JPH0248965B2 - KINZOKUNANJISEIMAKUJIKIHETSUDO - Google Patents

KINZOKUNANJISEIMAKUJIKIHETSUDO

Info

Publication number
JPH0248965B2
JPH0248965B2 JP8962282A JP8962282A JPH0248965B2 JP H0248965 B2 JPH0248965 B2 JP H0248965B2 JP 8962282 A JP8962282 A JP 8962282A JP 8962282 A JP8962282 A JP 8962282A JP H0248965 B2 JPH0248965 B2 JP H0248965B2
Authority
JP
Japan
Prior art keywords
head
film
nimno
substrate
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8962282A
Other languages
Japanese (ja)
Other versions
JPS58208924A (en
Inventor
Mitsuharu Tamura
Kanji Kawano
Norio Goto
Hiroaki Ono
Hideo Zama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8962282A priority Critical patent/JPH0248965B2/en
Publication of JPS58208924A publication Critical patent/JPS58208924A/en
Publication of JPH0248965B2 publication Critical patent/JPH0248965B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/147Structure or manufacture of heads, e.g. inductive with cores being composed of metal sheets, i.e. laminated cores with cores composed of isolated magnetic layers, e.g. sheets

Landscapes

  • Magnetic Heads (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Description

【発明の詳細な説明】 本発明は磁気ヘツドに係り、特にヘツド特性の
経時劣化を防止しかつ安定して高歩留りを維持で
きるヘツド製造工程を実施し、かつヘツドの長寿
命化を図るのに好適な金属軟磁性膜をヘツドコア
に応用した磁気ヘツドに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic head, and particularly to a head manufacturing process that prevents deterioration of head characteristics over time, maintains a stable high yield, and extends the life of the head. The present invention relates to a magnetic head in which a suitable metal soft magnetic film is applied to the head core.

最近、家庭用VTRの分野などでは記録密度の
向上の要求に応えるために高保磁力テープの研究
開発が進められているが、従来のMn−Zn単結晶
フエライトをヘツドコアに用いたフエライトヘツ
ドではフエライトコアの飽和磁束密度が十分大き
くないためコア飽和現象が生じ、高保磁力テープ
の性能を十分に引き出すこをができなくなつたと
いう問題が生じて来た。そこでコア材として上記
フエライトの約2倍近い飽和磁束密度の金属軟磁
性体センダストのスパツタリング装置により作成
した膜を上記フエライトコアに置き替えた構造の
金属軟磁性膜ヘツド(金属軟磁性膜の材質から以
後センダスト膜ヘツドと記す)が考案され、上記
の問題の解決が図られている。以下第1図に示す
従来の磁気ヘツドを説明する。第1図Aはフエラ
イトヘツド、第2図Bはセンダスト膜ヘツドを示
す。第1図Bに示す構造の磁気ヘツドでは数10μ
mというトラツク幅Tを金属軟磁性膜8で構成す
るために上記トラツク幅寸法以上の膜厚の金属軟
磁性膜8を基板7上にスパツタリング装置等の薄
膜作成磁性で形成することが必要となる。またヘ
ツド特性の経時劣化を招かず高い信頼性を保証す
るために 1 上記金属軟磁性膜上に保護板をガラス溶着
し、テープ摺動部の偏摩耗によるヘツド・テー
プ間の接触不良が原因するヘツド出力の低下を
防ぐ 2 動作ギヤツプ形成もガラス溶着で行い、経時
変化によるギヤツプ開きを防止し、ヘツド出力
の周波数特性を防ぐ ことが必要となる。当然ヘツド製造工程は上述の
ヘツド特性の経時劣化対策を行つてトラブル発生
による歩留り低下を招かない、安定した工程でな
ければならない。また同時に従来フエライトヘツ
ドで確保されていた2000時間以上のヘツド寿命も
センダスト膜ヘツドは保証しなければならない。
Recently, in the field of home VTRs, research and development of high coercive force tapes has been progressing to meet the demand for improved recording density. Since the saturation magnetic flux density of the magnetic tape is not sufficiently large, a core saturation phenomenon occurs, resulting in the problem that the performance of the high coercive force tape cannot be fully exploited. Therefore, we have developed a metal soft magnetic film head (from the material of the metal soft magnetic film) in which the ferrite core is replaced with a film made by a sputtering machine using Sendust, a metal soft magnetic material with a saturation magnetic flux density approximately twice that of the ferrite, as the core material. A Sendust film head (hereinafter referred to as Sendust film head) was devised to solve the above problem. The conventional magnetic head shown in FIG. 1 will be explained below. FIG. 1A shows a ferrite head, and FIG. 2B shows a sendust film head. In the magnetic head with the structure shown in Fig. 1B, it is several tens of microns.
In order to configure the track width T of m with the metal soft magnetic film 8, it is necessary to form the metal soft magnetic film 8 with a thickness equal to or greater than the track width dimension on the substrate 7 using a thin film forming method such as a sputtering device. . In addition, in order to guarantee high reliability without causing deterioration of head characteristics over time, 1. A protective plate is glass-welded on the metal soft magnetic film, which prevents contact failure between the head and tape due to uneven wear of the tape sliding part. Preventing a drop in head output 2 It is necessary to form the operating gap by glass welding to prevent the gap from opening due to changes over time and to prevent the frequency characteristics of the head output from changing. Naturally, the head manufacturing process must be a stable process that takes measures against the above-mentioned deterioration of head characteristics over time to avoid a decrease in yield due to occurrence of trouble. At the same time, the sendust film head must also guarantee a head life of more than 2000 hours, which was previously guaranteed with ferrite heads.

