JPH02132189A - Formed charcoal - Google Patents

Formed charcoal

Info

Publication number
JPH02132189A
JPH02132189A JP20444789A JP20444789A JPH02132189A JP H02132189 A JPH02132189 A JP H02132189A JP 20444789 A JP20444789 A JP 20444789A JP 20444789 A JP20444789 A JP 20444789A JP H02132189 A JPH02132189 A JP H02132189A
Authority
JP
Japan
Prior art keywords
charcoal
alumina
wood
ceramic particles
roasting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20444789A
Other languages
Japanese (ja)
Inventor
Kenji Arai
荒井 賢治
Kunihiko Komiya
小宮 邦彦
Yasutaka Nakamichi
中道 康隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANEBO KUJI KK
Kanebo Ltd
Original Assignee
KANEBO KUJI KK
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANEBO KUJI KK, Kanebo Ltd filed Critical KANEBO KUJI KK
Priority to JP20444789A priority Critical patent/JPH02132189A/en
Publication of JPH02132189A publication Critical patent/JPH02132189A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To obtain charcoal, capable of effectively emitting far infrared rays and having quality comparable to that of 'BINCHO-ZUMI' (a kind of high- quality charcoal made of holm oak as a raw material) at a low cost by blending fine pieces of wood with a specific amount of ceramic particles consisting of an inorganic compound, such as alumina. CONSTITUTION:The objective formed charcoal obtained by mixing (A) fine pieces of wood, having 0.5-8.0mm particle diameter and burned into charcoal with (B) 0.5-10wt.% (preferably 2-8wt.%) ceramic particles consisting of an inorganic compound selected from alumina, zirconia and magnesia of >=95% purity and, as necessary, (C) an adhesive, such as vinyl chloride-based or poval- based adhesive, then drying the resultant mixture until the moisture content attains about 16wt.%, hot-pressing the dried mixture at 200-250 deg.C under about 25-28ton/m<2> pressure to form a carbon material and burning the material as hard charcoal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は遠赤外線を効果的に発生する成型木炭に関する
ものである. (従来の技術) 従来、所謂備長炭と称せられる硬度の極めて高く燃焼性
に優れた白炭があり、この木炭は、所謂炭焼焙煎コーヒ
ーの焙煎機の熱源として、珍重されている. これは、焙煎機の熱源として用いられるオイル、ガス、
電力、炭、薪などに比べ殊に味と香りのf!れたコーヒ
ーを焙煎し得る熱源であるためでー.備長炭は単にコー
ヒー焙煎用に使用出来るばかりでなく、小麦、大麦、大
豆等穀類の焙煎にも同様に利用されるし、更には、焙煎
以外の用途として、古来ウナギのa焼用に欠くべからざ
る燃ギ4として良く知られるものである. 所で、この備長炭は製造するに際し二つの重要な条件が
必要とされる.即ち、一つには耐火性の極めて高い岩石
及び粘土を使用して窯を築く必要のあること、二つには
炭材として必ずウバメガシを使用しなければならないこ
とである.このウバメガシは房州、紀州の南部、室戸、
足摺岬とか暖地の海岸・崖地に生育している.しかし、
ウバメガシの生育している所は地勢急峻な痩せ地が多く
、産出量も決して多くはない. 従ってこれより製造される備長炭については価格も高く
、これをコーヒーの焙煎に使用する場合、その燃料費の
全体に占める割合たるや極めて大きいものがあった. このため製紙工程で大■に排出される製紙スランヂを利
用して成型木炭を製造する方法が特公昭5829351
号公報に記載されている.また、特公昭55  384
00号公報にはぜオライトを7n合した煉炭が開示され
ており、かかる煉炭によれば、ゼオライトの吸着Jj@
能、イオン交換機能を用いて燃焼生成物の二硫化炭素な
どの悪臭を吸着し環境悪化を防止することができる. (発明が解決しようとする問題点) しかしながら、前者の成型木炭では木炭の&l1 織自
身がゆるいため、燃焼速度が早く、かつ砕け易い. このため備長炭に匹敵する燃焼性は得られない.また、
ゼオライトを混入した煉炭では、環境悪化防止効果は得
られるものの、燃焼性や食品等に対する加熱性が悪い. 本発明者らはかかる事態に着目し鋭意研究の末、遂に本
発明に到達したものである. 即ち、本発明は備長炭と略々同等の品質を有しながら価
格的に極めて低コストの高品質木炭を提供するものであ
る。本発明の他の目的は使用されるセラミノクス即し純
度95%以上のアルミナ、ジルコニア、マグネシアから
遠赤外線の放射が極めて効率的に行なわれ、これにより
コーヒー豆や小麦、大麦、大豆等穀物類の焙煎或はウナ
ギの蒲焼等の食品に対し、効果的な加熱即ち、加熱せら
れる材t4の内部組織に対し、輻射線である遠赤外線の
放射が直接行なわれる結果、該材料の表面が必要以上に
焦げ過ぎることもなく、適度の色、香り、形状を以て焼
き上げることのできる木炭を提供するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to shaped charcoal that effectively generates far-infrared rays. (Prior Art) Conventionally, there is a white charcoal called Bincho charcoal which has extremely high hardness and excellent combustibility, and this charcoal is prized as a heat source for so-called charcoal-roasted coffee roasting machines. This is the oil, gas, and
Compared to electricity, charcoal, firewood, etc., it has a particularly good taste and aroma! This is because it is a heat source that can roast coffee. Bincho charcoal can be used not only for roasting coffee, but also for roasting grains such as wheat, barley, and soybeans. It is well known as fuel 4, which is indispensable. By the way, two important conditions are required when producing Binchotan charcoal. In other words, one is that the kiln must be built using extremely fire-resistant rock and clay, and the other is that Ubamegashi must be used as the charcoal material. This Ubamegashi is found in Boshu, the southern part of Kishu, Muroto,
It grows on coasts and cliffs in warm regions such as Cape Ashizuri. but,
Most of the places where Ubamegashi grows are on steep and poor land, and the production is not large at all. Therefore, the Bincho charcoal produced from this charcoal was expensive, and when it was used for roasting coffee, it accounted for an extremely large portion of the total fuel cost. For this reason, a method for producing molded charcoal using the papermaking slang that is discharged in a large volume during the papermaking process was published in Japanese Patent Publication No. 5829351.
It is stated in the publication. In addition, Special Public Interest Publication No. 55 384
No. 00 discloses a briquette containing 7n of zeolite, and according to this briquette, zeolite adsorption Jj@
It uses its ion exchange function to adsorb bad odors such as carbon disulfide, which is a combustion product, and prevents environmental deterioration. (Problems to be Solved by the Invention) However, in the former type of molded charcoal, the charcoal has a loose texture, so it burns at a high rate and is easily crushed. For this reason, it cannot achieve combustibility comparable to Bincho charcoal. Also,
Briquettes mixed with zeolite have the effect of preventing environmental deterioration, but have poor flammability and heating properties for foods. The present inventors have focused on this situation and have finally arrived at the present invention after intensive research. That is, the present invention provides high-quality charcoal that has substantially the same quality as Bincho charcoal but is extremely low in cost. Another object of the present invention is that far-infrared rays are extremely efficiently radiated from the ceramics used, such as alumina, zirconia, and magnesia, which have a purity of 95% or more. For effective heating of foods such as roasted or broiled eel, the surface of the material is necessary as a result of direct radiation of far-infrared rays to the internal structure of the heated material t4. To provide charcoal that can be baked with appropriate color, aroma, and shape without being overly burnt.

