JPH0243137B2 - - Google Patents

Info

Publication number
JPH0243137B2
JPH0243137B2 JP60290933A JP29093385A JPH0243137B2 JP H0243137 B2 JPH0243137 B2 JP H0243137B2 JP 60290933 A JP60290933 A JP 60290933A JP 29093385 A JP29093385 A JP 29093385A JP H0243137 B2 JPH0243137 B2 JP H0243137B2
Authority
JP
Japan
Prior art keywords
solution
flaw detection
ultrasonic flaw
treated
type titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60290933A
Other languages
Japanese (ja)
Other versions
JPS62150159A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60290933A priority Critical patent/JPS62150159A/en
Publication of JPS62150159A publication Critical patent/JPS62150159A/en
Publication of JPH0243137B2 publication Critical patent/JPH0243137B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、β型チタン合金材の超音波探傷によ
る検査方法に関するものであり、特にはβ型チタ
ン合金材の溶体化処理材を製品とする場合の超音
波探傷検査を行うに際し、溶体化処理材製品を直
接対象とせず、時効処理を施してα相を析出させ
た状態の材料に超音波探傷検査を行うことを特徴
とする検査方法に関する。本発明は、β相の粗大
化が生じやすい、例えば熱間加工上りの溶体化処
理材製品にしても、超音波探傷を精度良く行うこ
とを可能とする。 発明の背景 チタン及びチタン合金はその優れた比強度、耐
食性及び耐熱性を保有しているため、宇宙航空材
料、各種化学プラント、海水淡水化装置等広範囲
な用途に利用されている。 チタン合金としては、従来、Ti−6A1−4V等
に代表されるα+β型合金が広く用いられてきた
が、α+β型合金は成形性に乏しく、加工の多く
を切削に頼るため、最終製品に至るまでの歩留り
が非常に低いという欠点を有している。そこで、
α+β型合金に比較して、冷間加工性に優れ、し
かも高強度が得られることからβ型チタン合金の
利用が近年拡がりつつある。 尚本発明におけるβ型チタン合金は、 Ti−13V−11Cr−3Al、Ti−11.5Mo−4.5Sn−
6Zr、Ti−15V−3Cr−3Sn−3Al、Ti−10V−
2Fe−3Al等の合金を含む。 β型チタン合金は、β相が比較的安定な合金で
あるため、溶体化処理によつて容易にこのβ相を
常温までもちきたすことが出来、しかもこの溶体
化処理状態では、加工性に優れている。 そこで、製造メーカーでは、この溶体化処理状
態の合金材を製品として出荷し、そしてユーザー
側では溶体化状態で受入れた材料を目的に応じた
加工を施した後に所要の強度を得るための時効処
理を行うのが一般的である。 従つて、β型チタン合金の製造メーカーは、溶
体化状態で出荷する製品について超音波探傷によ
る検査を実施するのが一般的である。 従来技術と問題点 β型チタン合金の溶体化処理は、金属組織をβ
単一相とするため、β変態点以上の温度に加熱保
持し、α相を消失させた後、α相の析出が起らな
いような冷却速度で冷却を行う熱処理である。 しかし、β域加熱によるβ相の結晶粒成長速度
は大きく、特に、熱間加工上りの材料において
は、結晶粒の粗大化が進む。 このように粒成長した粗大結晶粒のものは、超
音波の減衰が大きいため、高い感度で超音波探傷
を行わなければならない。 しかし、結晶粒の粗大化したβ型チタン合金の
溶体化処理材では、感度を上げた超音波探傷を実
施した場合、高いノイズが多発し、S/N比が小
さいため、内部欠陥の有無や位置等を正確につか
むことが困難であり、精度のよい検査が出来ない
という難点があつた。 現在の所、β型チタン合金の製造方法について
は幾つかの報告があるが、製品の非破壊検査に関
する報告は見られない。 こうした状況において、上記難点克服のための
対応策に迫られている。 発明の概要 本発明は、β型チタン合金材の溶体化処理材を
製品とする場合の超音波探傷による検査におい
て、内部欠陥の有無や位置等を正確に捉えること
が出来る精度のよい検査方法の提供を目的とす
る。 本発明者等は、溶体化処理材を製品とする場合
のβ型チタン合金の超音波探傷による検査を精度
よく実施できる方法について鋭意研究を行つた結
果、本合金の溶体化処理材の超音波探傷における
小さいS/N比は、超音波の減衰の大きいβ単一
相の粒成長が原因であり、このβ相中にα相を微
細に析出させた状態を意図的に創出し、この状態
の合金材を超音波探傷にかけることによつて大巾
にS/N比を向上できる、との新たな知見を得
た。 即ち、β型チタン合金材、特には熱間加工上り
の材料をβ変態点以上の温度域で溶体化処理を施
して製品とする場合、溶体化処理材製品そのもの
に超音波探傷検査を実施すると、超音波の減衰が
大きいため、感度を上げて検査を行わねばならな
い。ところが、高感度で超音波探傷を実施する
と、粒径の粗大化によるノイズとしての林状エコ
ーが多発し、もし、内部欠陥があつたとしてもこ
れを正確に捉えることが難しい。 しかし、超音波探傷の対象とするβ型チタン合
金材に時効処理を行い、α相を微細に析出させて
から同一処理を行つた対比試験片を用いて超音波
探傷を行うと、低い感度で対比試験片の標準欠陥
のエコーを所定のレベルに調整することが出来る
ので、S/N比を大巾に向上させることができ
る。従つて、対象とするβ型チタン合金材に内部
欠陥が存在した場合には、正確にこの存在や位置
を捉えることが可能になることが判つた。 しかも、材料の内部欠陥には溶体化処理の加工
工程から由来するものであり、それらの有無、位
置、寸法形状は溶体化処理及び時効処理によつて
変化しない。 こうした知見に基いて、本発明は、β型チタン
合金材の溶体化処理材製品を超音波探傷により検
査する方法において、前記溶体化処理製品とする
前の合金材に時効処理を施してα相を析出させた
状態で超音波探傷を行うことを特徴とするβ型チ
タン合金の超音波探傷検査方法を提供する。一般
には、溶体化処理を施す前に合金材に時効処理を
施して超音波探傷を行い、その後溶体化処理を行
つて溶体化処理材製品とする手順がとられるが、
しかし溶体化処理ずみの合金材に時効処理を施し
て超音波探傷を行い、その後再度溶体化処理を行
つて溶体化処理材製品としてもよい。 斯様に、本発明は、検査は最終製品そのものに
ついて行う必要があるとの固定観念を捨て、最終
製品と内部欠陥状態の1:1対応性が保証され且
つ精度の高い検査を可能とする、α相微細析出状
態を検査目的の為に利用するというユニークな発
想に基礎を置いている。 発明の具体的説明 本発明の対象とするβ型チタン合金は、 Ti−13V−11Cr−3Al、Ti−11.5Mo−4.5Sn−
6Zr、Ti−15V−3Cr−3Sn−3Al、Ti−10V−
2Fe−3Al等のチタン基合金である。 チタン合金加工製品は、一般に鋳造されたイン
ゴツトを出発として製品の品質形状に応じて、圧
延、鍜造、押出し等の加工によつて製造され、さ
らに製品の要求品質に応じて、溶体化処理、溶体
化時効処理等の熱処理が行われ、最終製品におい
て、機械的性質、金属組織、非破壊試験等の検査
が行われる。 本発明を特徴づけるのは、溶体化処理材を製品
とする場合の非破壊検査としての超音波探傷の方
法に関するものである。 β型チタン合金は、一般にβ変態点以上の温度
に加燃保持し、α相を析出しない冷却速度で冷却
を行つた溶体化処理状態でユーザーに納入され、
ユーザーはこれを目的に応じた加工を行つた後、
時効処理を行つて、高強度を有した部材を得る。
例えば、Ti−15V−3Cr−3Sn−3Al合金を例にと
ると、溶体化処理はβ変態点(730〜770℃)を越
える780〜830℃の範囲の温度で3〜60分間保持
し、空冷以上の冷却速度で室温まで冷却すること
により実施されている。時効処理は400〜600℃の
温度で一般に行われている。 ここで本発明の対象とするところは、チタン合
金材の精造メーカーがユーザーに納入する溶体化
処理状態の製品の品質保証にあたり、実施する超
音波探傷の方法である。 従つて、このチタン合金の製造方法について
は、特に規定するものはないが、特に、溶体化処
理により結晶粒の粗大化を起しやすいβ型チタン
合金の熱間加工上り材や高温溶体化材に対して、
本発明による検査方法は、効果的である。 また製造方法として、鍜造、熱間圧延、押出し
等の加工方法についても特に規定されない。 β型チタン合金の溶体化処理を製品とする場
合、従来方法に従つて、結晶粒の粗大化したβ単
一相の製品そのものの超音波探傷を行うと、林状
エコーの多発により、内部欠陥の有無、位置等に
ついて正確な検査が困難である。 従つて、本発明は、最終の溶体化処理を行う前
に、時効処理により、β相中にα相を微細に析出
させた後、同一処理を施した対比試験片を用い、
超音波探傷を実施する。既に溶体化処理を終えた
製品が検査ステージに送られるような状況におい
ては、それに時効処理を施して超音波探傷を実施
し、その後再溶体化処理を行えばよい。この方法
によつて、林状エコーによるノイズは大巾に低く
なり、S/N比が向上するため、内部欠陥の有
無、位置等を精度よく捉えることが出来る。 ここで、最終溶体化処理前に行う時効処理条件
は、β型チタン合金の品種によつて異なるが、α
相が微細に析出する温度と時間の範囲を選択すれ
ばよい。例えば、Ti−15V−3Cr−3Sn−3Alの場
合には400〜600℃において1〜20hr時効処理が為
される。 発明の効果 近年利用度の高まりつつあるβ型チタン合金の
溶体化処理材を製品とする場合、精度のよい超音
波探傷を可能にする検査方法の確立に成功した。 実施例および比較例 供試材として用いたβ型チタン合金(Ti−15V
−3Cr−3Sn−3Al)の化学成分を表1に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to an inspection method using ultrasonic flaw detection for β-type titanium alloy materials, and in particular, to perform ultrasonic flaw detection when solution-treated β-type titanium alloy materials are used as products. The present invention relates to an inspection method characterized in that an ultrasonic flaw detection inspection is performed not directly on a solution-treated material product, but on a material that has been subjected to an aging treatment to precipitate an α phase. The present invention makes it possible to conduct ultrasonic flaw detection with high accuracy even in the case of, for example, solution-treated material products after hot working, where the β phase tends to coarsen. BACKGROUND OF THE INVENTION Titanium and titanium alloys have excellent specific strength, corrosion resistance, and heat resistance, and are therefore used in a wide range of applications such as aerospace materials, various chemical plants, and seawater desalination equipment. Conventionally, α+β type alloys such as Ti-6A1-4V have been widely used as titanium alloys, but α+β type alloys have poor formability and rely on cutting for much of the processing, making it difficult to produce final products. It has the disadvantage that the yield is very low. Therefore,
