JP2988269B2 - Method for producing rolled α + β titanium alloy sheet - Google Patents

Method for producing rolled α + β titanium alloy sheet

Info

Publication number
JP2988269B2
JP2988269B2 JP20592794A JP20592794A JP2988269B2 JP 2988269 B2 JP2988269 B2 JP 2988269B2 JP 20592794 A JP20592794 A JP 20592794A JP 20592794 A JP20592794 A JP 20592794A JP 2988269 B2 JP2988269 B2 JP 2988269B2
Authority
JP
Japan
Prior art keywords
titanium alloy
rolling
temperature range
slab
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20592794A
Other languages
Japanese (ja)
Other versions
JPH0849053A (en
Inventor
尚志 前田
岡田  稔
育宏 稲垣
泰夫 安蔵
和夫 藤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20592794A priority Critical patent/JP2988269B2/en
Publication of JPH0849053A publication Critical patent/JPH0849053A/en
Application granted granted Critical
Publication of JP2988269B2 publication Critical patent/JP2988269B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、超音波ノイズが低く
て優れた非破壊探傷精度を確保できるところの、航空宇
宙機器用材料等として好適な高強度α+β型チタン合金
圧延板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength .alpha. +. Beta. Type titanium alloy suitable for aerospace equipment and the like, which has low ultrasonic noise and can ensure excellent nondestructive flaw detection accuracy.
The present invention relates to a method for manufacturing a rolled plate.

【0002】チタン並びにチタン合金は、軽量でありな
がら強度が高く、比重で標準化した比強度は金属材料の
中で最も高いものとして知られている。しかも、これら
の材料は耐食性・耐熱性の点でも非常に優れており、そ
のため軽量高強度材料として航空宇宙産業を中心に多く
の分野で使用がなされている。中でも、Ti−6Al−4V
に代表されるα+β型チタン合金は強度や製造性の面で
非常に安定した実績を誇っていることから、更なる軽量
化や高速化に鎬が削られている航空宇宙機器部材(例え
ばエンジンのファンブレード)等としての需要は増大の
一途をたどるものと予想される。
[0002] Titanium and titanium alloys are high in strength while being lightweight, and the specific strength standardized by specific gravity is known to be the highest among metal materials. Moreover, these materials are also extremely excellent in terms of corrosion resistance and heat resistance, and are therefore used in many fields, mainly in the aerospace industry, as lightweight and high-strength materials. Among them, Ti-6Al-4V
Α + β-type titanium alloys, which have a very stable track record in terms of strength and manufacturability, have been reduced in weight and speed so that aerospace equipment components (such as engine The demand for fan blades) is expected to continue to increase.

【0003】[0003]

【従来技術とその課題】ところで、従来、α+β型チタ
ン合金の板材は、α+β型チタン合金鋳塊を分塊圧延又
は粗鍛造してスラブとし、これをα+β温度域で1〜2
回圧延してから製品用途に応じた熱処理を施すという方
法で製造されるのが一般的であった。例えば、特開昭6
0−230968号公報にも、まず鋳塊をβ域で粗鍛造
し、それからα組織の均質化と異方性の低減を目的とし
てα+β域でクロス圧延を行った後に再結晶焼鈍し、更
にクロス圧延を行ってから焼鈍,溶体化時効処理を施す
工程から成るチタン合金板の製造方法が掲載されてい
る。
2. Description of the Related Art Conventionally, a plate of an α + β type titanium alloy is conventionally made into a slab by subjecting an ingot of an α + β type titanium alloy to slab rolling or rough forging.
It was generally manufactured by a method of subjecting to heat treatment according to product use after rolling. For example, JP
In Japanese Patent Application No. 0-230968, the ingot is first roughly forged in the β region, then cross-rolled in the α + β region for the purpose of homogenizing the α structure and reducing anisotropy, and then recrystallized and annealed. A method for producing a titanium alloy sheet comprising a step of performing rolling, annealing, and solution aging is described.

【0004】ところで、チタン合金の主要な需要先であ
る宇宙航空分野等においては高い信頼性が要求されるこ
とから、適用されるチタン合金部材に対しては機械的性
質の十分な確認と共に超音波探傷等による入念な非破壊
検査が行われているが、チタン合金が適用される機器類
が高性能化するに伴ってこれら検査の精度についても一
層の高度化要求がなされるようになってきた。
[0004] Since high reliability is required in the aerospace field, etc., which is a major demand for titanium alloys, the titanium alloy members to be applied are required to have sufficient confirmation of mechanical properties and ultrasonic waves. Elaborate nondestructive inspections, such as flaw detection, are being performed, but with the higher performance of equipment to which titanium alloys are applied, there is a growing demand for higher precision in these inspections. .

