JPH0247836A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0247836A
JPH0247836A JP20048788A JP20048788A JPH0247836A JP H0247836 A JPH0247836 A JP H0247836A JP 20048788 A JP20048788 A JP 20048788A JP 20048788 A JP20048788 A JP 20048788A JP H0247836 A JPH0247836 A JP H0247836A
Authority
JP
Japan
Prior art keywords
silicon semiconductor
oxygen
semiconductor substrate
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20048788A
Other languages
Japanese (ja)
Inventor
Arata Toyoda
新 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20048788A priority Critical patent/JPH0247836A/en
Publication of JPH0247836A publication Critical patent/JPH0247836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To make it possible to give clean extrinsic gettering action, whose effect is strong and lasting, in addition to intrinsic gettering action by heat- treating a silicon semiconductor substrate, that a polycrystalline silicon semiconductor film containing oxygen supersaturatedly is formed at one face, at a higher temperature than a specific temperature and at a lower temperature, respectively, for a specific time of more. CONSTITUTION:A polycrystalline silicon semiconductor film 2 containing oxygen 3 supersaturatedly is formed at one surface of a silicon semiconductor substrate 1, and the substrate 1 is heat-treated at a temperature higher than 1050 deg.C for thirty minutes or more, and next it is heat-treated at a temperature of 1000 deg.C or less for two hours or more. By this series of heat treatment oxygen precipitated nuclei 6 are grown at a region that interlattice oxygen concentration inside the substrate 1 is high, and next oxygen precipitates 7 grow in an oxygen precipitated necleus 6 region, and this acts as an intrinsic gettering source. Also, after the crystal grain boundary of the film 2 is consumed, stacking faults 8 occur in high density resulting from the growth of the precipitates 7, and these act as an extrinsic gettering source for a long period.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特にゲッタリン
グ源となる欠陥層が形成されたシリコン半導体基板の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a silicon semiconductor substrate on which a defect layer serving as a gettering source is formed.

〔従来の技術〕[Conventional technology]

シリコン半導体基板中に形成した結晶欠陥層によって有
害不純物などをゲッタリングする技術には、欠陥層の形
成方法により大きく分けてイントリンシック・ゲッタリ
ング技術とエクストリンシック・ゲッタリング技術とが
ある。欠陥層の具体的な形成方法としては従来、イント
リンシック・ゲッタリング技術においてはチョクラルス
キー法で引き上げたシリコン単結晶中にもともと過飽和
に含まれる溶存酸素を熱処理によってか析出させ、シリ
コン半導体基板の内部に欠陥層を形成する技術が代表的
である。
Techniques for gettering harmful impurities using a crystal defect layer formed in a silicon semiconductor substrate are broadly divided into intrinsic gettering techniques and extrinsic gettering techniques, depending on the method of forming the defect layer. Conventionally, the specific method for forming a defective layer is to use heat treatment to precipitate dissolved oxygen, which is originally supersaturated in a silicon single crystal pulled by the Czochralski method, to form a silicon semiconductor substrate. A typical technique is to form a defective layer inside.

