JPH0243289A - Charcoal briquette - Google Patents

Charcoal briquette

Info

Publication number
JPH0243289A
JPH0243289A JP14387589A JP14387589A JPH0243289A JP H0243289 A JPH0243289 A JP H0243289A JP 14387589 A JP14387589 A JP 14387589A JP 14387589 A JP14387589 A JP 14387589A JP H0243289 A JPH0243289 A JP H0243289A
Authority
JP
Japan
Prior art keywords
charcoal
roasting
wood
ceramic particles
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14387589A
Other languages
Japanese (ja)
Inventor
Kenji Arai
荒井賢治
Kunihiko Komiya
小宮邦彦
Yasutaka Nakamichi
中道康隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANEBO KUJI KK
Kanebo Ltd
Original Assignee
KANEBO KUJI KK
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANEBO KUJI KK, Kanebo Ltd filed Critical KANEBO KUJI KK
Priority to JP14387589A priority Critical patent/JPH0243289A/en
Publication of JPH0243289A publication Critical patent/JPH0243289A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To provide the title material with capability of effectively generating far-infrared rays to make it useful as, e.g., a heat source for a coffee roaster by incorporating ceramic particles consisting of an inorganic compound into a charcoal comprising fine pieces of charred wood. CONSTITUTION:Fine pieces of wood having a particle diameter of 0.5-8.0mm, comprising the sawdust, chipper dust, cut bark, sander dust, cutter dust, etc., of wood containing much tannin, are mixed with 0.5-10.0wt.% ceramic particles consisting of an inorganic compound selected from alumina, zirconia, and magnesia each having a purity of 95% or higher, and if necessary, an adhesive of, e.g., vinyl chloride base or polyvinyl alcohol base. This mixture is molded, dried to a moisture content of about 16%, and heated at 200-250 deg.C under a pressure of 25-28ton/m<2> to form a carbonaceous material, which is baked into a hard charcoal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は遠赤外線を効果的に発生する成型木炭に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to shaped charcoal that effectively generates far-infrared rays.

(従来の技術) 従来、所謂備長炭と称せられる硬度の極めて高く燃焼性
に優れた白炭があり、この木炭は、所謂炭焼焙煎コーヒ
ーの焙煎機の熱源として、珍重されている。
(Prior Art) Conventionally, there is white charcoal called Bincho charcoal, which has extremely high hardness and excellent combustibility, and this charcoal is prized as a heat source for so-called charcoal-roasted coffee roasting machines.

これは、焙煎機の熱源として用いられるオイル、ガス、
電力、炭、薪などに比べ殊に味と香りの優れたコーヒー
を焙煎し得る熱源であるためで、備長炭は単にコーヒー
焙煎用に使用出来るばかり、でなく、小麦、大麦、大豆
等穀類の焙煎にも同様に利用されるし、更には、焙煎以
外の用途として、古来ウナギの7I焼用に欠くべからざ
る燃料として良く知られるものである。
This is the oil, gas, and
This is because Bincho charcoal is a heat source that can roast coffee with a particularly superior taste and aroma compared to electricity, charcoal, firewood, etc. Bincho charcoal can be used not only for roasting coffee, but also for roasting wheat, barley, soybeans, etc. It is similarly used for roasting grains, and is also well known as an indispensable fuel for grilling eel since ancient times for purposes other than roasting.

所で、この備長炭は製造するに際し二つの重要な条件が
必要とされる。即ち、一つには耐火性の極めて高い岩石
及び粘土を使用して窯を築く必要のあること、二つには
炭材として必ずウバメガシを使用しなければならないこ
とである。このウバメガシは肩囲、紀州の南部、室戸、
足摺岬とか暖地の海岸・生地に生育している。しかし、
ウバメガシの生育している所は地勢急峻な痩せ地が多く
、産出量も決して多くはない。
By the way, two important conditions are required when producing Binchotan charcoal. That is, one reason is that the kiln must be constructed using rock and clay with extremely high fire resistance, and secondly, Ubamegashi must be used as the charcoal material. This Ubamegashi has shoulder circumference, southern Kishu, Muroto,
It grows on the coasts and fabrics of warm regions such as Cape Ashizuri. but,
Most of the places where Ubamegashi grows are on steep, poor land, and the production is not large at all.

従ってこれより製造される備長炭については価格も高く
、これをコーヒーの焙煎に使用する場合、その燃料費の
全体に占める割合たるや極めて大きいものがあった。
Therefore, the price of Bincho charcoal produced from this charcoal was high, and when it was used for roasting coffee, it accounted for an extremely large portion of the total fuel cost.

