at 500°C and pressure: 100 to 1000 atm to eliminate pores, and the two-step sintering described in (a) and (b) is performed to produce Co:
Less than 0.1 to 1% by weight, finely and uniformly dispersed free carbon: C01 to C according to ISO standards
A substrate of a tungsten carbide-based cemented carbide having a composition of tungsten carbide and unavoidable impurities and a theoretical density ratio of 99% or more is manufactured, and the tungsten carbide-based A method for manufacturing a diamond-coated tungsten carbide-based cemented carbide cutting tool, which comprises forming an artificial diamond coating layer on the surface of a cemented carbide base by a low-pressure vapor phase synthesis method.
JP63155955A 1988-06-23 1988-06-23 Manufacture of cutting tool made of diamond-coated tungsten carbide base sintered hard alloy Pending JPH024933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63155955A JPH024933A (en) 1988-06-23 1988-06-23 Manufacture of cutting tool made of diamond-coated tungsten carbide base sintered hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63155955A JPH024933A (en) 1988-06-23 1988-06-23 Manufacture of cutting tool made of diamond-coated tungsten carbide base sintered hard alloy

Publications (1)

Publication Number Publication Date
JPH024933A true JPH024933A (en) 1990-01-09

Family

ID=15617185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63155955A Pending JPH024933A (en) 1988-06-23 1988-06-23 Manufacture of cutting tool made of diamond-coated tungsten carbide base sintered hard alloy

Country Status (1)

Country Link
JP (1) JPH024933A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660881A (en) * 1991-02-21 1997-08-26 Mitsubishi Materials Corporation Method of manufacturing CVD diamond coated cutting tools
KR100739630B1 (en) * 2006-01-18 2007-08-10 한국기계연구원 Method for fabricating wear-resistant alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660881A (en) * 1991-02-21 1997-08-26 Mitsubishi Materials Corporation Method of manufacturing CVD diamond coated cutting tools
KR100739630B1 (en) * 2006-01-18 2007-08-10 한국기계연구원 Method for fabricating wear-resistant alloy

Similar Documents

Publication Publication Date Title
EP0586683B1 (en) Multi-layer metal coated diamond abrasives with an electrolessly deposited metal layer
US5068148A (en) Diamond-coated tool member, substrate thereof and method for producing same
US5310605A (en) Surface-toughened cemented carbide bodies and method of manufacture
JP5328653B2 (en) Ti-based cermet, coated cermet and cutting tool
US5436071A (en) Cermet cutting tool and process for producing the same
DK160438B (en) SINTERED HARD METAL BODIES AND PROCEDURES FOR THEIR PREPARATION
KR20170103626A (en) Cermet, cutting tool, and method for manufacturing cermet
JPS6353269A (en) Cutting tool tip made of diamond coated tungsten carbide-base sintered hard alloy
JPH0568548B2 (en)
JP4170402B2 (en) Titanium-based carbonitride alloy with nitrided surface region
JP3236899B2 (en) Manufacturing method of surface coated tungsten carbide based cemented carbide cutting tool with excellent wear and fracture resistance
JPH024933A (en) Manufacture of cutting tool made of diamond-coated tungsten carbide base sintered hard alloy
JP3269305B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JPH01255630A (en) Production of cutting tool made of diamond-coated tungsten carbide-based sintered hard alloy
JP2917555B2 (en) Hard layer coated cemented carbide cutting tool and its manufacturing method
JPH024934A (en) Manufacture of cutting tool made of diamond coated tungsten carbide base sintered hard alloy
JP3260157B2 (en) Method for producing diamond-coated member
JPH024932A (en) Manufacture of cutting tool made of diamond-coated tungsten carbide base sintered hard alloy
JPH01228703A (en) Surface coated cutting tip provided with al or al alloy cutting breaker
JPH08260129A (en) Cubic boron nitride composite cermet tool and its production
JPH0791650B2 (en) Diamond coated tungsten carbide based cemented carbide cutting tool chip
JP2828512B2 (en) Coated TiCN-based cermet
JPH068009A (en) Cutting tool made of surface coating tungsten carbide group super hard alloy excellent in chipping resistance property
JP2970016B2 (en) Hard layer coated cemented carbide cutting tool
JPH05237707A (en) Coated tool