The use of β-type titanium alloys has been expanding in recent years because they have superior cold workability and high strength compared to α+β-type alloys. The β-type titanium alloys in the present invention are Ti-13V-11Cr-3Al, Ti-11.5Mo-4.5Sn-
6Zr, Ti−15V−3Cr−3Sn−3Al, Ti−10V−
Contains alloys such as 2Fe-3Al. β-type titanium alloys are alloys in which the β phase is relatively stable, so the β phase can be easily brought to room temperature by solution treatment, and in this solution treatment state, it has excellent workability. ing. Therefore, the manufacturer ships the solution-treated alloy material as a product, and the user receives the solution-treated material and processes it according to the purpose, followed by aging treatment to obtain the required strength. It is common to do this. Therefore, manufacturers of β-type titanium alloys generally inspect products shipped in a solution-treated state using ultrasonic flaw detection. Conventional technology and problems Solution treatment of β-type titanium alloys changes the metal structure to β-type titanium alloys.
In order to form a single phase, this is a heat treatment in which the material is heated and maintained at a temperature equal to or higher than the β transformation point to eliminate the α phase, and then cooled at a cooling rate that does not cause precipitation of the α phase. However, the growth rate of β-phase crystal grains due to heating in the β region is high, and especially in materials after hot working, the crystal grains become coarser. Since coarse crystal grains that have grown in this way have large attenuation of ultrasonic waves, ultrasonic flaw detection must be performed with high sensitivity. However, when ultrasonic flaw detection with increased sensitivity is performed on solution-treated β-type titanium alloy materials with coarse grains, high noise occurs frequently and the S/N ratio is small, so it is difficult to detect the presence or absence of internal defects. There was a problem in that it was difficult to accurately determine the position, etc., and it was not possible to perform accurate inspections. At present, there are several reports on the manufacturing method of β-type titanium alloy, but there are no reports on non-destructive testing of the product. Under these circumstances, countermeasures are needed to overcome the above-mentioned difficulties. Summary of the Invention The present invention provides an accurate inspection method that can accurately detect the presence or absence and location of internal defects in ultrasonic testing of solution-treated β-type titanium alloy materials. For the purpose of providing. The inventors of the present invention have conducted intensive research on a method that can accurately conduct ultrasonic flaw detection of β-type titanium alloys when solution-treated materials are used as products. The small S/N ratio in flaw detection is caused by the grain growth of a single β phase, which has a large attenuation of ultrasonic waves, and by intentionally creating a state in which α phase is finely precipitated within this β phase, this state is We have obtained new knowledge that the S/N ratio can be greatly improved by subjecting alloy materials to ultrasonic flaw detection. In other words, when a β-type titanium alloy material, especially a hot-worked material, is solution-treated at a temperature above the β-transformation point to produce a product, it is necessary to perform ultrasonic flaw detection on the solution-treated material product itself. Since the attenuation of ultrasound waves is large, inspection must be performed with increased sensitivity. However, when ultrasonic flaw detection is performed with high sensitivity, forest-like echoes occur frequently as noise due to coarse grain size, and even if there is an internal defect, it is difficult to accurately detect it. However, if the β-type titanium alloy material targeted for ultrasonic flaw detection is subjected to aging treatment to finely precipitate the α phase, and then ultrasonic flaw detection is performed using a comparison test piece that has been subjected to the same treatment, the sensitivity is low. Since the echo of the standard defect of the comparison test piece can be adjusted to a predetermined level, the S/N ratio can be greatly improved. Therefore, it has been found that if an internal defect exists in the target β-type titanium alloy material, it is possible to accurately detect the presence and location. Furthermore, internal defects in the material originate from the solution treatment process, and their presence, location, size, and shape do not change due to the solution treatment and aging treatment. Based on these findings, the present invention provides a method for inspecting solution-treated β-type titanium alloy products by ultrasonic flaw detection, in which the alloy material is subjected to aging treatment before being made into the solution-treated product to obtain α phase. Provided is an ultrasonic flaw detection method for β-type titanium alloy, characterized in that ultrasonic flaw detection is performed in a state in which titanium alloy is precipitated. Generally, before solution treatment, the alloy material is aged and subjected to ultrasonic flaw detection, and then solution treatment is performed to make the solution treatment material product.