ところが、上記した従来のセンダスト膜ヘツド
では保護板12の接着とギヤツプ10形成を同時
に有機樹脂接着剤で行つているため、テープ摺動
部9に露出している上記有機接着剤近傍の偏摩耗
や上記接着剤のしみ出し、あるいは動作ギヤツプ
開きを生じてヘツド特性の経時劣化を招いてしま
う。従つて上記経時劣化を防ぐべく前述のヘツド
特性の経時劣化対策を施す必要がある。しかし、
前述の従来例では基板7に用いている、露光によ
つてLiO・SiO2を析出する感光性結晶化ガラスは
熱膨張係数が10.4×10-6/℃と金属軟磁性膜に用
いているセンダストの14.5×10-6/℃に対して4
×10-6/℃の差があるため、上述の対策を施すべ
くガラス溶着を行うと加熱で上記熱膨脹係数の差
による応力が誘動され、数10μmという厚い膜厚
のセンダスト膜形成時に導入された応力と相まつ
てセンダスト膜内にクラツクを発生させたり基板
表面の破損を引き起こし、安定した保護板接着や
動作ギヤツプ形成を行なうことができないという
問題を生じた。
However, in the above-mentioned conventional sendust film head, since the protection plate 12 is bonded and the gap 10 is formed using an organic resin adhesive at the same time, uneven wear or uneven wear occurs near the organic adhesive exposed on the tape sliding part 9. The adhesive may seep out or the operating gap may open, leading to deterioration of head characteristics over time. Therefore, in order to prevent the above-mentioned deterioration with time, it is necessary to take measures against the deterioration of the head characteristics with time. but,
In the conventional example described above, the photosensitive crystallized glass used for the substrate 7, which precipitates LiO/SiO 2 by exposure, has a thermal expansion coefficient of 10.4×10 -6 /°C, and is similar to Sendust, which is used for the metal soft magnetic film. 4 for 14.5×10 -6 /℃
Since there is a difference of ×10 -6 /°C, when glass welding is performed to take the above measures, stress due to the difference in the thermal expansion coefficient is induced by heating, and it is introduced when forming a sendust film with a thickness of several tens of micrometers. Combined with the added stress, this causes cracks in the sendust film and damage to the substrate surface, resulting in the problem that stable protection plate adhesion and operation gap formation cannot be achieved.