(問題点を解決するための手段) 本発明は、粒径0.5〜8、Qmmの炭焼された微小木
片よりなる木炭であって、純度95%以上のアルミナ、
ジルコニア、マグネシアより選ばれた無機化合物からな
るセラミックス粒子を0.5重量シ6以上、10重量%
未満含有することを特徴とする成型木炭である。
(Means for Solving the Problems) The present invention provides charcoal made of charcoalized minute wood chips with a particle size of 0.5 to 8, Qmm, comprising alumina with a purity of 95% or more,
Ceramic particles made of an inorganic compound selected from zirconia and magnesia, 0.5% by weight, 6 or more, 10% by weight
It is a shaped charcoal characterized by containing less than

本発明で用いる微小木片は、必ずしも前記ウバメガシ若
しくはカン類に依ることはなく、通常の製材工場から副
産物として産生ずるところのオガクズで良い.しかしな
がら好ましくは一般にタンニンを多く含む所の木材即ち
、クヌギ、コナラ、ミズナラ、カシ類の製材の結果産生
されたオガクズ若しくは倣小木片が良貨の炭を作る.そ
の他カエデ、1ネリコ、リョウブ、ヤチダモ、マテバシ
イ、ツハキ、サザンカ等の本来通常の炭焼方法の木炭の
原料木から生したオガクズ若しくは微小木片からも良質
の炭を生成せしめることについては論を待たぬところで
あるが必ずしもこれらのものに限定されるものではない
.前記のカシ、クヌギを始めとする各種木材はいずれも
広葉樹であるが本発明にて適用される樹種としては広M
用、針葉樹のいずれであってもよい、また微小木片とし
ては前記オガクズの他チンバー屑、カントバーク、サン
ダー屑、カソクー屑など含水率50%以下のものならば
いずれもず吏用できる。
The small pieces of wood used in the present invention do not necessarily depend on the above-mentioned ubamegi or cans, but may be sawdust produced as a by-product from ordinary sawmills. Preferably, however, sawdust or imitated small wood chips produced as a result of sawing of wood generally rich in tannins, such as oak, Quercus, Quercus, and oak, will produce good quality charcoal. It goes without saying that high-quality charcoal can also be produced from sawdust or small pieces of wood that are originally raw materials for charcoal used in conventional charcoal-making methods, such as maple, Japanese maple, ryobu, yachidamo, matebashii, tsuhaki, and sasanqua. However, it is not necessarily limited to these. The above-mentioned oak, sawtooth oak, and other various types of wood are all broad-leaved trees, but the tree species applicable to the present invention are broad-leaved trees.
In addition to the above-mentioned sawdust, any wood with a moisture content of 50% or less can be used, such as chinbur waste, cant bark, sander waste, and cassock wood.

かかる木片はその粒径、即ち長辺の長さが0.5〜8.
 0 m mの範囲にあることが必要で、かかる範囲を
外れては、加熱加圧して成型する際に十分な硬さ、緻密
度が得られず、脆い炭材しか得られない. 次に、セラミノク粒子に分類されるものとしては、酸化
物系セラミノクス、非酸化物系セラミノクス、非金属、
金属、合金、結晶等が挙げられ、例えば、酸化物系セラ
ミソクスとしてはアルミナ(A it Ox )系、マ
グネシア(MgO)系、ジルコニア(ZrOx)系の他
、酸化チタン(TiOz)、二酸化ケイ素(SiOz)
、酸化クoム(Crz Oy )  フェライI・(F
eOzFeze4)  スピネル(M g O, A 
A2 0x )セリウム(CaOz)、バリウム(B 
a O)等があり、炭化物系セラミックスとしては、炭
化ホウ素(B,C) 、炭化ケイ素(S i C) 、
炭化チタン(TiC)、炭化モリブデン(MoC)、炭
化タングステン(WC)等があり、窒化物系セラミック
スとしては、窒化ホウ素(BN)、窒化アルミ(A7!
N)、窒化ケイ素(S l 3 Na ) 、窒化ジル
コン(Z r N)等があり、非金属としては炭素(C
)グラファイトがあり、金属としてはタングステン( 
W )  モリブデン(MO)  バナジウム(V) 
 白金(PiJ  クンタル(Ta)  マンガン(M
n>、ニノケル(Ni)、酸化銅(Cu,O) 、酸化
鉄(Fez O,)があり、合金としてはニクロム、カ
ンタル、ステンレス、アルメルがあり、また、結晶とし
ては雲母、蛍石、方解石、明ばん、水晶等が有る. これらのうち、特に有用な遠赤外線放射特性を有するセ
ラミックスとしては、アルミナ系、マグネシア系、ジル
コニア系があり例えばアルミナ系ではアルミナ、ムライ
ト、マグネシア系ではマグネシア、コージェライl (