However, the solution-treated alloy material may be subjected to aging treatment, subjected to ultrasonic flaw detection, and then subjected to solution treatment again to produce a solution-treated material product. In this way, the present invention abandons the fixed idea that inspection needs to be performed on the final product itself, and ensures a 1:1 correspondence between the final product and internal defect status, and enables highly accurate inspection. It is based on the unique idea of utilizing the fine precipitated state of the α phase for inspection purposes. Detailed Description of the Invention The β-type titanium alloys targeted by the present invention are Ti-13V-11Cr-3Al, Ti-11.5Mo-4.5Sn-
6Zr, Ti−15V−3Cr−3Sn−3Al, Ti−10V−
It is a titanium-based alloy such as 2Fe-3Al. Titanium alloy processed products are generally manufactured from cast ingots through processes such as rolling, forging, extrusion, etc., depending on the quality and shape of the product.Furthermore, depending on the required quality of the product, they are manufactured by solution treatment, Heat treatment such as solution aging treatment is performed, and the final product is inspected for mechanical properties, metallographic structure, non-destructive testing, etc. The present invention is characterized by a method of ultrasonic flaw detection as a non-destructive inspection when solution-treated materials are used as products. β-type titanium alloys are generally delivered to users in a solution-treated state in which they are heated and maintained at a temperature above the β transformation point and cooled at a cooling rate that does not precipitate the α phase.
After the user processes this according to the purpose,
Aging treatment is performed to obtain a member with high strength.
For example, taking the Ti-15V-3Cr-3Sn-3Al alloy as an example, the solution treatment is held at a temperature in the range of 780 to 830 °C, which exceeds the β transformation point (730 to 770 °C), for 3 to 60 minutes, and then cooled in air. This is carried out by cooling to room temperature at the above cooling rate. Aging treatment is generally performed at a temperature of 400 to 600°C. The object of the present invention is an ultrasonic flaw detection method carried out by a titanium alloy material refiner to guarantee the quality of solution-treated products delivered to users. Therefore, there are no particular regulations regarding the manufacturing method for this titanium alloy, but it is particularly important for hot-worked materials and high-temperature solution treated materials of β-type titanium alloys, which tend to coarsen grains due to solution treatment. For,
The testing method according to the invention is effective. Further, as a manufacturing method, processing methods such as forging, hot rolling, extrusion, etc. are not particularly specified. When solution-treated β-type titanium alloy is used as a product, if ultrasonic testing is performed on the β-single-phase product itself with coarse grains using conventional methods, internal defects may occur due to frequent forest-like echoes. It is difficult to accurately inspect the presence, location, etc. of Therefore, the present invention uses aging treatment to finely precipitate the α phase in the β phase before the final solution treatment, and then uses a comparative test piece that has been subjected to the same treatment.
Perform ultrasonic flaw detection. In a situation where a product that has already undergone solution treatment is sent to the inspection stage, it may be subjected to aging treatment, ultrasonic flaw detection, and then re-solution treatment. With this method, the noise caused by forest echoes is greatly reduced and the S/N ratio is improved, making it possible to accurately determine the presence or absence and location of internal defects. Here, the aging treatment conditions performed before the final solution treatment vary depending on the type of β-type titanium alloy, but α
It is sufficient to select a temperature and time range in which the phase is finely precipitated. For example, in the case of Ti-15V-3Cr-3Sn-3Al, aging treatment is performed at 400 to 600°C for 1 to 20 hours. Effects of the invention We have succeeded in establishing an inspection method that enables highly accurate ultrasonic flaw detection when solution-treated β-type titanium alloy materials, which have been increasingly used in recent years, are used as products. Examples and Comparative Examples β-type titanium alloy (Ti-15V
-3Cr-3Sn-3Al) are shown in Table 1.