また第2図に示すように上記感光性結晶化ガラ
ス基板の魔耗速度が従来フエライトコアに用いて
いたMn−Zn単結晶フエライト10倍以上もあり、
ギヤツプ深さ40μmのヘツドでもヘツド寿命は
400時間程度にしかならず、2000時間の保証はで
きない。ギヤツプ深さを深くして2000時間のヘツ
ド寿命を保証するためにはギヤツプ深さが160μ
m以上も必要で、ヘツド出力の大幅な低下を招く
ためギヤツプ深さを深くする方法を採用すること
は出来ない。
Furthermore, as shown in Figure 2, the wear rate of the photosensitive crystallized glass substrate is more than 10 times that of the Mn-Zn single crystal ferrite conventionally used for ferrite cores.
Even with a head with a gap depth of 40 μm, the life of the head is
It only lasts about 400 hours, and we cannot guarantee 2000 hours. In order to increase the gap depth and guarantee a head life of 2000 hours, the gap depth must be 160μ.
m or more, and it is not possible to adopt a method of increasing the gap depth because it would lead to a significant drop in head output.

以上のごとく従来のセンダスト膜ヘツドはヘツ
ド特性が経時劣化し、該経時劣化を防止しようと
するとヘツド製造工程中における不良が多発して
歩留が大幅に劣化してしまい、かつテープ摺動に
対する摩耗速度が大きくヘツド寿命2000時間を保
証できないという重大な欠点を抱えている。
As described above, the head characteristics of conventional sendust film heads deteriorate over time, and attempts to prevent this deterioration over time result in frequent defects during the head manufacturing process, resulting in a significant decrease in yield, and wear due to tape sliding. It has a serious drawback in that the speed is high and the head life of 2000 hours cannot be guaranteed.

本発明の目的はヘツド特性の経時劣化を防止し
安定した高歩留りのヘツド製造工程を実現し、
2000時間以以上のヘツド寿命を保証できる金属軟
磁性膜磁気ヘツドを供給することにある。
The purpose of the present invention is to prevent deterioration of head characteristics over time and realize a stable high-yield head manufacturing process.
The object of the present invention is to provide a metal soft magnetic film magnetic head that can guarantee a head life of more than 2000 hours.

従来金属軟磁性膜(センダスト膜)ヘツドにお
いてヘツド特性の経時劣化を防止し安定した高歩
留りのヘツド製造工程を実現し得えなかつたは基
板に用いた感光性結晶化ガラスの熱膨脹係数が
10.6×10-6/℃と金属軟磁性膜であるセンダスト
膜に比較して4×10-6/℃小さいためセンダスト
膜表面への保護板接着と動作ギヤツプ形成にガラ
ス溶着法を用いぬことができなかつたためであ
り、2000時間以上のヘツド寿命を保証できなかつ
たのは上記感光性結晶化ガラスのテープ摺動によ
る摩耗速度が従来フエライトヘツドコアに用いて
いたMn−Zn単結晶フエライトの10倍以上であつ
たことが原因していた。以上からセンダスト膜と
基板間の熱膨脹係数の差を従来例よりも減少せし
め、テープ摺動に対する耐摩耗性が上記Mn−Zn
単結晶フエライトと同程度である材質として採用
することが従来技術の問題解決を図るうえで是非
とも必要である。もちろん基板が空孔の多い材質
では 1 基板表面に空孔による多数の微細な穴が現わ
れ、形成される膜組織を乱し磁気特性劣化の原
因となる 2 テープ摺動に空孔による多数の微細な穴が現
われ、滑らかなテープ走行を妨げの原因となり
安定したヘツド出力が得られない という問題を生ずるため基板は穴孔の少ない微密
な材質であることも必要である。
Conventional metal soft magnetic film (sendust film) heads have not been able to prevent deterioration of head characteristics over time and have been unable to realize a stable, high-yield head manufacturing process, or the thermal expansion coefficient of the photosensitive crystallized glass used for the substrate has
Since it is 10.6×10 -6 /℃, which is 4×10 -6 /℃ smaller than that of Sendust film, which is a metal soft magnetic film, it is not possible to use the glass welding method for adhering the protective plate to the Sendust film surface and forming the operating gap. The reason we were unable to guarantee a head life of over 2,000 hours was because the wear rate of the photosensitive crystallized glass due to tape sliding was 10 times that of the Mn-Zn single crystal ferrite used in conventional ferrite head cores. The above was the cause. From the above, the difference in thermal expansion coefficient between the sendust film and the substrate is reduced compared to the conventional example, and the abrasion resistance against tape sliding is higher than that of the Mn-Zn film.
In order to solve the problems of the conventional technology, it is absolutely necessary to adopt it as a material that is on the same level as single crystal ferrite. Of course, if the substrate is made of a material with many pores, 1) Many microscopic holes due to vacancies will appear on the substrate surface, which will disturb the formed film structure and cause deterioration of magnetic properties. It is also necessary that the substrate be made of a fine material with few holes, since this causes the problem that the smooth running of the tape is obstructed and stable head output cannot be obtained.