【0005】しかしながら、従来のα+β型チタン合金
板の製造法では、その製造条件は目的とする強度や延性
を確保したり強度の異方性を調整するといった観点から
設定されたに過ぎないものであって、超音波探傷による
内部欠陥の検出特性、即ち超音波特性について考慮され
ることはなかった。そのため、材質の超音波ノイズが必
ずしも小さくはなくて超音波探傷により検出できる欠陥
の大きさには限界があり、この点はチタン合金板を使っ
た機器類の高性能化や信頼性の更なる向上を図る上で是
非とも解決しなければならない問題であると考えられ
た。
However, in the conventional method of manufacturing an α + β type titanium alloy sheet, the manufacturing conditions are merely set from the viewpoint of securing the desired strength and ductility and adjusting the anisotropy of the strength. Thus, there has been no consideration of the detection characteristics of internal defects by ultrasonic testing, that is, the ultrasonic characteristics. Therefore, the ultrasonic noise of the material is not always small, and there is a limit to the size of the defect that can be detected by ultrasonic flaw detection. This point further improves the performance and reliability of equipment using titanium alloy plate. It was considered to be a problem that had to be solved by all means in order to improve it.

【0006】このようなことから、本発明の目的は、高
強度(例えば回転曲げ試験で550MPa以上を示す優れ
た高サイクル疲労強度等)や高延性等の優れた機械的性
質を備えることは勿論、微小な欠陥を検出することも可
能な程度に超音波ノイズが低減された材質のα+β型チ
タン合金圧延板を安定提供することに置かれた。
Accordingly, the object of the present invention is, of course, to provide excellent mechanical properties such as high strength (for example, excellent high cycle fatigue strength showing 550 MPa or more in a rotary bending test) and high ductility. The aim was to stably provide a rolled α + β type titanium alloy sheet of a material whose ultrasonic noise was reduced to such an extent that a minute defect could be detected.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく、特に、α+β型チタン合金圧延板におい
て強度や延性等の機械的性質が良好にバランスするのは
微細等軸粒組織(平均粒径10μm以下の均質微細なα粒
から成る組織)が得られる時であることを踏まえ、チタ
ン合金圧延板の組織をこの微細等軸粒組織として目的と
する強度を付与させながらなおかつ超音波ノイズを極力
低減させ得る手段を求めて鋭意研究を重ねた。
In order to achieve the above object, the present inventors have found that, in particular, mechanical properties such as strength and ductility are well balanced in a rolled α + β titanium alloy sheet because fine equiaxed grains are required. Taking into account that a structure (a structure composed of homogeneous and fine α grains having an average particle size of 10 μm or less) is obtained, the structure of the rolled titanium alloy sheet is imparted with the desired strength as this fine equiaxed grain structure, and Intensive research has been conducted in search of means for reducing ultrasonic noise as much as possible.

【0008】その結果、α+β型チタン合金スラブを熱
間圧延するに先立って、まず加熱されたα+β型チタン
合金をβ単相域より特定条件で急冷し、更にこれをα+
β温度域に加熱して熱間鍛造を加えるという処理を施し
てから、α+β域での熱間圧延と熱処理とを行うと、得
られる板材は均質性に富んだ微細等軸粒組織となり、強
度が高くて機械的性質のバランスも良好な上に、超音波
ノイズが非常に低いα+β型チタン合金圧延板を安定し
て実現することができるとの知見を得ることができた。
As a result, prior to hot rolling the α + β type titanium alloy slab, first, the heated α + β type titanium alloy is quenched from the β single phase region under specific conditions, and further cooled to α + β type titanium alloy slab.
After performing a process of heating to the β temperature range and adding hot forging, and then performing hot rolling and heat treatment in the α + β range, the resulting sheet material has a fine, equiaxed grain structure with rich homogeneity, And the balance of mechanical properties is high, and it is possible to obtain the knowledge that it is possible to stably realize an α + β type titanium alloy rolled sheet having very low ultrasonic noise.

【0009】本発明は、上記知見事項等に基づいて完成
されたものであり、「粗鍛造あるいは分塊圧延されたス
ラブに熱間圧延とこれに続く熱処理を施してα+β型チ
タン合金板を製造するに当り 加熱状態の粗鍛造あるい
は分塊圧延されたα+β型チタン合金スラブをβ単相域
より 0.5℃/s以上の冷却速度で冷却した後、 〔β変態
点〕〜〔β変態点−200℃〕のα+β温度域に加熱し
て高さ比10%以上の熱間鍛造を施すことによって圧延
用素材を調整し、 それからα+β温度域での熱間圧延
と、 α+β温度域での熱処理を順次施すことにより、 平
均粒径10μm以下の均質微細なα粒から成るα+β組織
を実現し、 高サイクル疲労強度を回転曲げ試験での55
0MPa以上という高強度や良好な延性を確保しながら、
より微小な欠陥の検査が可能な程に超音波ノイズが低減
されたα+β型チタン合金圧延板を安定製造できるよう
にした点」に大きな特徴を有している。
The present invention has been completed on the basis of the above findings and the like .
Hot-rolling and subsequent heat treatment are applied to the
In producing a tin alloy sheet , After cooling the forged or bulk-rolled α + β-type titanium alloy slab in the heated state from the β single phase region at a cooling rate of 0.5 ° C / s or more, the temperature of [β transformation point] to [β transformation point -200 ° C] rolling the facilities Succoth hot forging of 10% or more height ratio was heated to alpha + beta temperature range
The material used is adjusted , then hot rolling in the α + β temperature range and heat treatment in the α + β temperature range are successively performed to realize an α + β structure consisting of homogeneous and fine α grains with an average grain size of 10 μm or less, and a high cycle. The fatigue strength was 55 in the rotating bending test.
While ensuring high strength and good ductility of 0 MPa or more,
A stable production of an α + β-type rolled titanium alloy sheet in which ultrasonic noise has been reduced to the extent that a smaller defect can be inspected ”.