【表】 使用したインゴツトは、直径550mmであり、こ
れを1050℃に加熱した後、直径200mmの丸ビレツ
トを製造し、さらに、これを900℃に加熱後リン
グ圧延により外径420mm内径350mm厚さ100mmのリ
ング材を製造した。このリング材の表面スケール
層を機械加工によつて除去した後、真空加熱炉に
おいて、550℃×14hrの時効処理を行つたものA、
および800℃×30分加熱保持後、Arガスによつて
冷却した溶体化処理を行つたものB、さらにBを
550℃×14hrで時効処理を行つたものCについて、
各々2ケずつ超音波探傷を実施した。この超音波
探傷結果を表2に示す。 超音波探傷条件は次のとおりである。 (1) 探傷方法 接触式 (2) 接触媒体 水 (3) 探触子 周波数2.25MHz 材質 有効径 20mmφ 垂直法 (4) 対比試験片 同一化学成分の材料を同一工程
で製造し、同一熱処理したもの (5) 標準欠陥 3/64インチ径平底穴(深さ60.1mm
のエコーをブラウン管画面のフルスケールの50
%に調整
[Table] The ingot used was 550 mm in diameter. After heating it to 1050°C, a round billet with a diameter of 200 mm was manufactured. After heating this to 900°C, ring rolling was performed to obtain an outer diameter of 420 mm and an inner diameter of 350 mm in thickness. A 100mm ring material was manufactured. After the surface scale layer of this ring material was removed by machining, it was aged at 550°C for 14 hours in a vacuum heating furnace.
After heating and holding at 800℃ for 30 minutes, solution treatment was performed by cooling with Ar gas.
Regarding C, which was aged at 550℃ x 14 hours,
Ultrasonic flaw detection was performed on two pieces of each sample. The results of this ultrasonic flaw detection are shown in Table 2. The ultrasonic flaw detection conditions are as follows. (1) Flaw detection method Contact method (2) Coupling medium Water (3) Probe Frequency 2.25MHz Material effective diameter 20mmφ Vertical method (4) Comparison test piece Materials with the same chemical composition manufactured in the same process and subjected to the same heat treatment (5) Standard defect 3/64 inch diameter flat bottom hole (depth 60.1mm
50 echoes of the full scale of the cathode ray tube screen
Adjust to %