このため製紙工程で大量に排出される製紙スラッチを利
用して成型木炭を製造する方法が特公昭5B−2935
1号公報に記載されている。また、特公昭55−384
00号公報にはぜオライドを混合した煉炭が開示されて
おり、かかる煉炭によれば、ゼオライトの吸着機能、イ
オン交換機能を用いて燃焼生成物の二硫化炭素などの悪
臭を吸着し環境悪化を防止することができる。
For this reason, a method for producing shaped charcoal using papermaking sludge, which is produced in large quantities during the papermaking process, was proposed in Japanese Patent Publication No. 5B-2935.
It is described in Publication No. 1. In addition, special public service 55-384
Publication No. 00 discloses a briquette mixed with zeolide, and this briquette uses the adsorption function and ion exchange function of zeolite to adsorb bad odors such as carbon disulfide, which is a combustion product, thereby reducing environmental deterioration. It can be prevented.

(発明が解決しようとする問題点) しかしながら、前者の成型木炭では木炭の組織自身がゆ
るいため、燃焼速度が早く、かつ砕は易い。
(Problems to be Solved by the Invention) However, in the former type of shaped charcoal, the charcoal structure itself is loose, so the burning rate is fast and it is easily crushed.

このため備長炭に匹敵する燃焼性は得られない。For this reason, combustibility comparable to Bincho charcoal cannot be obtained.

また、ゼオライトを混入した煉炭では、環境悪化防止効
果は得られるものの、燃焼性や食品等に対する加熱性が
悪い。
Furthermore, although zeolite-mixed briquettes have the effect of preventing environmental deterioration, they have poor flammability and heating properties for foods and the like.

本発明者らはかかる事態に着目しa意研究の末、遂に本
発明に到達したものである。
The present inventors paid attention to this situation and, after extensive research, finally arrived at the present invention.

即ち、本発明は備長炭と略々間等の品質を有しながら価
格的に極めて低コストの高品質本脚を提供するものであ
る0本発明の他の目的は使用されるセラミックス即ち純
度95%以上のアルミナ、ジルコニア、マグネシアから
遠赤外線の放射が極めて効率的に行なわれ、これにより
コーヒー豆や小麦、大麦、大豆等穀物類の焙煎或はウナ
ギの蒲焼等の食品に対し、効果的な加熱即ち、加熱せら
れる材料の内部組織に対し、輻射線である遠赤外線の放
射が直接行なわれる結果、該材料の表面が必要以上に焦
げ過ぎることもなく、適度の色、香り、形状を以て焼き
上げることのできる木炭を提供するものである。
That is, the present invention provides a high-quality main base that has a quality that is almost on par with Bincho charcoal and is extremely low in price.Another object of the present invention is to improve the quality of the ceramics used, that is, the purity of 95%. % or more of alumina, zirconia, and magnesia, which radiates far-infrared rays extremely efficiently, making it effective for roasting grains such as coffee beans, wheat, barley, and soybeans, and for foods such as broiled eel. In other words, far-infrared rays are radiated directly to the internal structure of the material to be heated. As a result, the surface of the material does not burn unnecessarily and retains the appropriate color, aroma, and shape. It provides charcoal that can be used for burning.

(問題点を解決するための手段) 本発明は、粒径0.5〜8.0 m mの炭焼された微
小木片よりなる木炭であって、純度95%以上のアルミ
ナ、ジルコニア、マグネシアより選ばれた無機化合物か
らなるセラミックス粒子を0.5重重%以上、1oi1
1%未満含有することを特徴とする成型木炭である。
(Means for Solving the Problems) The present invention provides charcoal made of charcoalized microscopic wood chips with a particle size of 0.5 to 8.0 mm, which is selected from alumina, zirconia, and magnesia with a purity of 95% or more. 0.5% by weight or more of ceramic particles made of inorganic compounds, 1oi1
It is a shaped charcoal characterized by containing less than 1%.