【0010】ここで、上記α+β型チタン合金はその種
類が特定されるわけではなく、例えばTi−6Al−4V,
Ti−6Al−6V−2Sn,Ti−6Al−2Sn−4Zr−2Mo,
Ti−6Al−2Sn−4Zr−6Mo,Ti−10V−2Fe−3Al等
といった公知のα+β型チタン合金の何れであっても構
わない。
Here, the type of the above α + β type titanium alloy is not specified, for example, Ti-6Al-4V,
Ti-6Al-6V-2Sn, Ti-6Al-2Sn-4Zr-2Mo,
Any known α + β-type titanium alloy such as Ti-6Al-2Sn-4Zr-6Mo, Ti-10V-2Fe-3Al or the like may be used.

【0011】以下、本発明をその作用と共により詳細に
説明する。
Hereinafter, the present invention will be described in more detail together with its operation.

【作用】一般に、α+β型チタン合金スラブをα+β温
度域で熱間圧延すると、生成する組織は、圧延により2
相組織が延伸されるので“層状にα相が並んだ組織(以
降、 層状組織と呼ぶ)"となり易い。この層状組織は、熱
間圧延前のβ域での粗鍛造等により生成する変態β組織
(transformedβ組織)における“旧β粒内に生成した同
一方向に並んだ伸長形のα相の集合体”がα+β温度域
での熱間圧延により引き延ばされて生成する。本発明者
等は、このような層状組織の存在が超音波ノイズのレベ
ルを大きくすることを見出した。即ち、上記層状組織の
抑制こそがα+β型チタン合金板の超音波ノイズを減少
させる上で極めて重要であることが分かったのである。
In general, when an α + β type titanium alloy slab is hot-rolled in an α + β temperature range, the structure formed by rolling is 2 mm.
Since the phase structure is stretched, the structure tends to be “a structure in which α phases are arranged in a layer (hereinafter, referred to as a layer structure)”. This layered structure is a transformed β structure generated by rough forging etc. in the β region before hot rolling.
"Agglomeration of elongated α-phases formed in old β grains and arranged in the same direction" in (transformed β-structure) is formed by stretching by hot rolling in the α + β temperature range. The present inventors have found that the presence of such a layered tissue increases the level of ultrasonic noise. That is, it has been found that the suppression of the layered structure is extremely important in reducing the ultrasonic noise of the α + β type titanium alloy sheet.

【0012】更に、この層状組織を抑制するためには、
α+β温度域圧延の加熱時に上述の“粗鍛造等により生
成したα相の集合体”を壊しておくことが重要で、その
手段としてα+β温度域圧延の前にα+β温度域での鍛
造を施すのが有効であることも明らかとなった。これ
は、α+β温度域圧延の前にα+β温度域での鍛造を施
すことで加工歪が蓄積され、α+β温度域圧延に際して
の加熱時にこの加工歪が駆動力となってα相の等軸化が
起こり、集合体の方向性が壊れるためである。なお、こ
の場合、粗鍛造等により得た熱間圧延素材たるスラブを
一旦β単相域の加熱状態から急冷しておくと、前記“α
相の集合体”は壊れやすく、また最終的に微細α粒が得
られやすくて優れた機械的性質の確保にも資することに
なる。
Further, in order to suppress this layered structure,
It is important to break the above-mentioned “aggregate of α phase formed by rough forging or the like” at the time of heating in α + β temperature range rolling. For this purpose, forging in α + β temperature range is performed before α + β temperature range rolling. Is also effective. This is because working strain is accumulated by forging in the α + β temperature range before the α + β temperature range rolling, and this working strain becomes a driving force during heating in the α + β temperature range rolling, and the α phase becomes equiaxed. It happens because the direction of the aggregate is broken. In this case, if the slab as the hot-rolled material obtained by rough forging or the like is once rapidly cooled from the heating state in the β single phase region, the above-mentioned “α”
The “phase aggregate” is easily broken, and finally fine α grains are easily obtained, which contributes to securing excellent mechanical properties.