【表】 表2より、溶体化処理材のノイズはかなり高
く、標準欠陥、3/64インチ平底穴によるエコーの
高さ50%に近いため、正確な超音波探傷は困難で
ある。しかし、本発明の方法に従つて検査対象と
するものを、溶体化処理前に時効処理を施したも
のおよび、溶体化処理後時効処理を施したものの
ノイズの最大高さは、ブラウン管画面のフルスケ
ールに対して4%以下であり標準欠陥のエコーに
比べて非常に低く、検査精度が大巾に向上するこ
とが判る。従つて、本発明は、β型チタン合金の
溶体化処理材を製品とする場合の、精度の高い超
音波探傷による検査に大きな効果をもたらす。
[Table] From Table 2, the noise of solution-treated materials is quite high and is close to 50% of the echo height due to a standard defect, a 3/64-inch flat-bottom hole, making accurate ultrasonic flaw detection difficult. However, the maximum noise height of the test object tested according to the method of the present invention is the one that has been subjected to aging treatment before solution treatment, and the one that has been subjected to aging treatment after solution treatment. It is less than 4% of the scale, which is very low compared to the standard defect echo, and it can be seen that the inspection accuracy is greatly improved. Therefore, the present invention brings about a great effect on highly accurate ultrasonic flaw detection when product is a solution-treated material of β-type titanium alloy.