一方エクトスリンシック・ゲッタリング技術は半導体基
板の裏面側に格子歪を導入するもので、たとえばシリコ
ン半導体基板の裏面に機械的損傷を与えたり、あるいは
シリコン半導体基板の裏面にリンなどの不純物を拡散し
、格子不整合転位網を発生させたり、あるいはアルゴン
などのイオン注入によって格子に損傷を与えたり、ある
いはまた、シリコン半導体基板の裏面にシリコン窒化膜
を成長させ、高温で熱処理することによってシリコン半
導体基板とシリコン窒化膜との界面に歪場を形成するな
どの方法がある。さらにまたシリコン半導体基板の裏面
に多結晶半導体膜を成長させ、この多結晶半導体膜の結
晶粒界をゲッタリング源とする方法もエクストリンシッ
ク・ゲッタリング技術に含まれる。
On the other hand, ectothrinthic gettering technology introduces lattice strain on the backside of a semiconductor substrate, for example by mechanically damaging the backside of a silicon semiconductor substrate or by diffusing impurities such as phosphorus into the backside of a silicon semiconductor substrate. The silicon semiconductor can be grown by generating a lattice-mismatched dislocation network, or by damaging the lattice by implanting ions such as argon, or by growing a silicon nitride film on the backside of the silicon semiconductor substrate and heat-treating it at high temperatures. There are methods such as forming a strain field at the interface between the substrate and the silicon nitride film. Furthermore, extrinsic gettering technology also includes a method in which a polycrystalline semiconductor film is grown on the back surface of a silicon semiconductor substrate and the crystal grain boundaries of this polycrystalline semiconductor film are used as a gettering source.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上述した従来のゲッタリング技術は、たと
えばまずイントリンシック・ゲッタリング技術において
は、酸素析出の機構が極めて多様かつ複雑な要因を含ん
でいるため、酸素析出の完全な制御は非常に困難で、欠
陥層の形成が十分でなかったり、逆に無欠陥であるべき
デバイス活性領域に欠陥が発生したりして、半導体装置
の製造歩留りを低下させるという問題点を持つ。さらに
また、酸素析出が多い場合、格子間酸素濃度が低下する
ことと、酸素析出物の形成に伴い転位が発生することに
よって、シリコン半導体基板の機械的強度は著しく低下
し、半導体装置製造工程中にシリコン半導体基板にスリ
ップが生じ、半導体装置の製造歩留りを低下させるとい
う問題点がある。
However, in the conventional gettering technology described above, for example, in the intrinsic gettering technology, the mechanism of oxygen precipitation includes extremely diverse and complex factors, so it is extremely difficult to completely control oxygen precipitation. There is a problem in that the formation of a defective layer is insufficient or, conversely, defects occur in a device active region that should be defect-free, reducing the manufacturing yield of semiconductor devices. Furthermore, when there is a large amount of oxygen precipitated, the interstitial oxygen concentration decreases and dislocations occur due to the formation of oxygen precipitates, resulting in a significant decrease in the mechanical strength of the silicon semiconductor substrate. Another problem is that slip occurs in the silicon semiconductor substrate, reducing the manufacturing yield of semiconductor devices.

一方エクストリンシック・ゲッタリング技術においては
、シリコン半導体基板の変形や汚染を伴うことが多く、
また欠陥層の幅が小さいため、般的にイントリンシック
・ゲッタリング技術よりは効果が小さく、さらにシリコ
ン半導体基板の裏面に機械的損傷を与えたり、不純物拡
散により格子不整合転位網を発生させたり、イオン注入
により格子に損傷を与えるなどして形成した欠陥層は熱
処理によって容易にア丘−ル・アウトされてしま・い、
またシリコン半導体基板の裏面にシリコン窒化膜や多結
晶半導体膜を成長させる方法では、エツチングや酸化な
どのプロセスを経ることによって消費されてしまい、い
ずれも半導体装置製造工程中でゲッタリング効果が長続
きしないという問題点があった。
On the other hand, extrinsic gettering technology often involves deformation and contamination of the silicon semiconductor substrate.
In addition, because the width of the defect layer is small, it is generally less effective than intrinsic gettering technology, and it also causes mechanical damage to the backside of the silicon semiconductor substrate and generates a lattice-mismatched dislocation network due to impurity diffusion. The defective layer formed by damaging the lattice through ion implantation is easily removed by heat treatment.
Furthermore, in the method of growing a silicon nitride film or a polycrystalline semiconductor film on the back side of a silicon semiconductor substrate, the gettering effect does not last long during the semiconductor device manufacturing process because the film is consumed through processes such as etching and oxidation. There was a problem.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、シリコン半導体基板
の一方の表面に過飽和に酸素を含んだ多結晶シリコン半
導体膜を形成する工程と、該シリコン半導体基板を10
50℃より高い温度で30分間以上熱処理する工程と、
該シリコン半導体基板を1000℃より低い温度で2時
間以上熱処理する工程と、半導体基板の他方の表面に半
導体素子を形成する工程とを有している。
The method for manufacturing a semiconductor device of the present invention includes the steps of forming a polycrystalline silicon semiconductor film containing supersaturated oxygen on one surface of a silicon semiconductor substrate, and
a step of heat treatment at a temperature higher than 50°C for 30 minutes or more;
The method includes a step of heat-treating the silicon semiconductor substrate at a temperature lower than 1000° C. for 2 hours or more, and a step of forming a semiconductor element on the other surface of the semiconductor substrate.