2MaO− 2A1.O.・5SiOg)ジルコニア系
ではジルコンサンド(ZrOz  Zr Ox  ・S
 ioi )等が挙げられる.而して、本発明ではかか
る特定のセラミフクスを用いることが必要である.また
、以上の群から選ばれた複数のものを混合使用すること
も有効であり、更に、これらと他のセラミックス(例え
ば炭化物系セラミックス)とを混合使用することも有効
である.かかるセラミックス粒子の粒径については、木
戻の成型に際し作業の行ない易い程度のものであれば良
く、20μ以下、好ましくは5〜10μ程度のものが使
用しやすい.次に、該成型木炭中に含有するセラミソク
スの含有率は0.5重足%以上10.0重四%未満が適
当であるが、更に好ましくは2重■%〜8重四%が良い
.0.5重量%未満であると遠赤外線の放射■が不十分
であり、逆に1 0. 0重盟%以上となると該木炭の
全体としての発熱量が不足である。
Such wood chips have a grain size, that is, a long side length of 0.5 to 8.
It is necessary that the carbon material is within the range of 0 mm; if it is outside this range, sufficient hardness and density will not be obtained when molding by heating and pressurizing, and only a brittle carbon material will be obtained. Next, Ceraminox particles are classified as oxide Ceraminox, non-oxide Ceraminox, non-metallic,
Examples of oxide ceramics include alumina (A it Ox ), magnesia (MgO), and zirconia (ZrOx), as well as titanium oxide (TiOz) and silicon dioxide (SiOz). )
, comb oxide (Crz Oy) Ferai I・(F
eOzFeze4) Spinel (M g O, A
A2 0x ) Cerium (CaOz), Barium (B
a O), etc., and carbide ceramics include boron carbide (B, C), silicon carbide (S i C),
There are titanium carbide (TiC), molybdenum carbide (MoC), tungsten carbide (WC), etc. Nitride ceramics include boron nitride (BN) and aluminum nitride (A7!
N), silicon nitride (S l 3 Na ), zircon nitride (Z r N), etc. Nonmetals include carbon (C
) graphite, and the metal is tungsten (
W) Molybdenum (MO) Vanadium (V)
Platinum (PiJ Kuntal (Ta) Manganese (M)
n>, Ninokel (Ni), copper oxide (Cu, O), iron oxide (Fez O,), alloys include nichrome, kanthal, stainless steel, and alumel, and crystals include mica, fluorite, and calcite. , alum, crystal, etc. Among these, ceramics with particularly useful far-infrared radiation characteristics include alumina, magnesia, and zirconia. For example, alumina-based ceramics include alumina and mullite, and magnesia-based ceramics include magnesia and cordierite (
2MaO- 2A1. O.・5SiOg) Zircon sand (ZrOz Zr Ox ・S
ioi) etc. Therefore, in the present invention, it is necessary to use such a specific ceramic fuchsia. It is also effective to use a mixture of a plurality of materials selected from the above groups, and furthermore, it is also effective to use a mixture of these and other ceramics (for example, carbide ceramics). The particle size of the ceramic particles may be such that it is easy to work with when molding the wood backing, and those of 20 μm or less, preferably about 5 to 10 μm, are easy to use. Next, the content of ceramisox contained in the molded charcoal is suitably 0.5% to 10.0%, more preferably 2% to 8%. If it is less than 0.5% by weight, far-infrared radiation (■) will be insufficient, and conversely, 10. If it exceeds 0%, the overall calorific value of the charcoal is insufficient.