Claims (1)

【特許請求の範囲】 1 β型チタン合金材の溶体化処理材製品を超音
波探傷により検査する方法において、前記溶体化
処理製品とする前のチタン合金材に時効処理を施
してα相を析出させた状態で超音波探傷を行うこ
とを特徴とするβ型チタン合金の超音波探傷検査
方法。 2 溶体化処理ずみの合金材に時効処理を施して
超音波探傷を行い、その後再度溶体化処理を行つ
て溶体化処理材製品とする特許請求の範囲第1項
記載の方法。
[Claims] 1. In a method of inspecting a solution-treated β-type titanium alloy product by ultrasonic flaw detection, the titanium alloy material before being made into the solution-treated product is subjected to aging treatment to precipitate α phase. An ultrasonic flaw detection method for β-type titanium alloy, characterized by performing ultrasonic flaw detection in a state where the 2. The method according to claim 1, wherein the solution-treated alloy material is subjected to aging treatment, subjected to ultrasonic flaw detection, and then subjected to solution treatment again to produce a solution-treated material product.
JP60290933A 1985-12-25 1985-12-25 Ultrasonic flaw detection and inspection for beta-type titanium alloy Granted JPS62150159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60290933A JPS62150159A (en) 1985-12-25 1985-12-25 Ultrasonic flaw detection and inspection for beta-type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60290933A JPS62150159A (en) 1985-12-25 1985-12-25 Ultrasonic flaw detection and inspection for beta-type titanium alloy