〔実施例〕〔Example〕

次に本発明の一実施例について図面を参照して順に説明
する。
Next, one embodiment of the present invention will be described in order with reference to the drawings.

まず第1図に示すように1.4X10”cm−”の格子
間酸素を含んだ、直径125mm、厚さ600um。
First, as shown in FIG. 1, it is 125 mm in diameter and 600 um in thickness, and contains 1.4 x 10 cm of interstitial oxygen.

面方位(100)のシリコン半導体基板lの一方の表面
にシラン(SiH+)を用いた通常の化学気相成長法(
CVD法)によって厚さ10μmの多結晶シリコン半導
体膜2を形成し、次いで多結晶シリコン半導体膜2ヘエ
ネルギー70KeV。
A conventional chemical vapor deposition method (100) using silane (SiH
A polycrystalline silicon semiconductor film 2 with a thickness of 10 μm is formed by CVD method, and then an energy of 70 KeV is applied to the polycrystalline silicon semiconductor film 2.

ドーズ量lX1013cm”で酸素3をイオン注入する
。なお第1図においては格子間酸素は省略しである。
Oxygen 3 is ion-implanted at a dose of 1×10 13 cm. In FIG. 1, interstitial oxygen is omitted.

次いで第2図に示すようにシリコン半導体基板1を、5
%の酸素を含む窒素雰囲気中で1200℃、2時間の熱
処理を施し、これによってシリコン半導体基板1の内部
にほぼ一様に分布している格子間酸素4のシリコン半導
体基板1の表面からの外部拡散5を起こさせるが、この
際、多結晶シリコン半導体膜2中の酸素3は格子間へ放
出されており、多結晶シリコン半導体膜2中の格子間酸
素濃度が高いため、こちらの表面側からは酸素の外部拡
散5は起きない。したがってシリコン半導体基板1中の
格子間酸素4は多結晶シリコン半導体膜2の形成されて
いない方の表面付近だけが濃度が低くなる。
Next, as shown in FIG. 2, the silicon semiconductor substrate 1 is
Heat treatment is performed at 1200° C. for 2 hours in a nitrogen atmosphere containing % oxygen, and as a result, interstitial oxygen 4, which is almost uniformly distributed inside the silicon semiconductor substrate 1, is removed from the surface of the silicon semiconductor substrate 1. Diffusion 5 is caused, but at this time, oxygen 3 in the polycrystalline silicon semiconductor film 2 is released into the interstitial space, and since the interstitial oxygen concentration in the polycrystalline silicon semiconductor film 2 is high, the oxygen 3 in the polycrystalline silicon semiconductor film 2 is released from this surface side. In this case, external diffusion 5 of oxygen does not occur. Therefore, the concentration of interstitial oxygen 4 in silicon semiconductor substrate 1 is low only near the surface where polycrystalline silicon semiconductor film 2 is not formed.

続いてシリコン半導体基板1を650℃、4時間の熱処
理を施し、第3図に示すようにシリコン半導体基板l内
部の格子間酸素濃度の高い領域に酸素析出核6を成長さ
せる。次にこのシリコン半導体基板1を乾燥酸素雰囲気
中で1000℃、16時間の熱処理を施すと、第4図に
示すように酸素析出核6が形成されている領域に酸素析
出物7が成長し、これがイントリンシック・ゲッタリン
グ源として作用する。
Subsequently, the silicon semiconductor substrate 1 is subjected to a heat treatment at 650° C. for 4 hours, and as shown in FIG. 3, oxygen precipitate nuclei 6 are grown in a region with a high interstitial oxygen concentration inside the silicon semiconductor substrate 1. Next, when this silicon semiconductor substrate 1 is subjected to heat treatment at 1000° C. for 16 hours in a dry oxygen atmosphere, oxygen precipitates 7 grow in the region where oxygen precipitate nuclei 6 are formed, as shown in FIG. This acts as an intrinsic gettering source.