【0013】そこで、本発明に係るチタン合金板の製造
工程では、まず、α+β型チタン合金鋳塊を粗鍛造ある
いは分塊圧延して得たスラブをβ単相温度域に加熱し、
該β単相域より 0.5℃/s以上の冷却速度で冷却する。こ
のβ単相域からの急冷により、材料の組織を針状のマル
テンサイト組織、あるいはマルテンサイト組織とならな
くても針状のα組織とすることができる。このように、
針状のα組織を得ることにより次の工程たるα+β温度
域での熱間鍛造でα相が分断され易くなるので、層状組
織の生成が抑えられ、超音波ノイズが低下する。また、
ここでの組織を針状のα組織とした方が、α+β温度域
での熱間圧延と熱処理を経た後の最終的な等軸α粒径が
微細になり、高い強度と延性が得られる。
Therefore, in the titanium alloy sheet manufacturing process according to the present invention, first, a slab obtained by roughly forging or slab rolling an α + β type titanium alloy ingot is heated to a β single-phase temperature range,
Cool from the β single phase region at a cooling rate of 0.5 ° C./s or more. By rapid cooling from the β single phase region, the structure of the material can be made into a needle-like martensite structure or a needle-like α structure without becoming a martensite structure. in this way,
By obtaining the needle-like α structure, the α phase is easily separated in the next step of hot forging in the α + β temperature range, so that the formation of the layer structure is suppressed and the ultrasonic noise is reduced. Also,
When the structure here is an acicular α structure, the final equiaxed α grain size after hot rolling and heat treatment in the α + β temperature range becomes finer, and high strength and ductility can be obtained.

【0014】この際、冷却速度が 0.5℃/sを下回ると、
十分に細い針状α組織とはならず、α+β温度域での熱
間圧延により層状組織が生成しやすくなって超音波ノイ
ズが増大するばかりか、最終的に粗大なα粒組織が生成
して得られる板材の強度や延性も低下することから、こ
こでの冷却速度は 0.5℃/s以上(好ましくは1℃/s以
上)と定めたが、この冷却速度は速いほど好ましい。な
お、大型の素材では表面側と内部とで冷却速度が異なる
が、この場合は最も遅い冷却速度の部位が 0.5℃/s以上
となるように冷却を行う。ところで、この急冷処理は、
材料をβ単相域温度に加熱した後、β温度域内で終了す
るように鍛造,圧延,押出等の加工を施してからそのま
ま直接的に実施しても良く、この場合でも同様の結果が
得られることは言うまでもない。
At this time, if the cooling rate is lower than 0.5 ° C./s,
A needle-like α structure that is not sufficiently thin is not formed, and a layered structure is easily generated by hot rolling in the α + β temperature range, so that ultrasonic noise increases, and finally, a coarse α-grain structure is generated. Since the strength and ductility of the obtained sheet material are also reduced, the cooling rate here is set to 0.5 ° C./s or more (preferably 1 ° C./s or more). The higher the cooling rate, the better. In the case of large-sized materials, the cooling rate differs between the surface side and the inside. In this case, cooling is performed so that the slowest cooling rate is 0.5 ° C / s or more. By the way, this quenching process
After heating the material to the temperature of the β single phase region, the material may be forged, rolled, extruded, etc. so that the process is completed within the β temperature region, and then may be directly carried out as it is. Needless to say,

【0015】次に、急冷後の材料に〔β変態点〕〜〔β
変態点−200℃〕のα+β温度域に加熱して高さ比
(加工度)10%以上の熱間鍛造を施す。これは、前記
急冷によって得られた針状組織に加工歪を付与し、最終
製品において超音波ノイズの原因である層状組織の生成
を阻止するために必要な工程である。このとき、加熱温
度がβ変態点を超えると加工後に針状α組織が粗大化し
て層状組織が生成しやすくなり、最終製品の超音波ノイ
ズが増加すると共に強度が低下する。一方、加熱温度が
〔β変態点−200℃〕を下回った場合には加工が困難
であり、製品に割れが生じることもあり好ましくない。
従って、この場合の加熱温度は〔β変態点〕〜〔β変態
点−200℃〕のα+β域の温度と定めたが、好ましく
は〔β変態点−(50〜150℃)〕の範囲とするのが
良い。
Next, the material after quenching is [β transformation point] to [β
(Transformation point -200 ° C) and hot forging with a height ratio (working degree) of 10% or more. This is a step necessary for imparting processing strain to the needle-like structure obtained by the quenching and preventing the generation of a layered structure which is a cause of ultrasonic noise in the final product. At this time, if the heating temperature exceeds the β transformation point, the needle-like α structure becomes coarse after processing and a layer structure is easily generated, and the ultrasonic noise of the final product increases and the strength decreases. On the other hand, if the heating temperature is lower than [β transformation point -200 ° C.], processing is difficult, and cracks may occur in the product, which is not preferable.
Therefore, the heating temperature in this case is defined as the temperature in the α + β range of [β transformation point] to [β transformation point -200 ° C.], but is preferably in the range of [β transformation point-(50-150 ° C.)]. Is good.