本発明で用いる微小木片は、必ずしも前記ウバメガシ若
しくはカシ類に依ることはなく、通常の製材工場から副
産物として産生ずるところのオガクズで良い。しかしな
がら好ましくは一般にタンニンを多く含む所の木材即ち
、クヌギ、コナラ、ミズナラ、カシ類の製材の結果産生
されたオガクズ若しくは微小木片が良質の炭を作る。そ
の他カエデ、トネリコ、リョウブ、ヤチダモ、マテバシ
イ、ツバキ、サザンカ等の本来通常の炭焼方法の木炭の
原料米から生じたオガクズ若しくは微小木片からも良質
の炭を生成せしめることについては論を待たぬところで
あるが必ずしもこれらのものに限定されるものではない
、前記のカシ、クヌギを始めとする各種木材はいずれも
広葉樹であるが本発明にて適用される樹種としては広葉
樹、針葉樹のいずれであってもよい、また微小木片とし
ては前記オガクズの他チッパー屑、カントバーク、サン
ダー屑、カッター屑など含水率50%以下のものならば
いずれも使用できる。
The small pieces of wood used in the present invention do not necessarily depend on the above-mentioned ubame oak or oaks, but may be sawdust produced as a by-product from ordinary sawmills. Preferably, however, sawdust or fine wood chips produced as a result of lumbering of woods that are generally high in tannins, such as oak, Quercus, Quercus, and oak, will produce good quality charcoal. It goes without saying that high-quality charcoal can also be produced from sawdust or minute wood chips produced from the raw material rice for charcoal that is originally used in ordinary charcoal burning methods, such as maple, ash, rhododendron, yachidamo, matebashi, camellia, and sasanqua. However, the above-mentioned oak, sawtooth oak, and other various woods are all broad-leaved trees, but the tree species applicable to the present invention include both broad-leaved trees and coniferous trees. In addition to the above-mentioned sawdust, any material with a moisture content of 50% or less, such as chipper scraps, cant bark, sander scraps, and cutter scraps, can be used as fine wood chips.

かかる木片はその粒径、即ち長辺の長さが0.5〜8.
0 m mの範囲にあることが必要で、かかる範囲を外
れては、加熱加圧して成型する際に十分な硬さ、緻密度
が得られず、脆い炭材しか得られない。
Such wood chips have a grain size, that is, a long side length of 0.5 to 8.
It is necessary that the carbon material is in a range of 0 mm; if it is outside this range, sufficient hardness and density cannot be obtained when molding by heating and pressurizing, and only a brittle carbon material can be obtained.

次に、セラミック粒子に分類されるものとしては、酸化
物系セラミックス、非酸化物系セラミ。
Next, ceramic particles are classified as oxide ceramics and non-oxide ceramics.

クス、非金属、金属、合金、結晶等が挙げられ、例えば
、酸化物系セラミックスとしてはアルミナ(A120s
 )系、マグネシア(MgO)系、ジルコニア(ZrO
z)系の他、酸化チタン(T i O□)、二酸化ケイ
素(SiO□)、酸化クロム(crzoz)  フェラ
イト(Fe○2Fesoa)、スピネル(M g O,
A ex Os )セリウム(CaO□)、バリウム(
B a O)等があり、炭化物系セラミックスとしては
、炭化ホウ素(84G) 、炭化ケイ素(S i C)
 、炭化チタン(TiC)、炭化モリブデン(MoC)
、炭化タングステン(WC)等があり、窒化物系セラミ
ックスとしては、窒化ホウ素(BN)、窒化アルミ(A
IN)、窒化ケイ素(Six Na )%窒化ジルコン
(ZrN)等があり、非金属としては炭素(C)グラフ
ァイトがあり、金属としてはタンゲステン(W)、モリ
ブデン(Mo) 、バナジウム(V)、白金(P t)
 、タンタル(Ta)、マンガン(Mn)、ニッケル(
Ni)、酸化銅(Cu=O)、酸化鉄(Fe!o3)が
あり、合金としてはニクロム、カンタル、ステンレス、
アルメルがあり、また、結晶としては雲母、蛍石、方解
石、明ばん、水晶等が有る。
Examples of oxide ceramics include alumina (A120s), non-metals, metals, alloys, crystals, etc.
) type, magnesia (MgO) type, zirconia (ZrO) type
z) system, titanium oxide (T i O□), silicon dioxide (SiO□), chromium oxide (crzoz), ferrite (Fe○2Fesoa), spinel (M g O,
A ex Os ) cerium (CaO□), barium (
Examples of carbide ceramics include boron carbide (84G) and silicon carbide (S i C).
, titanium carbide (TiC), molybdenum carbide (MoC)
, tungsten carbide (WC), etc. Nitride-based ceramics include boron nitride (BN), aluminum nitride (A
IN), silicon nitride (SixNa)% zirconium nitride (ZrN), etc. Nonmetals include carbon (C) graphite, and metals include tungsten (W), molybdenum (Mo), vanadium (V), and platinum. (Pt)
, tantalum (Ta), manganese (Mn), nickel (
Ni), copper oxide (Cu=O), iron oxide (Fe!o3), and alloys include nichrome, kanthal, stainless steel,
There is alumel, and crystals include mica, fluorite, calcite, alum, and quartz.