以上の観点から本発明においてはNiMnO2系酸
化物で、熱膨脹係数12×10-6/℃以上、ピツカー
ス硬度550以上にできるNaCl型結晶構造を有する
NiMnO2を基板に採用することにより保護板接
着、動作ギヤツプ形成に安定したガラス溶着法の
導入を可能とし、2000時間以上のヘツド寿命実現
を図つた。もちろん上記NaCl型結晶構造の
NiMnO2を微密性向上のために熱間静水圧プレス
で焼結することや熱膨脹係数向上のためにAl2O3
を添加することと、または上述の両者を同時に実
行することも上述の基板材として要求される条件
から鑑みて有効といえる。また上記のごとく基板
の熱膨張係数を増大できたことにより金属軟磁性
膜に対膨張係数の自由度が増し、センダスト膜以
外のCo−M(MはNb、Ti、Ta、Zr、W等の金属
元素)やCo−M1−M2(M1、M2は上記のMで示
された金属元子)系の非晶質金属磁性膜のような
飽和磁束密度がMn−Zn単結晶フエライトよりも
大きく高透磁率を示す金属軟磁性膜を用いたヘツ
ドの基板としても有効といえる。
From the above points of view, the present invention uses a NiMnO2- based oxide that has a NaCl-type crystal structure with a thermal expansion coefficient of 12× 10 -6 /℃ or higher and a Pickkers hardness of 550 or higher.
By using NiMnO 2 for the substrate, we have made it possible to introduce a stable glass welding method for bonding the protective plate and forming the operating gap, and have achieved a head life of over 2000 hours. Of course, the above NaCl type crystal structure
NiMnO 2 is sintered using hot isostatic pressing to improve microdensity, and Al 2 O 3 is used to improve the coefficient of thermal expansion.
In view of the conditions required for the above-mentioned substrate material, it is also effective to add the above-mentioned material or to carry out the above-mentioned both at the same time. In addition, by increasing the thermal expansion coefficient of the substrate as described above, the degree of freedom with respect to the expansion coefficient of the metal soft magnetic film increases, and Co-M (M is Nb, Ti, Ta, Zr, W, etc.) other than Sendust film Mn-Zn single-crystal ferrite has a saturation magnetic flux density such as an amorphous metal magnetic film of Co-M 1 -M 2 (M 1 and M 2 are metal elements indicated by M above) system. It can also be said to be effective as a substrate for a head using a metal soft magnetic film that exhibits a larger magnetic permeability than the previous one.

一方上述のNiMnO2系酸化物以外にもいくつか
の結晶化ガラスが上述の熱膨張係数、ピツカース
硬度を有するが、ヘツド化に必要な数10μmとい
う膜厚のセンダスト膜等の金属軟磁性膜形成時に
導入される膜応力のために生ずる基板の反りが上
記NiMnO2系酸化物の倍以上もあり、 1 保護板接着工程において溶着ガラス層に導入
される応力が大きくなり、上記ガラス層やセン
ダスト膜内のクラツク発生要因となる 2 ギヤツプ形成時のコアブロツク突き合わせに
おいてセンダスト膜どおしの合わせ精度が劣化
し、トラツクづれ不良をひきおこす という点で上記NiMnO2系酸化物に劣つている。
On the other hand, in addition to the above-mentioned NiMnO2 -based oxides, some crystallized glasses have the above-mentioned coefficient of thermal expansion and Pickers hardness, but the formation of metal soft magnetic films such as sendust films with a thickness of several tens of micrometers required for forming heads. The warping of the substrate caused by the film stress sometimes introduced is more than twice that of the NiMnO 2 type oxide mentioned above. It is inferior to the above-mentioned NiMnO 2 -based oxide in that it deteriorates the precision of alignment between the sendust films when aligning the core blocks during gap formation, which causes cracks in the core block, and causes track misalignment.