【0016】そして、上記温度域で鍛造が施されるが、
これは急冷により得られた針状組織に“後続の熱間圧延
と熱処理にてα粒が各々独立して再結晶できるようにす
るための加工歪”を付与ためのものである。因に、この
加工歪の付与には鍛造によるせん断の加工が効果的であ
り(望ましくはこの鍛造は複数の方向から行うのが良
い)、圧延や押出では、次の工程である圧延方向と同
一方向で行われるとその方向に延伸された組織、即ち層
状組織が生成しやすいので好ましくない。
Then, forging is performed in the above temperature range.
This is for imparting "working strain to allow α grains to be independently recrystallized in the subsequent hot rolling and heat treatment" to the needle-like structure obtained by rapid cooling. Incidentally, shearing by forging is effective for imparting the processing strain (preferably, forging is preferably performed from a plurality of directions). In rolling and extrusion, the direction of rolling, which is the next step, is determined. If performed in the same direction, a structure stretched in that direction, that is, a layered structure is easily generated, which is not preferable.

【0017】なお、上記熱間鍛造の加工度が高さ比で1
0%未満であると、急冷により得られた針状組織に付与
される加工歪が不十分となって、続くα+β温度域での
熱間圧延,熱処理を経ても均一微細なα粒組織が実現さ
れずに得られる板材の超音波ノイズの低減や十分な強
度,延性を確保することができなくなる。
The working ratio of the hot forging is 1 in height ratio.
If it is less than 0%, the work strain imparted to the needle-like structure obtained by quenching becomes insufficient, and a uniform and fine α-grain structure is realized even after hot rolling and heat treatment in the subsequent α + β temperature range. Without this, it becomes impossible to reduce the ultrasonic noise of the obtained plate material and to ensure sufficient strength and ductility.

【0018】熱間鍛造が施されて十分な加工歪が付与さ
れた材料(圧延用素材)は、次にα+β温度域での熱間
圧延に付される。この熱間圧延によって針状組織等軸
粒組織に変化するが、この圧延をβ域で行った場合には
延伸された細長いα粒の組織が生成して等軸の微細α粒
組織を得ることはできない。なお、最終的に全体を均質
な等軸α粒組織として超音波ノイズを低下させるという
観点からすれば、この熱間圧延は〔β変態点−30℃〕
の温度以下で行うのが好ましく(圧延温度は低温である
方が熱処理後のα粒の粒径は小さくなる)、一方、良好
な加工性を確保するという観点からすると〔β変態点−
150℃〕の温度以上で行うのが好ましいことからし
て、該熱間圧延は、〔β変態点−(30〜150℃)〕
のα+β温度域で実施するが望ましいと言える。また、
この圧延は、一方向のみ行われた場合には組織の方向性
の低減効果が小さく、そのため超音波ノイズの低下も今
一つ十分でないので、好ましくは前半と後半とで圧延方
向を直交させるクロス圧延を採用するのが良い。
The material (rolling material) that has been subjected to hot forging and imparted with sufficient working strain is then subjected to hot rolling in the α + β temperature range. Acicular structure by hot rolling this is change to equiaxed grain structure, but equiaxed be generated by the stretched elongated α grains tissue when performing this rolling in β range fine α grain structure Can not get. From the viewpoint of finally reducing the ultrasonic noise as a uniform equiaxed α grain structure as a whole, this hot rolling is performed at [β transformation point −30 ° C.]
(The lower the rolling temperature, the smaller the grain size of the α grains after the heat treatment). On the other hand, from the viewpoint of ensuring good workability, the [β transformation point−
The hot rolling is carried out at [β transformation point− (30 to 150 ° C.)].
It can be said that it is desirable to carry out the process in the α + β temperature range. Also,
If this rolling is performed in only one direction, the effect of reducing the directionality of the structure is small, and therefore, the reduction of ultrasonic noise is not enough, so cross rolling in which the rolling direction is orthogonal in the first half and the second half is preferable. Good to adopt.

【0019】熱間圧延後の最終工程では、α+β温度域
において熱処理が施される。この熱処理は、圧延により
生じた組織を再結晶により均質な等軸α粒組織とするた
めのものであるが、これをβ域の温度で実施すると等軸
α粒組織が得られないため疲労強度が大きく低下する。
なお、この熱処理は、高温で行うほど、また長時間実施
するほどα粒の粒径が大きくなって強度が低下するの
で、この点に留意する必要がある。また、特にα+β域
の高温側で熱処理を行う場合には、生成組織がその後の
冷却速度の影響を強く受け、冷却速度が遅いほどα粒が
粗大化しやすいので、必要以上に遅い冷却速度を避ける
ことが好ましい。
In the final step after hot rolling, heat treatment is performed in the α + β temperature range. This heat treatment is for refining the structure produced by rolling into a homogeneous equiaxed α-grain structure. However, if the heat treatment is carried out at a temperature in the β region, an equiaxed α-grain structure cannot be obtained, so that the fatigue strength Greatly decreases.
It should be noted that the higher the temperature and the longer the heat treatment, the larger the particle size of α grains and the lower the strength. In particular, when heat treatment is performed on the high temperature side in the α + β region, the generated structure is strongly affected by the subsequent cooling rate, and the slower the cooling rate, the more likely the α grains are to be coarsened. Is preferred.