これらのうち、特に有用な遠赤外線放射特性を有するセ
ラミックスとしては、アルミナ系、マグネシア系、ジル
コニア系があり例えばアルミナ系ではアルミナ、ムライ
ト、マグネシア系ではマグネシア、コージェライト(2
MaOH2A1x Os・5 S i Of )ジルコ
ニア系ではジルコンサンド(ZrO,ZrO,・5iO
z )等が挙げられる。而して、本発明ではかかる特定
のセラミックスを用いることが必要である。また、以上
の群から選ばれた複数のものを混合使用することも有効
であり、更に、これらと他のセラミックス(例えば炭化
物系セラミックス)とを混合使用することも有効である
。かかるセラミックス粒子の粒径については、木炭の成
型に際し作業の行ない易い程度のものであれば良く、2
0μ以下、好ましくは5〜10μ程度のものが使用しや
すい。
Among these, ceramics with particularly useful far-infrared radiation properties include alumina, magnesia, and zirconia. For example, alumina and mullite, magnesia and cordierite (
MaOH2A1xOs・5SiOf) In the zirconia system, zircon sand (ZrO, ZrO, ・5iO
z) etc. Therefore, in the present invention, it is necessary to use such specific ceramics. It is also effective to use a mixture of a plurality of materials selected from the above group, and it is also effective to use a mixture of these and other ceramics (for example, carbide ceramics). The particle size of such ceramic particles may be as long as it is easy to work with when molding charcoal;
A material having a diameter of 0 μ or less, preferably about 5 to 10 μ is easy to use.

次に、該成型木炭中に含存するセラミックスの含打率は
0.5重量%以上10.0重量%未満が適当であるが、
更に好ましくは2重量%〜8重看%が良い、0.5重量
%未満であると遠赤外線の放射量が不十分であり、逆に
10.0重量%以上となると該木炭の全体としての発熱
量が不足である。
Next, it is appropriate that the impact percentage of the ceramics contained in the molded charcoal is 0.5% by weight or more and less than 10.0% by weight.
More preferably, the amount is 2% to 8% by weight. If it is less than 0.5% by weight, the amount of far-infrared rays emitted is insufficient, and if it is 10.0% by weight or more, the charcoal as a whole The amount of heat generated is insufficient.

セラミックス粒子は、木炭中に均一に分散されているこ
とが好ましく、微小木片と必要に応じ塩化ビニール系や
ポバール系等の接着剤とを混合して成型工程に供する際
、添加混合するとよい。又、微小木片、接着剤、セラミ
ック粒子を混和した混合物は、含水率が16%程度とな
るまで乾燥せしめた後、200〜250℃、25〜28
トン/ m を程度で加熱加圧して炭材を形成し、これ
を白炭として焼き上げ成型木炭となすとよい。
The ceramic particles are preferably uniformly dispersed in the charcoal, and may be added and mixed when the fine wood chips are mixed with an adhesive such as vinyl chloride or poval as required and subjected to a molding process. In addition, the mixture of small wood chips, adhesive, and ceramic particles was dried until the moisture content was about 16%, and then heated at 200-250°C and 25-28°C.
It is preferable to form a charcoal material by heating and pressurizing it at a rate of about 100,000 tons/m2, and then burn it as white charcoal to form shaped charcoal.

以上の如き成型木炭を用いて、例えばコーヒー豆を焙煎
する際には、網目状回転ドラムにコーヒー豆を充填し本
成型木炭より発生する遠赤外線を直・接照射すればよい
For example, when roasting coffee beans using the shaped charcoal as described above, it is sufficient to fill a mesh-like rotating drum with coffee beans and directly irradiate the drum with far-infrared rays generated by the shaped charcoal.

(作用) 電磁波の一種である赤外線は物体内部への浸透する力が
強く、内部加熱方式の加熱方法として極めて効率が良く
、加熱や乾燥に利用できるものである。
(Function) Infrared rays, which are a type of electromagnetic waves, have a strong ability to penetrate into the interior of objects, and are extremely efficient as an internal heating method, and can be used for heating and drying.

しかしながら、食品の乾燥に利用できる赤外線としては
限定され、水やコーヒー豆等の多くの高分子化合物の分
子運動領域と一致する波長10μm以上の遠赤外線が、
食品を内部より加熱することのできるものである。
However, infrared rays that can be used for drying food are limited, and far infrared rays with a wavelength of 10 μm or more, which corresponds to the molecular motion range of many polymer compounds such as water and coffee beans, are limited.
It is capable of heating food from the inside.