また多結晶シリコン半導体膜2の結晶粒界はエクストリ
ンシック・ゲッタリング源として作用する。なおこの多
結晶シリコン半導体膜2は酸化工程を繰り返すことによ
って消費されるが、すへてか消費された後は、この表面
に高密度に依存していた酸素析出物7の成長に起因して
、第5図に示すように積層欠陥8が高密度に発生し、こ
れが強力なエクストリンシック・ゲッタリング源として
作用する。
Further, the crystal grain boundaries of the polycrystalline silicon semiconductor film 2 act as an extrinsic gettering source. Note that this polycrystalline silicon semiconductor film 2 is consumed by repeating the oxidation process, but after it is completely consumed, due to the growth of oxygen precipitates 7 that are highly concentrated on this surface. , as shown in FIG. 5, stacking faults 8 occur in high density and act as a strong extrinsic gettering source.

以上のように作成したシリコン半導体基板は、従来のゲ
ッタリング技術を用いたものと異なり、酸化処理などに
よってゲッタリング源であった多結晶シリコン半導体膜
がすべて消費されてしまった後でも、表面まで露出した
内部欠陥に起因し成長する積層欠陥に基づくゲッタリン
グ作用が働く。
The silicon semiconductor substrate created as described above differs from those using conventional gettering technology in that even after the polycrystalline silicon semiconductor film that was the gettering source has been completely consumed by oxidation treatment, A gettering effect occurs based on stacking faults that grow due to exposed internal defects.

このゲッタリング源は無尽蔵といってよく、半導体装置
製造工程中に7エール・アウトされたり消費されつくし
てしまうことはない。
This gettering source can be said to be inexhaustible, and will not be exhausted or consumed during the semiconductor device manufacturing process.

また本発明の半導体装置の製造方法は有害不純物などに
よる汚染の心配もない。さらに本発明はイントリンシッ
ク・ゲッタリング技術とエクストリンシック技術との相
乗効果による極めて強力なゲッタリング作用が得られる
ため、無欠陥であるべき領域近くまで過剰の内部欠陥の
形成させるような危険をおかす必要はない。
Furthermore, the method of manufacturing a semiconductor device of the present invention eliminates the risk of contamination by harmful impurities. Furthermore, since the present invention provides an extremely strong gettering effect due to the synergistic effect of the intrinsic gettering technology and the extrinsic technology, there is a risk that excessive internal defects will be formed near areas that should be defect-free. There's no need.

これらのことから、本発明の半導体装置の製造方法は、
信頼性の高い半導体装置を高歩留まり製造するのに極め
て有効であるといえる。
From these facts, the method for manufacturing a semiconductor device of the present invention is as follows:
It can be said that this method is extremely effective in manufacturing highly reliable semiconductor devices at a high yield.

なお、半導体素子は、シリコン半導体基板1の多結晶シ
リコン半導体膜2が形成されていない主面側に形成され
る。
Note that the semiconductor element is formed on the main surface side of the silicon semiconductor substrate 1 where the polycrystalline silicon semiconductor film 2 is not formed.

第6図、第7図は本発明の他の実施例を説明するための
縦断面図である。すなわち、本発明の一実施例において
は、シリコン半導体基板lの表面上に多結晶シリコン半
導体膜2を成長させる際、シランガスから気相成長させ
る通常の方法によっていたが、本実施例としては、5パ
ーセントのN20ガスを含むシランガスを用いてシリコ
ン半導体基板9の表面上に多結晶シリコン半導体膜10
を成長させる。この多結晶シリコン半導体膜10には多
量の酸素11が含まれており、シリコン半導体基板9を
1200℃、乾燥酸素中で熱処理することにより、これ
らの酸素11は格子間に放出され、多結晶シリコン半導
体膜lO中の格子間酸素濃度が高くなるとともに第7図
のようにシリコン半導体基板9中の格子間酸素12は多
結晶シリコン半導体膜10が形成されていない側の表面
からのみ外部拡散13を起こす。
FIGS. 6 and 7 are longitudinal cross-sectional views for explaining other embodiments of the present invention. That is, in one embodiment of the present invention, when growing the polycrystalline silicon semiconductor film 2 on the surface of the silicon semiconductor substrate l, the usual method of vapor phase growth from silane gas was used. A polycrystalline silicon semiconductor film 10 is formed on the surface of a silicon semiconductor substrate 9 using silane gas containing 10% N20 gas.
grow. This polycrystalline silicon semiconductor film 10 contains a large amount of oxygen 11, and by heat-treating the silicon semiconductor substrate 9 at 1200° C. in dry oxygen, these oxygens 11 are released between the lattices and the polycrystalline silicon As the interstitial oxygen concentration in the semiconductor film 10 increases, as shown in FIG. wake up