【0020】続いて、本発明を実施例により説明する。Next, the present invention will be described with reference to examples.

【実施例】二重真空ア−ク溶解で得られたTi−6Al−4
V合金の鋳塊(直径420mm,合金のβ変態点は約99
5℃)をβ温度域に加熱し、粗鍛造した後に、表1に示
す条件でβ温度域加熱処理,α+β温度域の熱間鍛造を
行い、厚さ125mmの圧延用スラブを得た。次に、この
スラブより幅150mm,長さ200mmのブロックを採取
し、α+β温度域での熱間圧延,α+β温度域での熱処
理(最終熱処理)を順次施し、厚さ20mmのチタン合金
板を製造した。なお、α+β温度域での熱間圧延は2ヒ
−トのクロス圧延とした。この場合、各ヒ−トは全て同
一方向で数パスの圧延とし、2回目の圧延は1回目の圧
延と直角方向に圧延率が1ヒ−ト目の約2倍となるよう
に調整した。また、α+β温度域熱処理では、各温度に
1時間加熱した後に空冷するという条件を採用した。
EXAMPLE Ti-6Al-4 obtained by double vacuum arc melting
Ingot of V alloy (diameter 420mm, β transformation point of alloy is about 99
(5 ° C.) was heated to the β temperature range and subjected to rough forging, and then subjected to the heat treatment in the β temperature range and the hot forging in the α + β temperature range under the conditions shown in Table 1 to obtain a slab for rolling having a thickness of 125 mm. Next, a block having a width of 150 mm and a length of 200 mm was sampled from the slab and subjected to hot rolling in the α + β temperature range and heat treatment (final heat treatment) in the α + β temperature range in order to produce a titanium alloy plate having a thickness of 20 mm. did. The hot rolling in the α + β temperature range was a 2-heat cross rolling. In this case, each heat was rolled in several passes in the same direction, and the second rolling was adjusted so that the rolling reduction in a direction perpendicular to the first rolling was about twice the rolling rate of the first heat. In addition, in the α + β temperature range heat treatment, a condition was adopted in which the material was heated to each temperature for one hour and then air-cooled.

【0021】[0021]

【表1】 [Table 1]

【0022】次いで、得られた各チタン合金板から試験
片を採取し、これを研磨,エッチングした後に光学顕微
鏡により最終圧延方向と平行方向(L方向)および直角
方向(T方向)の厚さ断面の組織を観察し、500倍の
写真を用いて各々1枚の写真から10〜20個の初析α
粒の平均粒径を求めた。
Next, a test piece was taken from each of the obtained titanium alloy plates, polished and etched, and then, with an optical microscope, a thickness section in a direction parallel to the final rolling direction (L direction) and a direction orthogonal to the final rolling direction (T direction). Observation of the structure of 10 to 20 primary eutectoids α from one photograph using a 500 × photograph
The average grain size of the grains was determined.

【0023】また、得られた各チタン合金板の最終圧延
方向と平行方向(L方向)及び直角方向(T方向)から
平行部の直径8mm,長さ12mmの丸棒試験片を採取し、
小野式回転曲げ疲労試験機により繰り返し速度3400
rpm にて高サイクル疲労試験を実施した。
Further, a round bar test piece having a diameter of 8 mm and a length of 12 mm in a parallel portion was taken from a direction parallel to the final rolling direction (L direction) and a direction perpendicular to the direction (T direction) of each of the obtained titanium alloy sheets.
Repetition rate 3400 by Ono-type rotary bending fatigue tester
A high cycle fatigue test was performed at rpm.

【0024】更に、得られた各チタン合金板につき、直
径 1.2mmの平底穴における95%のエコ−を+18dBに
設定して、直径:12.7mmの超音波探触子を用い振動サイ
クル:10MHz,焦点:102mmなる条件で板厚方向の
超音波ノイズを測定した。
Further, with respect to each of the obtained titanium alloy plates, an echo of 95% in a flat bottom hole having a diameter of 1.2 mm was set to +18 dB, and an ultrasonic probe having a diameter of 12.7 mm was used. Ultrasonic noise in the thickness direction was measured under the condition of focus: 102 mm.

【0025】これらの測定及び試験結果を表1に併せて
示す。表1に示される結果からも明らかなように、本発
明で規定する条件通りに製造されたTi−6Al−4V合金
板(α+β型チタン合金板)は、初析α粒の粒径が10μ
mの等軸微細α粒組織であって、高い強度(550MPa
以上の高サイクル疲労強度)を有すると共に、超音波ノ
イズレベルが23%以下であって直径約 0.3mmの欠陥の
検出が可能であり、超音波による高感度の非破壊検査が
可能な高強度チタン合金板であることが分かる。
The results of these measurements and tests are shown in Table 1. As is clear from the results shown in Table 1, in the Ti-6Al-4V alloy plate (α + β type titanium alloy plate) manufactured under the conditions specified in the present invention, the particle size of pro-eutectoid α grains is 10 μm.
m equiaxed fine α-grain structure with high strength (550 MPa
High-strength titanium that has an ultrasonic noise level of 23% or less, can detect defects with a diameter of about 0.3 mm, and can perform highly sensitive nondestructive inspection by ultrasonic waves. It turns out that it is an alloy plate.