本発明の木炭中に存在する特定のセラミックス粒子は、
前記遠赤外線を掻めて効率的に放射し、食品等に理想的
な加熱を施す。
The specific ceramic particles present in the charcoal of the present invention are:
The far-infrared rays are absorbed and efficiently radiated to ideally heat foods, etc.

(実施例) 〔実施例1〕 通常の製材工場より入手した広葉樹および針葉用よりな
るオガクズの100kgに対しセラミックスとしてアル
ミナ系セラミックス(F I RNl、10μm、昭和
電工製)を所定!混和した後、ロータリードライヤー(
To−80型、高橋製作所製)にて含水率16%まで乾
燥を行ない、成型機(To−80型、高橋製作所製)に
て直径50mm長さ500mm空孔径10mmの製炭用
の筒状吻に加熱加圧して成型した。
(Example) [Example 1] Alumina-based ceramics (F I RNl, 10 μm, manufactured by Showa Denko) were specified as the ceramic for 100 kg of sawdust made of hardwood and softwood obtained from a normal sawmill! After mixing, use a rotary dryer (
Dry to a moisture content of 16% using a To-80 model (manufactured by Takahashi Seisakusho), and use a molding machine (To-80 model, manufactured by Takahashi Seisakusho) to form a cylindrical snout with a diameter of 50 mm, a length of 500 mm, and a pore diameter of 10 mm. It was molded by heating and pressurizing.

この筒状成形品を炭材として用い白炭がま(吉田がま)
にて白炭として焼きあげた。即ち、口だき、炭化、冷却
、出炭の順に情炎を行ない最後に精練(ねらし)を行な
った。精練(ねらし)は標準的な白炭用の清粉を使用し
て実施した。
This cylindrical molded product is used as a charcoal material to make white charcoal pots (Yoshida pots).
It was roasted as white charcoal. That is, the burning process was carried out in the order of pouring, carbonization, cooling, and coal extraction, and finally, scouring was carried out. Scouring was carried out using standard white charcoal scouring powder.

アルミナ系セラミックスFIR−Nlの混和量は3水準
設けることとし、1%、5%、10%に相当する1kg
、5kg及び10kgとした。
There are three levels of mixing amount of alumina ceramic FIR-Nl, 1 kg corresponding to 1%, 5%, and 10%.
, 5 kg and 10 kg.

この様にして出来た成型炭3a!及び比較品としてのウ
バメガシ備長炭の計4種を用い、コーヒー豆の焙煎テス
トを行なった。即ち先ず炭火熱風式焙煎機(ユニカフ上
34−D型)の予熱補助バーナーを起動し、温度を5℃
アンプしてから生豆(BWサントスM/18)を投入し
た。続いて5分後に予熱補助バーナーを遮断し、代りl
二炭火ブロワ−を始動して炭火を起し徐々に火力をアッ
プした。続いてもう一台のブロワ−を始動して炭火を更
に強め、炎の高さを15〜20cmにまで高めてロース
トを続け、焙煎豆の焼は色を目視でチエツクしつつブロ
ワ−を次第に弱めて行き、最後に音、色、香り、形を総
合的に判断して焙煎を終了した。テストの期間中腹は何
れも着火性も良く、途中の立消えも無かった。4種類の
焙煎実験においてコーヒー豆が4種とも略々同程度に焼
き上るのに要した(1)所要時間(2)燃料量(3)焙
煎機内温度を纏めると表Iのとおりである。即ち、No
Molded charcoal 3a made in this way! A coffee bean roasting test was conducted using a total of four types of charcoal and Ubamegashi Binchotan as a comparative product. First, start the preheating auxiliary burner of the charcoal-fired hot air roaster (Unicuff upper 34-D type) and lower the temperature to 5℃.
After amplifying it, I added green beans (BW Santos M/18). Then, after 5 minutes, turn off the preheating auxiliary burner and turn on the l
I started the two-charcoal blower, started the charcoal fire, and gradually increased the heat. Next, start the other blower to further intensify the charcoal fire, raise the flame height to 15-20cm, and continue roasting.While roasting the roasted beans, check the color visually while gradually increasing the blower. He gradually weakened the temperature, and finally finished roasting by comprehensively evaluating the sound, color, aroma, and shape. During the test period, the ignitability was good in all cases, and there was no failure during the test. Table I summarizes the (1) time required, (2) amount of fuel, and (3) temperature inside the roasting machine required for all four types of coffee beans to be roasted to approximately the same degree in the four types of roasting experiments. . That is, No.
.