この実施例によれば、直接、酸素を含んだ多結晶シリコ
ン半導体膜を成長するため、イオン注入工程を省略でき
、コスト・時間を大幅に削減できるという利点がある。
According to this embodiment, since the polycrystalline silicon semiconductor film containing oxygen is directly grown, the ion implantation process can be omitted, which has the advantage of significantly reducing cost and time.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明はシリコン半導体基板の一方
の表面に過飽和に酸素を含んだ多結晶シリコン半導体膜
を形成する工程と、該シリコン半導体基板を1050℃
より高い温度で30分間以上熱処理する工程と、該シリ
コン半導体基板を1000℃より低い温度で2時間以上
熱処理する工程とを有しており、これによってシリコン
半導体基板に、イントリンシック・ゲッタリング作用に
加えて、効果が強力で長持ちする、クリーンなエクスト
リンシック・ゲッタリング作用を与えることができる効
果がある。
As explained above, the present invention includes the steps of forming a polycrystalline silicon semiconductor film containing supersaturated oxygen on one surface of a silicon semiconductor substrate, and heating the silicon semiconductor substrate at 1050°C.
The method includes a step of heat-treating the silicon semiconductor substrate at a higher temperature for 30 minutes or more, and a step of heat-treating the silicon semiconductor substrate at a temperature lower than 1000° C. for 2 hours or more, thereby causing the silicon semiconductor substrate to undergo an intrinsic gettering effect. In addition, it has the effect of providing a clean extrinsic gettering effect that is strong and long-lasting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は本発明の一実施例の主な工程を示す縦
断面図、第6図、第7図は本発明の他の実施例の主な工
程を示す縦断面図である。 ■・・・・・・シリコン半導体基板、2・・・・・・多
結晶シリコン半導体膜、3・・・・・・酸素、4・・・
・・・格子間酸素、5・・・・・・外部拡散、6・・・
・・・酸素析出核、7・・・・・・酸素析出物、8・・
・・・・積層欠陥、9・・・・・・シリコン半導体基板
、10・・・・・・多結晶シリコン半導体膜、11・・
・・・・酸素、12・・・・・・格子酸素、13・・・
・・・外部拡散。 代理人 弁理士  内 原   晋 翁 回 筋 旧 図 筋 図 第 り 巳 第 図 筋 回
FIGS. 1 to 5 are longitudinal sectional views showing the main steps of one embodiment of the present invention, and FIGS. 6 and 7 are longitudinal sectional views showing the main steps of another embodiment of the invention. . ■...Silicon semiconductor substrate, 2...Polycrystalline silicon semiconductor film, 3...Oxygen, 4...
...Interstitial oxygen, 5...External diffusion, 6...
...Oxygen precipitate nucleus, 7...Oxygen precipitate, 8...
...Stacking fault, 9...Silicon semiconductor substrate, 10...Polycrystalline silicon semiconductor film, 11...
...Oxygen, 12... Lattice oxygen, 13...
...External diffusion. Agent Patent Attorney Shino Uchihara

Claims (1)