【0026】[0026]

【効果の総括】以上に説明した如く、本発明によれば、
機械的性質に優れることは勿論、超音波ノイズが低くて
ミリメ−トルオーダー以下の欠陥の検出が可能なほどに
感度の高い超音波非破壊検査が可能な高強度チタン合金
圧延板を安定提供することができ、航空宇宙機器類の進
歩に大きく寄与し得るなど産業上非常に有用な効果がも
たらされる。
[Summary of Effects] As described above, according to the present invention,
A high-strength titanium alloy that has excellent mechanical properties, low ultrasonic noise, and high sensitivity for non-destructive ultrasonic inspection to detect defects on the order of millimeters or less.
A rolled plate can be provided stably, and it is possible to greatly contribute to the advancement of aerospace equipment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安蔵 泰夫 東京都千代田区大手町1丁目1番3号 住友金属工業株式会社内 (72)発明者 藤沢 和夫 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (56)参考文献 特開 平3−219060(JP,A) 特開 昭63−223154(JP,A) 特開 平5−25597(JP,A) 特開 平3−120343(JP,A) 特開 平4−103747(JP,A) 特開 平4−355(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22F 1/18 B21B 3/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuo Azura 1-3-1 Otemachi, Chiyoda-ku, Tokyo Within Sumitomo Metal Industries, Ltd. (72) Inventor Kazuo Fujisawa 4-5-Kitahama, Chuo-ku, Osaka-shi, Osaka No. 33 Sumitomo Metal Industries, Ltd. (56) References JP-A-3-219060 (JP, A) JP-A-63-223154 (JP, A) JP-A-5-25597 (JP, A) JP-A-3 -120343 (JP, A) JP-A-4-103747 (JP, A) JP-A-4-355 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22F 1/18 B21B 3/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粗鍛造あるいは分塊圧延されたスラブに
熱間圧延とこれに続く熱処理を施してα+β型チタン合
金板を製造するに当り、加熱状態の粗鍛造あるいは分塊
圧延されたα+β型チタン合金スラブをβ単相域より
0.5℃/s以上の冷却速度で冷却した後、〔β変態点〕〜
〔β変態点−200℃〕のα+β温度域に加熱して高さ
比10%以上の熱間鍛造を施すことによって圧延用素材
を調整し、それからα+β温度域での熱間圧延と、α+
β温度域での熱処理を順次施すことを特徴とする、超音
波ノイズの低いα+β型チタン合金圧延板の製造方法。
1. A slab which has been roughly forged or slab-rolled.
Hot rolling followed by heat treatment to form α + β titanium
In manufacturing a metal plate, α + β type titanium alloy slab that has been hot forged or slab rolled from the β single phase region
After cooling at a cooling rate of 0.5 ° C / s or more, (β transformation point) ~
Material for rolling hot forging of alpha + beta least 10% height ratio and heated to a temperature range of [beta transus -200 ° C.] by facilities Succoth
And then hot rolling in the α + β temperature range and α +
Super sound characterized by sequentially applying heat treatment in the β temperature range
Method for producing rolled α + β titanium alloy sheet with low wave noise .
JP20592794A 1994-08-08 1994-08-08 Method for producing rolled α + β titanium alloy sheet Expired - Lifetime JP2988269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20592794A JP2988269B2 (en) 1994-08-08 1994-08-08 Method for producing rolled α + β titanium alloy sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20592794A JP2988269B2 (en) 1994-08-08 1994-08-08 Method for producing rolled α + β titanium alloy sheet

Publications (2)

Publication Number Publication Date
JPH0849053A JPH0849053A (en) 1996-02-20
JP2988269B2 true JP2988269B2 (en) 1999-12-13

Family

ID=16515049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20592794A Expired - Lifetime JP2988269B2 (en) 1994-08-08 1994-08-08 Method for producing rolled α + β titanium alloy sheet

Country Status (1)