3の成型炭を除きNo、1.No、2の成型炭は備長炭
燃焼にほぼ匹敵する成績を収めた。また焼き上げられた
豆をコーヒーミルで挽いたあとドリップ法でコーヒーと
し、風味、フレーバー、色調を比較した。結果は同しく
表1に記載したごと(、備長炭で焙煎したコーヒーと比
べ全く遜色のないものであった。
No. 1 except for briquette charcoal No. 3. Molded charcoal No. 2 achieved results almost comparable to Bincho charcoal combustion. In addition, the roasted beans were ground in a coffee mill and then made into coffee using the drip method, and the taste, flavor, and color were compared. The results are also shown in Table 1 (the results were completely comparable to coffee roasted with Bincho charcoal).

〔実施例2〕 通常の製材工場のオガクズの50kg及び木工工場から
のチッパ−屑、カットバーク、サンダ屑、カッター屑等
計50kgに対しセラミックスとしてアルミナ系セラミ
ックス(FIR−Nl。
[Example 2] Alumina ceramics (FIR-Nl) were used as the ceramic for 50 kg of sawdust from a normal sawmill and a total of 50 kg of chipper scraps, cut bark, sander scraps, cutter scraps, etc. from a woodworking factory.

10μm、昭和電工製)を5kg加えた場合とジルコニ
ア系セラミックス(KZH−3000゜0.82μm、
脇立セラミックス製)を5kg加えた場合の2i!!l
りの方法でそれぞれ混和した後、ロータリードライヤー
(To−80型、高橋製作所製)にて含水率16%まで
乾燥を行ない、成型機(To−80型、高橋製作所製)
にて直径50mm長さ500mm空孔径10mmの製炭
用の筒状物に成型し、かつ引続き炭に焼きあげた。
10μm, manufactured by Showa Denko) and zirconia ceramics (KZH-3000゜0.82μm,
2i when adding 5 kg of Wakidate Ceramics)! ! l
After mixing them using the method described above, they were dried using a rotary dryer (To-80 model, manufactured by Takahashi Manufacturing Co., Ltd.) until the moisture content reached 16%, followed by a molding machine (To-80 type, manufactured by Takahashi Manufacturing Co., Ltd.).
The product was molded into a cylindrical product for charcoal making with a diameter of 50 mm, a length of 500 mm, and a pore diameter of 10 mm, and was subsequently baked into charcoal.

この様にして出来た成型炭2種及び比較品としてのウハ
メガシ備長炭の計3種を用いて、〔実施例1〕と同様に
コーヒー豆の焙煎テストを行なった。即ち、熱風式焙煎
機(ユニカフエ34  D型)の予熱補助バーナーを起
動し、温度を5℃アップしてから生豆を投入した。続い
て5分後に予熱補助バーナーを遮断し、代りに炭火ブロ
ワ−を始動して炭火を起し徐々に火力をアップした。続
いてもう一台のブロワ−を始動して炭火を更に強め、炎
の高さを15〜20cmにまで高めてローストを続け、
焙煎豆の焼は色を目視でチエ’7りしつつブロワ−を次
第に弱めて行き、?a後に音、色、香り、形を総合的に
判断して培剪を終了した。テストの期間中腹は何れも着
火性も良く、途中の立消えも無かった。3種類の焙煎実
験においてコーヒー豆が4種とも略々同程度に焼き上る
のに要した(1)所要時間(2)燃料jl (3)焙煎
機内温度を纏めると表2のとおりである。所要時間にお
いては3者いずれも同じであるが燃料の壇において差が
生し、少いからアルミナ、ジルコニア、@製炭の順でセ
ラミックス2種がやや少ない量で焼き上がった。焼き上
げられた豆をコーヒーミルで挽いたあとドリップ法でコ
ーヒーとし、風味フレーバー、色調を比較した。結果は
同じく表2に記載したごとく、備長炭で焙煎したコーヒ
ーと比べどちらのセラミックの場合も全く遜色のないも
のであった。
A coffee bean roasting test was conducted in the same manner as in [Example 1] using a total of three types of charcoal, two types of briquette charcoal produced in this way and Uhamegashi Bincho charcoal as a comparative product. That is, the preheating auxiliary burner of the hot air roasting machine (Unicafue 34 D type) was started, and the temperature was increased by 5° C., and then the green beans were added. Subsequently, after 5 minutes, the preheating auxiliary burner was shut off, and instead the charcoal blower was started to start the charcoal fire and the heat was gradually increased. Next, I started another blower to further intensify the charcoal fire, raise the flame height to 15-20cm, and continue roasting.
When roasting beans, check the color visually and gradually weaken the blower. After a, the sound, color, scent, and shape were comprehensively evaluated and the pruning was completed. During the test period, the ignitability was good in all cases, and there was no failure during the test. Table 2 summarizes the (1) required time, (2) fuel, and (3) internal temperature of the roasting machine required for all four types of coffee beans to be roasted to approximately the same degree in the three types of roasting experiments. . The required time was the same for all three, but there was a difference in the amount of fuel used.Alumina, zirconia, and charcoal were fired in that order, and the two types of ceramics were fired in a slightly smaller amount. The roasted beans were ground in a coffee mill and then made into coffee using the drip method, and the flavor, flavor, and color were compared. As shown in Table 2, both ceramics were comparable in comparison to coffee roasted with Bincho charcoal.