セラミックス粒子は、木炭中に均一に分敗されているこ
とが好ましく、微小木片と必要に応し塩化ビニール系や
ボバール系等の接着剤とを混合して成型工程に供する際
、添加混合するとよい.又、微小木片、接着剤、セラミ
ック粒子を混和した混合物は、含水率が16%程度とな
るまで乾燥せしめた後、200〜250℃、2 5〜2
 B }ン/m”程度で加熱加圧して炭材を形成し、こ
れを白炭として焼き上げ成型木炭となすとよい. 以上の如き成型木炭を用いて、例えばコーヒー豆を焙煎
する際には、網目状回転ドラムにコーヒ−豆を充填し本
成型木炭より発生する遠赤外線を直接照射すればよい. (作用) 電磁波の一種である赤外線は物体内部への浸透する力が
強く、内部加熱方弐の加熱方法として極めて効率が良く
、加熱や乾燥に利用できるものである. しかしながら、食品の乾燥に利用できる赤外線としては
限定され、水やコーヒー豆等の多くの高分子化合物の分
子運動領域と一致する波長10μm以上の遠赤外線が、
食品を内部より加熱することのできるものである. 本発明の木炭中に存在する特定のセラミノクス粒子は、
前記遠赤外線を極めて効率的に放射し、食品等に理想的
な加熱を施す. (実施例) (実施例l〕 通常の製材工場より入手した広葉樹および針葉樹よりな
るオガクズの100kgに対しセラミックスとしてアル
ミナ系セラミックス(F■RN1.10μm,昭和電工
製)を所定■混和した後、ロータリードライヤー(To
−80型、高橋製作所製)にて含水率16%まで乾燥を
行ない、成型機(To−80型、高橋製作所製)にて直
径50mm長さ500mm空孔径1 0 m rnの製
炭用の筒状物に加熱加圧して成型した. この筒状成形品を炭材として用い白炭がま(吉田がま)
にて白炭として焼きあげた.即ち、口だき、炭化、′冷
却、出炭の順に精炭を行ない最後に精煉(ねらし)を行
なった。精煉くねらし)は標準的な白炭用の消粉を使用
して実施した.アルミナ系セラミノクスFIR−Nlの
混和量は3水準設けることとし、1%、5%、10%に
相当するlkg,5kg及び1 0kgとした.この様
にして出来た成型炭3種及び比較品としてのウバメガシ
備長炭の計4種を用い、コーヒー豆の焙煎テストを行な
った。即ち先ず炭火熱風式焙煎8!(ユニカフエ34−
D型)の予熱補助バーナーを起動し、温度を5℃アップ
してから生豆(BWサントスM/1B)を投入した.続
いて5分筏に予熱補助バーナーを遮断し、代りに炭火ブ
ロヮーを始動して炭火を起し徐々に火力をア,プした.
続いてもう一台のブロワーを始動して炭火を更に強め、
炎の高さを15〜20cmにまで高めてローストを続け
、焙煎豆の焼け色を目視でチェックしつつプロワーを次
第に弱めて行き、最後に音、色、香り、形を総合的に判
断して焙煎を終了した.テストの期間中炭は何れも着火
性も良く、途中の立消えも無かった.4種類の焙煎実験
においてコーヒー豆が4種とも略々同程度に焼き上るの
に要した(1)所要時間(2)燃料量(3)焙煎機内温
度を纏めると表1のとおりである.即ち、No.3の成
型炭を除きNo.1,No.2の成型炭は備長炭燃焼に
ほぼ匹敵する成績を収めた.また焼き上げられた豆をコ
ーヒーミルで挽いたあとドリップ法でコーヒーとし、風
味、フレーバー、色調を比較した.結果は同じく表1に
記叙したごとく、備長炭で焙剪したコーヒーと比べ全く
遜色のないものであった. 〔実施例2〕 通常の製材工場のオガクズの50kg及び木工工場から
のチソバー屑、力2・トバーク サングー屑、カッター
屑等計50kgに対しセラミ,クスとしてアルミナ系セ
ラミノクス( F I R − N 1 .10μm.
昭和電工製)を5kg加えた場合とジルコニア系セラミ
ソクス(K ZH− 3 0 0 0.0.82μm.
協立セラミソクス製)を5kFS加えた場合の2通りの
方法でそれぞれ混和した後、1コークリードライヤー(
’T’O−80型、高橋製作所製)にて含水率16%ま
で乾燥を行ない、成型機(To−80型、高橋製作所製
)にて直径50mm長さ500mm空孔径10mmの製
炭用の筒秋物に成型し、かつ引続き炭に焼きあげた。
It is preferable that the ceramic particles are dispersed uniformly in the charcoal, and it is preferable that the ceramic particles be added and mixed when the small pieces of wood are mixed with an adhesive such as vinyl chloride type or Bobal type as required and subjected to the molding process. .. In addition, the mixture of small wood chips, adhesive, and ceramic particles was dried until the moisture content was about 16%, and then heated at 200 to 250°C for 25 to 2 hours.
It is preferable to heat and pressurize at a temperature of about B }m/m" to form a charcoal material, and then burn this as white charcoal to make shaped charcoal. When using the above-mentioned shaped charcoal to roast coffee beans, for example, Simply fill a mesh-shaped rotating drum with coffee beans and directly irradiate it with the far infrared rays generated by the molded charcoal. (Operation) Infrared rays, a type of electromagnetic waves, have a strong ability to penetrate into the interior of objects, and are used as an internal heating method. It is extremely efficient as a heating method and can be used for heating and drying.However, infrared rays that can be used for drying food are limited and match the molecular motion range of many polymeric compounds such as water and coffee beans. far infrared rays with a wavelength of 10 μm or more,
It is capable of heating food from the inside. The specific ceraminox particles present in the charcoal of the present invention are:
It radiates the far-infrared rays extremely efficiently and provides ideal heating to foods, etc. (Example) (Example 1) After mixing a predetermined amount of alumina ceramics (F RN 1.10 μm, manufactured by Showa Denko) as a ceramic with 100 kg of sawdust made of hardwood and softwood obtained from an ordinary sawmill, a rotary Hair dryer (To
-80 type, manufactured by Takahashi Manufacturing Co., Ltd.) to a moisture content of 16%, and then a coal-making cylinder with a diameter of 50 mm, length of 500 mm, and pore diameter of 10 m rn was dried using a molding machine (To-80 type, manufactured by Takahashi Manufacturing Co., Ltd.). It was molded into a shape by heating and pressurizing it. This cylindrical molded product is used as a charcoal material to make white charcoal pots (Yoshida pots).
It was roasted as white charcoal. That is, the clean coal was prepared in the order of drilling, carbonization, cooling, and coal extraction, and finally, it was refined. Seirenkunerashi) was carried out using standard white charcoal shaving powder. Three levels were set for the amount of alumina-based ceraminox FIR-Nl to be mixed: 1 kg, 5 kg, and 10 kg, which correspond to 1%, 5%, and 10%. A coffee bean roasting test was conducted using a total of four types of briquette charcoal, including the three types of molded charcoal produced in this way and the Ubamegashi Bincho charcoal as a comparative product. First of all, charcoal hot air roasting 8! (Unicafe 34-
I started the preheating auxiliary burner of the Type D) and raised the temperature by 5°C, then added the green beans (BW Santos M/1B). Next, I shut off the preheating auxiliary burner for 5 minutes, started the charcoal blower instead, started the charcoal fire, and gradually increased the heat.
Next, I started another blower and made the charcoal fire even stronger.
Raise the flame height to 15 to 20 cm and continue roasting, gradually weakening the power of the roaster while visually checking the burnt color of the roasted beans.Finally, comprehensively judge the sound, color, aroma, and shape. Finished roasting. During the test, all the charcoal had good ignitability, and there were no cases of ignitability during the test. Table 1 summarizes the (1) time required, (2) amount of fuel, and (3) temperature inside the roasting machine required for all four types of coffee beans to be roasted to approximately the same degree in the four types of roasting experiments. .. That is, No. No. 3 except for briquette coal. 1, No. Molded charcoal No. 2 achieved results almost comparable to Bincho charcoal combustion. In addition, the roasted beans were ground in a coffee mill and then made into coffee using the drip method, and the taste, flavor, and color were compared. As shown in Table 1, the results were comparable to coffee roasted with Bincho charcoal. [Example 2] Alumina-based Ceraminox (FIR-N1. 10 μm.
(manufactured by Showa Denko) and zirconia-based ceramic socks (KZH-3000.0.82μm.
(manufactured by Kyoritsu Ceramisox) was mixed in two ways using 5 kFS.
'T'O-80 model, manufactured by Takahashi Seisakusho) was used to dry the water content to 16%, and a forming machine (To-80 type, manufactured by Takahashi Seisakusho) was used to form coal with a diameter of 50 mm, length of 500 mm, and pore diameter of 10 mm. It was molded into a tsutsukimono and then roasted on charcoal.