【特許請求の範囲】[Claims] シリコン半導体基板の一方の表面に過飽和に酸素を含ん
だ多結晶シリコン半導体膜を形成する工程と、該シリコ
ン半導体基板を1050℃より高い温度で30分間以上
熱処理する工程と、該シリコン半導体基板を1000℃
より低い温度で2時間以上熱処理する工程と、前記シリ
コン半導体基板の他方の表面に半導体素子形成する工程
とを有する半導体装置の製造方法。
a step of forming a polycrystalline silicon semiconductor film containing supersaturated oxygen on one surface of a silicon semiconductor substrate; a step of heat-treating the silicon semiconductor substrate at a temperature higher than 1050° C. for 30 minutes or more; ℃
A method for manufacturing a semiconductor device, comprising the steps of performing heat treatment at a lower temperature for 2 hours or more, and forming a semiconductor element on the other surface of the silicon semiconductor substrate.
JP20048788A 1988-08-10 1988-08-10 Manufacture of semiconductor device Pending JPH0247836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20048788A JPH0247836A (en) 1988-08-10 1988-08-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20048788A JPH0247836A (en) 1988-08-10 1988-08-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0247836A true JPH0247836A (en) 1990-02-16

Family

ID=16425133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20048788A Pending JPH0247836A (en) 1988-08-10 1988-08-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0247836A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529324A (en) * 1991-07-22 1993-02-05 Mitsubishi Materials Corp Manufacture of silicon wafer
EP0635879A2 (en) * 1993-07-22 1995-01-25 Kabushiki Kaisha Toshiba Semiconductor silicon wafer and process for producing it
US5894037A (en) * 1995-11-22 1999-04-13 Nec Corporation Silicon semiconductor substrate and method of fabricating the same
JP2005311126A (en) * 2004-04-22 2005-11-04 Shin Etsu Handotai Co Ltd P-type silicon single-crystal wafer and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529324A (en) * 1991-07-22 1993-02-05 Mitsubishi Materials Corp Manufacture of silicon wafer
EP0635879A2 (en) * 1993-07-22 1995-01-25 Kabushiki Kaisha Toshiba Semiconductor silicon wafer and process for producing it
EP0635879A3 (en) * 1993-07-22 1996-10-23 Toshiba Kk Semiconductor silicon wafer and process for producing it.
US5738942A (en) * 1993-07-22 1998-04-14 Kabushiki Kaisha Toshiba Semiconductor silicon wafer and process for producing it
US5894037A (en) * 1995-11-22 1999-04-13 Nec Corporation Silicon semiconductor substrate and method of fabricating the same
JP2005311126A (en) * 2004-04-22 2005-11-04 Shin Etsu Handotai Co Ltd P-type silicon single-crystal wafer and its manufacturing method

Similar Documents

Publication Publication Date Title
JP3022044B2 (en) Method for manufacturing silicon wafer and silicon wafer
KR100625822B1 (en) Silicon wafer and process for producing it
JPH0247836A (en) Manufacture of semiconductor device
JPH10144698A (en) Silicon wafer and its manufacture
JP2734034B2 (en) Processing method of silicon semiconductor substrate
JP3022045B2 (en) Method of manufacturing silicon wafer and silicon wafer
JPH05235005A (en) Semiconductor substrate and manufacture thereof
JPH11214322A (en) Manufacturing for silicon semiconductor substrate
JP4647732B2 (en) Manufacturing method of P / P-epitaxial wafer
JPS6326541B2 (en)
JP3294722B2 (en) Method for manufacturing silicon wafer and silicon wafer
JP3922674B2 (en) Silicon wafer manufacturing method
JPS63142822A (en) Manufacture of semiconductor device
JPH0616498B2 (en) Method for manufacturing epitaxial wafer
JPH0281423A (en) Manufacture of soi substrate
JP4356039B2 (en) Epitaxial silicon wafer manufacturing method
JPS62219529A (en) Manufacture of semiconductor device
JPH1187258A (en) Manufacture of semiconductor device
JPS60176241A (en) Manufacture of semiconductor substrate
JPH03293718A (en) Processing method for silicon single crystalline substrate
JPH04184918A (en) Impurities deffusion method on insulating substrate
CN115135818A (en) Method for manufacturing semiconductor silicon wafer
JPS63253632A (en) Manufacture of semiconductor substrate
JPH0294443A (en) Manufacture of semiconductor device
JPS6062111A (en) Manufacture of semiconductor substrate