以下、本発明の一実施例の磁気ヘツドの構成を
第3図のヘツド製造工程の順に従つて説明する。
Hereinafter, the structure of a magnetic head according to an embodiment of the present invention will be explained in accordance with the order of the head manufacturing process shown in FIG.

軟磁性膜基板15の鏡面仕上げ面上にスパツタ
リング、真空蒸着等の薄膜作成装置で金属軟磁性
膜としてセンダスト膜16を形成し、更に保護板
17を接着するための溶着ガラス層18をスパツ
タリング等の薄膜作成装置により上記センダスト
膜面と保護板17上に付着せしめる(第3図A)。
然る後双方を上記ガラス層18が対面するように
重ね合わせて加熱溶着することによつてコアブロ
ツク19,19′を形成し、一方に巻線窓20を
形成した1組のコアブロツク19,19′の少な
くとも一方の側面にSiO2等のギヤツプスペーサ
膜21とギヤツプボンデイング用溶着ガラス膜2
2をスパツタリング等の薄膜作成技術を用いて上
記コアブロツクの突き合わせ面の必要部位に付着
させ(第3図B)、上記ガラス膜22が対面する
ように突き合わせて加熱溶着して動作ギヤツプ2
3を形成する(第3図C)。然る後、テープ摺動
部24形成のため狭トラツク加工を施しコイル2
5を巻いてヘツドテツプが完成する(第3図D)。
Tはトラツク幅である。
A sendust film 16 is formed as a metal soft magnetic film on the mirror-finished surface of the soft magnetic film substrate 15 using a thin film forming apparatus such as sputtering or vacuum evaporation, and a welded glass layer 18 for adhering the protective plate 17 is further formed by sputtering or the like. The thin film is deposited on the sendust film surface and the protective plate 17 using a thin film forming device (FIG. 3A).
Thereafter, the core blocks 19, 19' are formed by overlapping the glass layers 18 so that the glass layers 18 face each other and heat welding them, and forming a pair of core blocks 19, 19' with the winding window 20 formed on one side. A gap spacer film 21 such as SiO 2 and a welded glass film 2 for gap bonding are provided on at least one side of the
2 is attached to the required portions of the abutting surfaces of the core block using a thin film forming technique such as sputtering (FIG. 3B), and the glass films 22 are abutted against each other and welded by heat to form the operating gap 2.
3 (Figure 3C). After that, a narrow track is processed to form the tape sliding part 24, and the coil 2 is
5 to complete the head step (Figure 3D).
T is the track width.

基板15にはNaCl型結晶構造を有する
NiMnO2を用いる。もちろん材質の緻密性向上の
ために熱間静水圧プレスして焼結したNaCl型結
晶構造を有するNiMnO2、熱膨張係数向上のため
にAl2O3を添加したNaCl型結晶構造を有する
NiMnO2(Al2O3の添加量が4〜6重量パーセン
トで13×10-6/℃以上の熱膨張係数が得られた)。
あるいはAl2O3を添加しかつ熱間静水圧プレスし
て焼結したNaCl型結晶構造を有するNiMnO2
も基板として用いることができる。
The substrate 15 has a NaCl type crystal structure.
Using NiMnO2 . Of course, NiMnO 2 has a NaCl-type crystal structure sintered by hot isostatic pressing to improve the density of the material, and it has a NaCl-type crystal structure with Al 2 O 3 added to improve the coefficient of thermal expansion.
NiMnO 2 (A thermal expansion coefficient of 13×10 −6 /° C. or more was obtained when the amount of Al 2 O 3 added was 4 to 6 weight percent).
Alternatively, NiMnO 2 having a NaCl type crystal structure, which is added with Al 2 O 3 and sintered by hot isostatic pressing, can also be used as the substrate.

また上記実施例では金属軟磁性膜としてセンダ
スト膜を用いているが、センダスト膜以外でも
Co−M(MはNb、Ta、Ti、W、Zr等の金属元
素)、Co−M1−M2(M1、M2はNb、Ta、Ti、
W、Zr)というCoを母体とした高透磁率非晶質
合金膜のごとく高透磁率を有する金属軟磁性膜な
ら上記センダスト膜に置き換え可能である。
In addition, in the above embodiment, a Sendust film is used as the metal soft magnetic film, but other than Sendust film may also be used.
Co-M (M is a metal element such as Nb, Ta, Ti, W, Zr), Co-M 1 -M 2 (M 1 , M 2 is Nb, Ta, Ti,
The sendust film can be replaced by a metal soft magnetic film having high magnetic permeability, such as a high magnetic permeability amorphous alloy film using Co as a matrix (W, Zr).