この様にして出来た成型炭2種及び比較品としてのウバ
メガシ備長炭の計3種を用いて、r実施例l〕と同様に
コーヒー豆の焙煎テストを行なった.即ち、熱風式焙煎
機(ユニカフエ34  D型)の予熱補助ハーナーを起
動し、温度を5℃アンプしてから生豆を投入した.続い
て5分後に予熱補助バーナーを遮断し゜、代りに炭火プ
ロワーを始動して炭火を起し徐々に火力をアノプした.
続いてもう一台のブロソーを始動して炭火を更に強め、
炎の高さを15〜2 0 C mに才で高めてロースト
を続け、焙煎豆の焼け色を目視でチェックしつつブロワ
ーを次第に弱めて行き、Q後に音、色、香り、形を総合
的に判断して焙煎を終了した.テストの期間中戻は何れ
も着火性も良く、途中の立消えも無かった.3種類の焙
1I+!実験においてコーヒー豆が4種とも略々同程度
に焼き上るのに要した(1)所要時間(2)燃料足(3
)焙煎機内温度を纏めると表2のとおりである.所要時
間においては3者いずれも同じであ.るが燃料の量にお
いて差が生し、少いからアルミナ、ジルコニア、Oif
f長炭の順でセラミックス2種がやや少ない回で焼き上
がった.焼き上げられた豆をコーヒーミルで挽いたあと
ドリ,プ法でコーヒーとし、風味フレーバー、色調を比
較した.結果は同しく表2に記載したごと<、備長炭で
焙煎したコーヒーと比べどちらのセラミックの場合も全
く遜色のないものであった.〔実施例3〕 実施例1で試作された3JIIl類の成型炭と嬬長炭に
更にブランクとしてセラミノクスを加えずに製造された
成型炭の計5種類の検体lこついて、JIS  M88
12,M8814の方法で発生熱MをatlI定した.
発熱聞番二ついての結果は、表3に示す通りでブランク
、1%、5%.冫昆入の2種類の成型炭は何れもウバメ
ガシ嬬長炭の発熱看より高<10%混入のもののみやや
低い発熱聞を示した.セラミックス混の成型炭6こつい
て、その混和クが増すにつれて発熱量が減少するのは、
セラミンクス粒子が遠赤外線は放射するものの、自身は
燃焼によって熱を生成しないので当然である.この測定
において試料木炭片(粉冫の燃焼によって生成する熱を
吸収する容器は鋼鉄製容器であり、遠赤外線を吸収しに
くいため、遠赤外線による輻射熱が発熱量の一部を構成
することは極めて少ない.しかし、これはあくまで発熱
量測定上の待殊な事情によるものであり利用する本発明
の方式においてコーヒー豆に対し遠赤外線の作用を十分
にうけさせ得ることに変りはない.加熱に寄与しないが
、何iLにしても、本発明の製炭法により偏長炭以上の
発熱足の成型炭が完成されたことが証明された。
A coffee bean roasting test was conducted in the same manner as in Example 1 using a total of three types of charcoal, two types of briquette charcoal produced in this way and Ubamegashi Bincho charcoal as a comparative product. That is, the preheating auxiliary burner of the hot air roaster (Unicafe 34 D type) was started, the temperature was increased by 5°C, and then the green beans were added. After 5 minutes, I shut off the preheating auxiliary burner, started the charcoal blower instead, started the charcoal fire, and gradually increased the heat.
Next, I started another Brosseau and made the charcoal fire even stronger.
Raise the flame height to 15-20 cm and continue roasting. Gradually weaken the blower while visually checking the roasted color of the roasted beans. After Q, check the sound, color, aroma, and shape. I decided to finish roasting based on my judgment. During the test period, all the batteries had good ignitability, and there were no failures during the test. 3 types of roasted 1I+! In the experiment, it took (1) the time required (2) the amount of fuel (3) required for all four types of coffee beans to be roasted to approximately the same degree.
) The temperature inside the roasting machine is summarized in Table 2. The required time is the same for all three. However, there is a difference in the amount of fuel, with alumina, zirconia, Oif
In the order of F-long charcoal, two types of ceramics were fired in slightly fewer times. The roasted beans were ground in a coffee mill and then made into coffee using the pouring method, and the flavor, flavor, and color were compared. The results are also listed in Table 2, and both ceramics were comparable to coffee roasted with Bincho charcoal. [Example 3] A total of five types of briquettes were prepared, including the 3JII type briquette charcoal prototyped in Example 1 and the briquette charcoal produced without adding Ceraminox as a blank to the JIS M88 charcoal.
12, the generated heat M was determined atlI using the method of M8814.
The results for the two heat generation numbers are shown in Table 3: blank, 1%, 5%. Both of the two types of briquette charcoal produced by Ubamegashi Tsumagashi charcoal showed a slightly lower heating value than that of the Ubamegashi Tsumagashi charcoal. The calorific value of ceramic-mixed briquette charcoal 6 decreases as its admixture increases.
Although ceramic particles emit far infrared rays, they do not themselves generate heat through combustion, so this is natural. In this measurement, the container that absorbs the heat generated by the combustion of the sample charcoal piece (powder) is a steel container, and it is difficult to absorb far infrared rays, so it is extremely unlikely that radiant heat from far infrared rays constitutes a part of the calorific value. However, this is only due to special circumstances in measuring calorific value, and there is no difference in the fact that the coffee beans can be sufficiently exposed to the action of far infrared rays in the method of the present invention used.Contributes to heating. However, regardless of the number of iL, it has been proven that the coal-making method of the present invention has produced molded coal that generates more heat than oblong coal.