[実施例3] 実施例1で試作された3種類の成型炭と備長炭に更にブ
ランクとしてセラミックスを加えずに製造された成型炭
の計5種類の検体について、JIS  M8812.M
8814の方法で発生熱漬を測定した。発熱量について
の結果は、表3に示す通りでブランク、1%、5%、混
入の2種類の成型炭は何れもウハメガシ備長炭の発熱量
より高<10%混入のもののみやや低い発7g lil
を示した。セラミックス混の成型炭について、その混和
量が増すにつれて発熱量が減少するのは、セラミックス
粒子が遠赤外線は放射するものの、自身は燃焼によって
熱を生成しないので当然である。この測定において試料
木炭片(粉)の燃焼によって生成する熱を吸収する容器
は鋼鉄製容器であり、遠赤外線を吸収しにくいため、遠
赤外線による輻射熱が発熱量の一部を構成することは極
めて少ない、しかし、これはあくまで発熱量測定上の特
殊な事情によるものであり利用する本発明の方式におい
てコーヒー豆に対し遠赤外線の作用を十分にうけさせ得
ることに変りはない。加熱に寄与しないが、何れにして
も、本発明の製炭法により備長炭以上の発熱量の成型炭
が完成されたことが証明された。
[Example 3] A total of five types of specimens, including the three types of briquette charcoal prototyped in Example 1 and the briquette charcoal produced without adding ceramics as a blank to the Bincho charcoal, were tested according to JIS M8812. M
The thermal immersion generated was measured by the method of 8814. The results for the calorific value are shown in Table 3. The calorific value of the two types of briquettes, blank, 1%, 5%, and mixed charcoal, are all higher than that of Uhamegashi Bincho charcoal. Only the calorific value of <10% mixed charcoal has a slightly lower calorific value of 7g. lil
showed that. It is natural that the calorific value of ceramic-mixed briquette coal decreases as the amount of the mixture increases, because although ceramic particles emit far-infrared rays, they do not themselves generate heat through combustion. In this measurement, the container that absorbs the heat generated by the combustion of the sample charcoal pieces (powder) is a steel container, and it is difficult to absorb far infrared rays, so it is extremely unlikely that radiant heat from far infrared rays constitutes a part of the calorific value. However, this is only due to special circumstances in measuring calorific value, and there is no difference in the fact that coffee beans can be sufficiently exposed to the action of far infrared rays in the method of the present invention. Although it does not contribute to heating, it has been proven that the charcoal production method of the present invention has produced briquette charcoal with a calorific value greater than that of Bincho charcoal.

〔実施例4〕 実施例1で試作された3種類の成型炭と備長炭に更にブ
ランクとしてセラミックスを加えずに製造された成型炭
の計5種類の検体について、遠赤外線放射スペクトルを
測定した。遠赤外線放射スペクトルは放射特性測定装置
(日本分光工業itsEM−101型)を用い、黒体に
対する試料片の放射率を波長3μm〜30μmに亙り曲
線の形で取り出すもので、結果を第1図に示した。第1
図より明らかなように、備長炭あるいはブランクに比ベ
セラミノクス入りの成型炭は何れも10μm以上の波長
領域において、非常に高い放射率を示した。
[Example 4] Far-infrared radiation spectra were measured for a total of five types of specimens: the three types of briquette charcoal prototyped in Example 1 and the briquette charcoal produced without adding ceramics as a blank to the Bincho charcoal. The far-infrared radiation spectrum is measured using a radiation characteristic measuring device (JASCO Corporation's ITSEM-101 model), and the emissivity of the sample piece relative to a black body is extracted in the form of a curve over a wavelength range of 3 μm to 30 μm. The results are shown in Figure 1. Indicated. 1st
As is clear from the figure, both the bincho charcoal and the briquette charcoal containing beceraminox in the blank exhibited extremely high emissivity in the wavelength region of 10 μm or more.