保護板17には基板15と同材質の上記
NiMnO2系酸化物を用いる。保護板接着やギヤツ
プボンデイング用の溶着ガラス層18,22には
熱膨張係数が大きく、作業温度を低く選べるPb
−B系ガラスを用いる。ただし上記ギヤツプボン
デイング用溶着ガラスは上記保護板溶着用溶着ガ
ラより作業温度の低い材質であることが必要であ
る。なお上記保護板17接着は金属薄膜による金
属溶着で行つてもよい。ただし該金属薄膜はギヤ
ツプボンデイング用溶着ガラス22の作業温度よ
りも高温の融点の材質であることが必要である。
The protective plate 17 is made of the same material as the substrate 15.
Uses NiMnO 2 -based oxide. The welded glass layers 18 and 22 for bonding protective plates and gap bonding are made of Pb, which has a large coefficient of thermal expansion and can be used at a low working temperature.
-B-based glass is used. However, the welding glass for gap bonding needs to be made of a material whose working temperature is lower than that of the welding glass for welding the protective plate. Note that the protection plate 17 may be bonded by metal welding using a metal thin film. However, the metal thin film needs to be made of a material with a melting point higher than the working temperature of the gap bonding welding glass 22.

上記実施例は動作ギヤツプ23が基板16の表
面に平行でなく基板16上でヘツド磁路を構成す
る金属軟磁性膜が該ギヤツプを挾んで左右に配置
されているヘツドであるが、ヘツド磁路を構成す
る金属軟磁性膜がギヤツプスペーサ膜と共に基板
表面上に該スペーサ膜を上下に挾んで平行に配置
された構造のヘツドに対しても本発明は摘用可能
である。
In the above embodiment, the operating gap 23 is not parallel to the surface of the substrate 16, but the metal soft magnetic films constituting the head magnetic path on the substrate 16 are arranged on the left and right sides with the gap between them. The present invention is also applicable to a head having a structure in which a metal soft magnetic film constituting the head is arranged in parallel with a gear spacer film on the substrate surface with the spacer film sandwiched between the upper and lower sides.

以上記従した実施例により (1) 上記NiMnO2系酸化物の熱膨張係数が12×
10-6/℃と従来基板に用いていた感光性結晶化
ガラスの10.4×10-6/℃より大きく、保護板溶
着やギヤツプボンデイングにおけるガラス溶着
あるいは金属溶着の際に基板表面からのセンダ
スト膜剥離や基板、センダスト膜、溶着ガラス
層内のクラツク発生を抑え、ヘツド構造の高歩
留り化を安定して実現できた。
According to the following examples, (1) the thermal expansion coefficient of the NiMnO 2- based oxide is 12×
10 -6 /℃, which is larger than the 10.4×10 -6 /℃ of the photosensitive crystallized glass used for conventional substrates, and sendust from the substrate surface during glass welding or metal welding in protective plate welding and gap bonding. By suppressing film peeling and the occurrence of cracks in the substrate, sendust film, and welded glass layer, we were able to stably achieve a high yield of the head structure.