〔実施例4〕 実施例lで試作された3種力1の成型炭と備長炭に更に
ブランクとしてセラミックスを加えずに製造された成型
炭の計5種類の検体について、遠赤外線放射スペクトル
を測定した。遠赤外線放射スペクトルは放射特性測定装
置(日本分光工業g零EM− 1 0 1型)を用い、
黒体に対する試料片の放射率を波長3μm〜30μmに
亙り曲線の形で取り出すもので、結果を第1図に示した
.第1図より明らかなように、備長炭あるいはブランク
に比べセラミックス入りの成型炭は何れも10μm以上
の波長領域において、非常に高い放射率を示した. 表   3     テ   ス   ト   結  
 果(発明の効果) 此のように、本発明によるセラミックス含有成型炭は、
火のつきも良く、立ち消えもなく効果的な加熱ができる
ものである.又、本成型木炭をコーヒー豆の焙煎に使用
すれば高価な備長炭使用時と同等の高品質のコーヒーの
得られることが確かめられた。しかも、本発明は単にコ
ーヒー焙煎用に使用出来るばかりでなく、小麦、大麦、
大豆等HRの焙煎にも同碌に利用することができる。ま
た、焙煎以外の用途として、ウナギの蒲焼用にも用い得
、極めて有用なものである.
[Example 4] Far-infrared radiation spectra were measured for a total of five types of molten charcoal produced without adding ceramics to the 3-type strength 1 molten charcoal and Bincho charcoal as a blank produced in Example 1 without adding ceramics. did. The far-infrared radiation spectrum was measured using a radiation characteristic measuring device (JASCO Corporation g-zero EM-101 model).
The emissivity of the sample piece relative to the blackbody was extracted in the form of a curve over a wavelength range of 3 μm to 30 μm, and the results are shown in Figure 1. As is clear from Figure 1, compared to Bincho charcoal or blank, the ceramic-filled briquettes all showed extremely high emissivity in the wavelength region of 10 μm or more. Table 3 Test results
Effects (Effects of the Invention) As shown above, the ceramic-containing briquette coal according to the present invention has the following effects:
It lights well and provides effective heating without going out. Furthermore, it was confirmed that if this molded charcoal is used for roasting coffee beans, it is possible to obtain coffee of the same high quality as when using expensive Bincho charcoal. Moreover, the present invention can be used not only for roasting coffee, but also for wheat, barley, etc.
It can also be used equally well for roasting HR such as soybeans. In addition to roasting, it can also be used for grilling eel, making it extremely useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本成型木炭の放射特性を示す図表であカネボウ
久悲株式会社
Figure 1 is a chart showing the radiation characteristics of this molded charcoal.