表   3     テ   ス   ト   結  
果(発明の効果) 此のように、本発明によるセラミックス含有成型炭は、
火のつきも良く、立ち消えもなく効果的な加熱ができる
ものである。又、本成型木炭をコーヒー豆の焙煎に使用
すれば高価な備長炭使用時と同等の高品質のコーヒーの
得られることが確かめられた。しかも、本発明は単にコ
ーヒー焙煎用に使用出来るばかりでなく、小麦、大麦、
大豆等11?の焙煎にも同様に利用することができる。
Table 3 Test results
Effects (Effects of the Invention) As shown above, the ceramic-containing briquette coal according to the present invention has the following effects:
It lights well and provides effective heating without going out. Furthermore, it was confirmed that if this molded charcoal is used for roasting coffee beans, it is possible to obtain coffee of the same high quality as when using expensive Bincho charcoal. Moreover, the present invention can be used not only for roasting coffee, but also for wheat, barley, etc.
Soybeans etc. 11? It can also be used for roasting.

また、焙煎以外の用途として、ウナギの蒲焼用にも用い
得、極めて有用なものである。
In addition to roasting, it can also be used for grilling eel, making it extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] (1)粒径0.5〜8.0mmの炭焼された微小木片よ
りなる木炭であって、純度95%以上のアルミナ、ジル
コニア、マグネシアより選ばれた無機化合物からなるセ
ラミックス粒子を 0.5重量%以上、10重量%未満含有することを特徴
とする成型木炭。
(1) Charcoal made of charcoalized fine wood chips with a particle size of 0.5 to 8.0 mm, and 0.5 weight of ceramic particles made of an inorganic compound selected from alumina, zirconia, and magnesia with a purity of 95% or more. % or more and less than 10% by weight.
JP14387589A 1989-06-06 1989-06-06 Charcoal briquette Pending JPH0243289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14387589A JPH0243289A (en) 1989-06-06 1989-06-06 Charcoal briquette

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14387589A JPH0243289A (en) 1989-06-06 1989-06-06 Charcoal briquette

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP31034887A Division JPH01149894A (en) 1987-12-07 1987-12-07 Formed charcoal

Publications (1)

Publication Number Publication Date
JPH0243289A true JPH0243289A (en) 1990-02-13

Family

ID=15349039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14387589A Pending JPH0243289A (en) 1989-06-06 1989-06-06 Charcoal briquette

Country Status (1)

Country Link
JP (1) JPH0243289A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1215273A2 (en) * 2000-12-14 2002-06-19 Takeji Motai Artificial charcoal and methods for making thereof
JP2013053759A (en) * 2011-08-31 2013-03-21 Takashi Yonehara Method and device for combustion by pellet charcoal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1215273A2 (en) * 2000-12-14 2002-06-19 Takeji Motai Artificial charcoal and methods for making thereof
EP1215273A3 (en) * 2000-12-14 2003-08-13 Takeji Motai Artificial charcoal and methods for making thereof
JP2013053759A (en) * 2011-08-31 2013-03-21 Takashi Yonehara Method and device for combustion by pellet charcoal

Similar Documents

Publication Publication Date Title
US6576212B2 (en) Process for the production of carbonized material
US5427805A (en) Briquette containing aromatic pellets
EP2216387B1 (en) Fuel block such as a hearth block
KR101349717B1 (en) Roasting method of coffee beans
CN104629782A (en) Production process of machine-made charcoal
US4230459A (en) Process for agglomerating particulate wood material and products obtained thereby
CN102992735B (en) Preparation method of carbon-containing black pottery
JPH01149894A (en) Formed charcoal
JPH0243289A (en) Charcoal briquette
KR100896822B1 (en) Manufacturing method of sintered ceramic
JPH01252250A (en) Method for roasting coffee beans
JPH02132189A (en) Formed charcoal
US6273922B1 (en) Durable briquettes for use in gas-fired barbecue grills
KR102430485B1 (en) Wood pellets and manufacturing method thereof
US20090100751A1 (en) Grill smoking composition and method of production
WO2019131983A1 (en) Method for producing solid fuel
KR101589595B1 (en) Environmental of the Artificial Charcoal Manufacturing methods and Environmental of the Artificial Charcoal
US9845955B1 (en) Lighter device
JP2864165B2 (en) Shaped charcoal and coffee bean roasting method using the shaped charcoal
US8636816B1 (en) Composite wood products and methods of manufacture
EP0368810A1 (en) Fuel and compressed pellets of aromatised charcoal
JP2000060887A (en) Exothermic composition for throw-away body warmer
KR20010076669A (en) Process of cera-stone with a high heat storage
KR100336450B1 (en) The ceramic chacoals and their preparation methods
JP7473529B2 (en) Method for producing solid fuel