(2) ガラス溶着による保護板溶着、ギヤツプ形成
が可能となりヘツド特性の経時劣化をほとんど
なくすこができた (3) 第4図に示すごとく上記NiMnO2系酸化物は
テープ摺動に対して現在VTRヘツド材である
Mn−Zn単結晶フエライトと同時の摩耗速度を
示し、ヘツド寿命を容易に2000時間以上にまで
延長でき、かつヘツド寿命の余裕分はギヤツプ
深さを浅くすることによつてヘツド出力向上に
寄与されることができた 本発明によればヘツド特性の経時劣化を防止す
るための安定したガラス溶着による保護板溶着や
ギヤツプ形成を可能にできるのでヘツド特性の経
時劣化を防止し安定して高歩留りを維持できるへ
ツド製造を実現できる効果がある。また、テープ
摺動による魔耗速度を従来VTRヘツドコアのMn
−Zn単結晶フエライトと同等にでき、ヘツド寿
命を2000時間以上に延長できる効果もある。
(2) It became possible to weld the protective plate and form a gap by glass welding, and almost eliminate the deterioration of the head characteristics over time. (3) As shown in Figure 4, the NiMnO 2 -based oxide has the current resistance to tape sliding. VTR head material
It exhibits the same wear rate as Mn-Zn single-crystal ferrite, and the head life can be easily extended to over 2000 hours, and the extra head life can be used to improve head output by reducing the gap depth. According to the present invention, it is possible to weld the protective plate and form a gap by stable glass welding in order to prevent deterioration of head characteristics over time, thereby preventing deterioration of head characteristics over time and stably achieving high yields. This has the effect of realizing sustainable head manufacturing. In addition, the Mn of the conventional VTR head core was evaluated to reduce the speed of wear due to tape sliding.
- It can be made to be equivalent to Zn single crystal ferrite, and has the effect of extending head life to over 2000 hours.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の磁気ヘツドの斜視図でAはMn
−Zn単結晶フエライトを用いたフエライトヘツ
ド、Bはセンダスト膜ヘツド、第2図は従来のフ
エライトヘツドとセンダスト膜ヘツドの摩耗特性
を示す特性図、第3図は本発明の磁気ヘツドの実
施例の製造工程を示す斜視図、第4図は本発明ヘ
ツドの摩耗特性を示す特性図である。 1……Mn−Zn単結晶フエライト、2……動作
ギヤツプ、4……巻線窓、5……テープ摺動部、
6……コイル、7……基板、8……センダスト
膜、9……テープ摺動部、10……ギヤツプ、1
1……接着剤、15……基板、16……センダス
ト膜、17……保護板、18……溶着ガラス層、
22……溶着ガラス膜、23……ギヤツプ、24
……テープ摺動部。
Figure 1 is a perspective view of a conventional magnetic head, where A is Mn.
- Ferrite head using Zn single crystal ferrite, B is a sendust film head, Fig. 2 is a characteristic diagram showing the wear characteristics of a conventional ferrite head and a sendust film head, Fig. 3 is an example of the magnetic head of the present invention. FIG. 4 is a perspective view showing the manufacturing process, and a characteristic diagram showing the wear characteristics of the head of the present invention. 1... Mn-Zn single crystal ferrite, 2... Operating gap, 4... Winding window, 5... Tape sliding part,
6... Coil, 7... Substrate, 8... Sendust film, 9... Tape sliding part, 10... Gap, 1
DESCRIPTION OF SYMBOLS 1... Adhesive, 15... Substrate, 16... Sendust film, 17... Protective plate, 18... Welding glass layer,
22...Welded glass film, 23...Gap, 24
...Tape sliding part.

Claims (1)