Claims (1)

【特許請求の範囲】[Claims] (1)粒径0.5〜8.0mmの炭焼された微小木片よ
りなる木炭であって、純度95%以上のアルミナ、ジル
コニア、マグネシアより選ばれた無機化合物からなるセ
ラミックス粒子を0.5重量%以上、10重量%未満含
有することを特徴とする成型木炭。
(1) Charcoal made of charcoalized fine wood chips with a particle size of 0.5 to 8.0 mm, and 0.5 weight of ceramic particles made of an inorganic compound selected from alumina, zirconia, and magnesia with a purity of 95% or more. % or more and less than 10% by weight.
JP20444789A 1989-08-07 1989-08-07 Formed charcoal Pending JPH02132189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20444789A JPH02132189A (en) 1989-08-07 1989-08-07 Formed charcoal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20444789A JPH02132189A (en) 1989-08-07 1989-08-07 Formed charcoal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP31034887A Division JPH01149894A (en) 1987-12-07 1987-12-07 Formed charcoal

Publications (1)

Publication Number Publication Date
JPH02132189A true JPH02132189A (en) 1990-05-21

Family

ID=16490680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20444789A Pending JPH02132189A (en) 1989-08-07 1989-08-07 Formed charcoal

Country Status (1)

Country Link
JP (1) JPH02132189A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0947636A3 (en) * 1998-04-01 2000-06-14 Scandinavia Home Co., Ltd Method of improving durability of a building, building, far-infrared radiation therman storage floor heating system, and method of improving soil of building lot.
CN109233933A (en) * 2017-07-10 2019-01-18 米娜 A kind of energy-saving and environment-friendly smokeless fuel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0947636A3 (en) * 1998-04-01 2000-06-14 Scandinavia Home Co., Ltd Method of improving durability of a building, building, far-infrared radiation therman storage floor heating system, and method of improving soil of building lot.
US6195954B1 (en) 1998-04-01 2001-03-06 Scandanavia Home Co. Ltd. Method of improving durability of a building, building, far-infrared radiation thermal storage floor heating system, and method of improving soil of building lot
CN109233933A (en) * 2017-07-10 2019-01-18 米娜 A kind of energy-saving and environment-friendly smokeless fuel

Similar Documents

Publication Publication Date Title
JP4130826B2 (en) Method for producing molded charcoal for fuel
JP4785633B2 (en) Method for producing molded charcoal for fuel
CN103288422B (en) Method for manufacturing purple mud pottery
JP2002161278A (en) Method for producing carbonized product
CN102992735B (en) Preparation method of carbon-containing black pottery
JPH1060464A (en) Formed charcoal and its production
US4230459A (en) Process for agglomerating particulate wood material and products obtained thereby
JPH02132189A (en) Formed charcoal
JPH01149894A (en) Formed charcoal
JPH062026B2 (en) How to roast coffee beans
JPH0243289A (en) Charcoal briquette
WO2006082632A1 (en) Bamboo charcoal, bamboo charcoal powder, carbonization product, and processes for producing these
KR20010066711A (en) Bamboo Salt Using Veinstone
KR101589595B1 (en) Environmental of the Artificial Charcoal Manufacturing methods and Environmental of the Artificial Charcoal
JPH06128575A (en) Wood briquette for fuel
JP4116707B2 (en) Exothermic composition for disposable body warmers
KR20050031310A (en) Ignition coal using palm charcoal dust and manufacturing method thereof
RU2790146C1 (en) Method for producing hookah coal from wood biomass
JP2641888B2 (en) How to roast coffee beans
EP0368810A1 (en) Fuel and compressed pellets of aromatised charcoal
KR20070016597A (en) A charcoal product make use of MDF and that manufacturing method
TW201944907A (en) Heat conversion energy ceramic coffee baking machine capable of preventing charring and carbonization during baking to ensure health and flavor that the beverage should have
KR100448259B1 (en) A charcoal form manufacturing device
KR101505872B1 (en) A charcoal for loess kiln and a method of roasting using the same
JP2589711B2 (en) Roasting method of barley for barley tea