Country Link
JP (1) JP2988269B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122985A1 (en) 2013-02-06 2014-08-14 株式会社神戸製鋼所 Titanium-alloy forging material and method for manufacturing same
WO2014196042A1 (en) 2013-06-05 2014-12-11 株式会社神戸製鋼所 Forged titanium alloy material and method for producing same, and ultrasonic testing method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69715120T2 (en) * 1996-03-29 2003-06-05 Kobe Steel Ltd HIGH-STRENGTH TIT ALLOY, METHOD FOR PRODUCING A PRODUCT THEREOF AND PRODUCT
US6332935B1 (en) 2000-03-24 2001-12-25 General Electric Company Processing of titanium-alloy billet for improved ultrasonic inspectability
RU2321674C2 (en) * 2002-12-26 2008-04-10 Дженерал Электрик Компани Method for producing homogenous fine-grain titanium material (variants)
JP5605546B2 (en) * 2009-04-27 2014-10-15 国立大学法人九州工業大学 α + β type titanium alloy, method for producing the same, and method for producing titanium alloy material
JP6088280B2 (en) * 2012-02-13 2017-03-01 株式会社神戸製鋼所 Titanium alloy forged material, manufacturing method thereof, and ultrasonic flaw detection inspection method
CN102921852B (en) * 2012-11-14 2014-11-26 西部钛业有限责任公司 Preparation method of Ti31 titanium alloy flange forge piece
US9651524B2 (en) * 2013-05-31 2017-05-16 Rti International Metals, Inc. Method of ultrasonic inspection of as-cast titanium alloy articles
GB2546057B (en) * 2014-11-05 2021-06-23 Howmet Aerospace Inc A Method of Forming a Weld Between First and Second Base Alloy Parts
CN111763850B (en) * 2020-07-13 2021-05-07 西北有色金属研究院 Processing method of fine-grain superplasticity TA15 titanium alloy medium-thick plate
CN112238152B (en) * 2020-08-13 2023-04-04 陕西天成航空材料有限公司 Preparation method of wide and super-thick TC4 titanium alloy plate
CN112760583B (en) * 2020-12-23 2022-02-18 宁波江丰电子材料股份有限公司 Heat treatment process of titanium material
CN114345975A (en) * 2021-12-30 2022-04-15 深圳市世格赛思医疗科技有限公司 TC4 titanium alloy wire for ultrasonic vibration conduction and preparation method thereof
CN114618970A (en) * 2022-03-14 2022-06-14 江西景航航空锻铸有限公司 Forging process for improving strength of thick-section TA15 titanium alloy forging
CN114606455B (en) * 2022-05-11 2022-07-15 北京煜鼎增材制造研究院有限公司 Spray type heat treatment method for large titanium alloy component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122985A1 (en) 2013-02-06 2014-08-14 株式会社神戸製鋼所 Titanium-alloy forging material and method for manufacturing same
WO2014196042A1 (en) 2013-06-05 2014-12-11 株式会社神戸製鋼所 Forged titanium alloy material and method for producing same, and ultrasonic testing method
US10604823B2 (en) 2013-06-05 2020-03-31 Kobe Steel, Ltd. Forged titanium alloy material and method for producing same, and ultrasonic inspection method

Also Published As

Publication number Publication date
JPH0849053A (en) 1996-02-20

Similar Documents

Publication Publication Date Title
JP2988269B2 (en) Method for producing rolled α + β titanium alloy sheet
US5277718A (en) Titanium article having improved response to ultrasonic inspection, and method therefor
US6387197B1 (en) Titanium processing methods for ultrasonic noise reduction
Wang et al. Microstructure and mechanical properties of AZ31 magnesium alloy sheets processed by constrained groove pressing
Yu et al. Dynamic evolution of grain structure and micro-texture along a welding path of aluminum alloy profiles extruded by porthole dies
EP2212444B1 (en) Recrystallized aluminum alloys with brass texture and methods of making the same
He et al. Effects of thermomechanical treatment on grain refinement, second-phase particle dissolution, and mechanical properties of 2219 Al alloy
JP6022341B2 (en) Titanium alloy billet, method for producing titanium alloy billet, titanium alloy forged material, method for producing titanium alloy forged material, and method for producing aircraft parts
EP2955240B1 (en) Forged titanium alloy material and method for manufacturing same
Wang et al. Microstructural evolution and mechanical properties of a linear friction welded two-phase Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3 Si titanium alloy joint
Kumaran Evaluation of precipitation reaction in 2024 Al–Cu alloy through ultrasonic parameters
Zhang et al. Evolution in microstructures and mechanical properties of pure copper subjected to severe plastic deformation
KR20090118404A (en) Manufacturing method of aluminum alloy having good dynamic deformation properties
Ma et al. Interfacial microstructure evolution and mechanical properties of inertia friction welded aluminium alloy/stainless steel joint with preheat treatment
Oda et al. Effect of local texture and residual stress on the bendability of extruded 6000-series Al alloy profiles
JP5072725B2 (en) Titanium alloy billet with excellent defect detection capability in ultrasonic testing
Abioye et al. Influence of equal channel angular extrusion on the tensile behavior of Aluminum 6063 alloy
Zel’dovich et al. Mechanical properties and the structure of chromium–zirconium bronze after dynamic channel-angular pressing and subsequent aging
Poths et al. Effect of strain reversal on the dynamic spheroidization of Ti-6Al-4V during hot deformation
Yang et al. Annealing hardening and deformation behavior of layered gradient Zr–Ti composite
JP3310155B2 (en) Manufacturing method of seamless pipe of α + β type titanium alloy with excellent fracture toughness
Cerreta et al. The influence of microstructure on the mechanical response of copper in shear
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
Keshavarz et al. Influence of pass number on microstructure, mechanical, and tribological properties of cold-rolled Al1050 during friction stir processing
Min et al. Real-time ultrasonic measurement during tensile testing of aluminum alloys

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 14

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term