【特許請求の範囲】 1 薄膜作成装置を用いて非磁性基板上に作成し
た金属軟磁性膜をコア材として用いる磁気ヘツド
においてNiMnO2系酸化物でNaCl型結晶構造を
有するNiMnO2を該基板として用い、かつ金属軟
磁性膜としてセンダスト膜を用いたことを特徴と
する金属軟磁性膜磁気ヘツド。 2 金属軟磁性膜としてCo−M(MはNb、Ta、
Ti、W、Zrなる金属元素)あるいはCo−M1
M2(M1、M2はNb、Ta、Ti、W、Zrなる金属元
素)系非晶質合金膜を用いたことを特徴とする特
許請求範囲第1項に記載された金属軟磁性膜磁気
ヘツド。 3 非磁性基板としてNiMnO2系酸化物で熱間静
水圧プレスを施して焼結したNaCl型結晶構造を
有するNiMnO2を用いたことを特徴とする特許請
求範囲第1項または第2項に記載された金属軟磁
性膜磁気ヘツド。 4 非磁性基板としてNiMnO2系酸化物でAl2O3
を添加したNaCl型結晶構造を有するNiMnO2
用いたことを特徴とする特許請求範囲第1項また
は第2項に記載された金属軟磁性膜磁気ヘツド。 5 非磁性基板としてNiMnO2系酸化物でAl2O3
を添加し、かつ熱間静水圧プレスを施して焼結し
たNaCl型結晶構造を有するNiMnO2を用いたこ
とを特徴とする特許請求範囲第1項または第2項
に記載された金属軟磁性膜磁気ヘツド。
[Claims] 1. In a magnetic head that uses a metal soft magnetic film formed on a non-magnetic substrate using a thin film forming device as a core material, NiMnO 2 which is a NiMnO 2 based oxide and has a NaCl type crystal structure is used as the substrate . A metal soft magnetic film magnetic head characterized in that a sendust film is used as the metal soft magnetic film. 2 Co-M (M is Nb, Ta,
(metallic elements Ti, W, Zr) or Co-M 1
The metal soft magnetic film described in claim 1, characterized in that an M 2 (M 1 and M 2 are metallic elements of Nb, Ta, Ti, W, and Zr) based amorphous alloy film is used. magnetic head. 3. Claims 1 or 2, characterized in that NiMnO 2 having a NaCl-type crystal structure, which is sintered by hot isostatic pressing with a NiMnO 2- based oxide, is used as the nonmagnetic substrate. Metal soft magnetic film magnetic head. 4 Al 2 O 3 with NiMnO 2 oxide as a nonmagnetic substrate
2. A metal soft magnetic film magnetic head according to claim 1 or 2, characterized in that NiMnO 2 having a NaCl-type crystal structure added with NiMnO 2 is used. 5 Al 2 O 3 with NiMnO 2 oxide as a non-magnetic substrate
A metal soft magnetic film according to claim 1 or 2, characterized in that NiMnO 2 having a NaCl type crystal structure is added and sintered by hot isostatic pressing. magnetic head.
JP8962282A 1982-05-28 1982-05-28 KINZOKUNANJISEIMAKUJIKIHETSUDO Expired - Lifetime JPH0248965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8962282A JPH0248965B2 (en) 1982-05-28 1982-05-28 KINZOKUNANJISEIMAKUJIKIHETSUDO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8962282A JPH0248965B2 (en) 1982-05-28 1982-05-28 KINZOKUNANJISEIMAKUJIKIHETSUDO

Publications (2)

Publication Number Publication Date
JPS58208924A JPS58208924A (en) 1983-12-05
JPH0248965B2 true JPH0248965B2 (en) 1990-10-26

Family

ID=13975848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8962282A Expired - Lifetime JPH0248965B2 (en) 1982-05-28 1982-05-28 KINZOKUNANJISEIMAKUJIKIHETSUDO

Country Status (1)

Country Link
JP (1) JPH0248965B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172703A (en) * 1983-03-22 1984-09-29 Hitachi Metals Ltd Substrate material

Also Published As

Publication number Publication date
JPS58208924A (en) 1983-12-05

Similar Documents

Publication Publication Date Title
EP0197532B1 (en) Magnetic head
JPS61172203A (en) Magnetic head
US5247415A (en) Magnetic head having main and auxiliary magnetic paths
JPH0248965B2 (en) KINZOKUNANJISEIMAKUJIKIHETSUDO
JP2933638B2 (en) Manufacturing method of magnetic head
KR0155468B1 (en) Magnetic head and method of fabrication thereof
KR0152601B1 (en) Core of composite magnetic head and the manufacturing method
JP3147420B2 (en) Laminated magnetic head and method of manufacturing the same
JP3055321B2 (en) Magnetic head and manufacturing method
JP3028109B2 (en) Magnetic head
KR100200809B1 (en) Magnetic head and method of manufacturing the same
JP3576574B2 (en) Magnetic head
JPH04241205A (en) Magnetic head
KR940011674B1 (en) Magnetic head
JPH01102713A (en) Magnetic head made of soft magnetic metallic film
JPH06176337A (en) Floating magnetic head
JPH06251332A (en) Thin film magnetic head
JPS6320705A (en) Magnetic erasion head
JPH0673165B2 (en) Method of manufacturing magnetic head
JPH0520636A (en) Thin-film magnetic head
JPH0552563B2 (en)
JPS62145511A (en) Magnetic head
JPH0721510A (en) Magnetic head
JPH08180314A (en) Core thin-film magnetic head
JPH0792900B2 (en) Magnetic head manufacturing method