Publications (2)

Publication Number Publication Date
JPS62150159A JPS62150159A (en) 1987-07-04
JPH0243137B2 true JPH0243137B2 (en) 1990-09-27

Family

ID=17762381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60290933A Granted JPS62150159A (en) 1985-12-25 1985-12-25 Ultrasonic flaw detection and inspection for beta-type titanium alloy

Country Status (1)

Country Link
JP (1) JPS62150159A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719417U (en) * 1993-09-09 1995-04-07 大和理研工業株式会社 Joint material for concrete molded board

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9651524B2 (en) * 2013-05-31 2017-05-16 Rti International Metals, Inc. Method of ultrasonic inspection of as-cast titanium alloy articles
RU2705751C2 (en) * 2014-11-05 2019-11-11 Арконик Инк. Titanium welding wire, ultrasound-controlled weld seams and parts formed therefrom and corresponding methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719417U (en) * 1993-09-09 1995-04-07 大和理研工業株式会社 Joint material for concrete molded board

Also Published As

Publication number Publication date
JPS62150159A (en) 1987-07-04

Similar Documents

Publication Publication Date Title
US6387197B1 (en) Titanium processing methods for ultrasonic noise reduction
US5277718A (en) Titanium article having improved response to ultrasonic inspection, and method therefor
US6332935B1 (en) Processing of titanium-alloy billet for improved ultrasonic inspectability
AU2003262755B2 (en) Processing of alpha-beta titanium alloy workpieces for good ultrasonic inspectability
Tariq et al. Characterization of material properties of 2xxx series al-alloys by non destructive testing techniques
Mutoh et al. The effect of residual stresses induced by shot‐peening on fatigue crack propagation in two high strength aluminium alloys
US6401537B1 (en) Titanium-based alloys having improved inspection characteristics for ultrasonic examination, and related processes
EP1433863B1 (en) Method for producing homogeneous fine grain titanium alloys suitable for ultrasonic inspection
EP2955240B1 (en) Forged titanium alloy material and method for manufacturing same
Shi et al. Effect of strain rate on hot deformation characteristics of GH690 superalloy
CN113188965B (en) Surface wave-based nondestructive evaluation method for grain size of metal additive product
US20050145310A1 (en) Method for producing homogeneous fine grain titanium materials suitable for ultrasonic inspection
JP2988269B2 (en) Method for producing rolled α + β titanium alloy sheet
Li et al. Low-temperature hot corrosion effects on the low-cycle fatigue lifetime and cracking behaviors of a powder metallurgy Ni-based superalloy
JP5072725B2 (en) Titanium alloy billet with excellent defect detection capability in ultrasonic testing
CN110760763A (en) Forging method of steel ring forging for nuclear power equipment
JPH0243137B2 (en)
Chen et al. Study of the relationship between ultrasonic properties and microstructure of nickel-based superalloy GH706
CA1131104A (en) Process for treating weldments
JPS62284060A (en) Manufacture of hot rolled titanium alloy plate
JPH01167656A (en) Ultrasonic flaw inspection of near beta type titanium alloy
Webb et al. Stress corrosion cracking behavior of Alloy 600 in high temperature water
Thomas On the characterisation of subsurface deformation microstructures in aerostructural titanium alloys
JPH03108658A (en) Method of detecting nonmetallic inclusion in high carbon steel
Clough et al. The rosette, star, tensile fracture