JPH02390A - Semiconductor substrate with superconductor layer - Google Patents

Semiconductor substrate with superconductor layer

Info

Publication number
JPH02390A
JPH02390A JP63278628A JP27862888A JPH02390A JP H02390 A JPH02390 A JP H02390A JP 63278628 A JP63278628 A JP 63278628A JP 27862888 A JP27862888 A JP 27862888A JP H02390 A JPH02390 A JP H02390A
Authority
JP
Japan
Prior art keywords
semiconductor
composite oxide
substrate
single crystal
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63278628A
Other languages
Japanese (ja)
Inventor
Naoharu Fujimori
直治 藤森
Keizo Harada
敬三 原田
Shuji Yatsu
矢津 修示
Tetsuji Jodai
哲司 上代
Hideo Itozaki
糸崎 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63278628A priority Critical patent/JPH02390A/en
Publication of JPH02390A publication Critical patent/JPH02390A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To bring a wiring for an IC to a superconductive state, and to reduce the loss of currents while enabling operation at high speed by forming a semiconductor layer shaped onto an Si single crystal substrate and composed of materials except Si and a composite oxide group superconductive material layer formed onto the semiconductor layer. CONSTITUTION:A semiconductor substrate is formed of a semiconductor layer shaped onto an Si single crystal substrate and consisting of materials except Si and a composite oxide group superconductive material layer formed onto the semiconductor layer. The semiconductor substrate hot only uses a composite oxide superconductor as a mere wiring material but also is employed as an integrated circuit substrate for shaping a novel superconducting element such as a semiconductor device, in which a Josephson junction is formed to a composite oxide superconductor section, a superconducting transistor, in which the semiconductor substrate and the superconductor are combined, and a hot-electron transistor. Accordingly, wirings for an IC are brought to a superconductive state, and the loss of currents can be reduced while high-frequency transmission or high speed operation can be realized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体基板に関する。より詳細には、基板上
に、半導体層と複合酸化物超電導体層とを具備し、半導
体回路の基材として用いるだけでなく、ジョセフソン素
子あるいは超電導トランジスターやホットエレクトロン
トランジスター等の超電導体素子基材として、更に、半
導体回路と超電導素子との複合回路を形成する際き基材
として用いることができる新規な半導体基板の構成に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to semiconductor substrates. More specifically, the substrate is provided with a semiconductor layer and a composite oxide superconductor layer, and is used not only as a base material for semiconductor circuits, but also as a base material for superconductor elements such as Josephson elements, superconducting transistors, and hot electron transistors. Furthermore, the present invention relates to a structure of a novel semiconductor substrate that can be used as a base material when forming a composite circuit of a semiconductor circuit and a superconducting element.

従来の技術 電子の相転移であるといわれる超電導現象は、特定の条
件下で導体の電気抵抗が零の状態となり完全な反磁性を
示す現象である。即ち、超電導下では、超電導体に電流
を流しても電力損失が全く無く、密度の高い電流が永久
に流れ続ける。従って、例えば送電技術に超電導を応用
すれば、現在送電に伴って生じているといわれる約7%
の不可避な送電損失を大幅に減少できる。また、高磁場
発生用電磁石としての応用は、発電技術の分野ではMH
D発電、電動機等と共に、起動に発電量以上の電力を消
費するともいわれる核融合反応の実現を有利に促進する
技術として期待されている。
BACKGROUND OF THE INVENTION Superconductivity, which is said to be a phase transition of electrons, is a phenomenon in which the electrical resistance of a conductor becomes zero under certain conditions and exhibits complete diamagnetic properties. That is, under superconductivity, there is no power loss at all even when current is passed through a superconductor, and a high-density current continues to flow forever. Therefore, for example, if superconductivity is applied to power transmission technology, the approximately 7%
This can significantly reduce unavoidable power transmission losses. In addition, in the field of power generation technology, MH
Along with D power generation and electric motors, it is expected to be a technology that advantageously promotes the realization of nuclear fusion reactions, which are said to consume more power than the amount of power generated to start them up.

また磁気浮上列車、電磁気推進船舶等の動力として、更
に、計測・医療の分野でもNMR,π中間子治療、高エ
ネルギー物理実験装置などへの利用が期待されている。
It is also expected to be used as a power source for magnetic levitation trains, electromagnetic propulsion ships, etc., and also for use in NMR, pi-meson therapy, high-energy physics experiment equipment, etc. in the measurement and medical fields.

更に、上述のような大型の装置における利用とは別に、
超電導材料は各種の電子素子への応用も提案されている
。代表的なものとしては、超電導材料どうしを弱く接合
した場合に印加電流によって量子効果が巨視的に現れる
ジョセフソン効果を利用した素子が挙げられる。トンネ
ル接合型ジョセフソン素子は、超電導材料のエネルギー
ギャップが小さいことから、極めて高速な低電力消費の
スイッチング素子として期待されている。また、電磁波
や磁場に対するジョセフソン効果が正確な量子現象とし
て現れることから、ジョセフソン素子を磁場、マイクロ
波、放射線等の超高感度センサとして利用することも期
待されている。更に、電子回路の集積度が高くなるにつ
れて単位面積当たりの消費電力が冷却能力の限界に達す
るものと見られている。そこで超高速計算機には超電導
素子の開発が要望されている。
Furthermore, apart from the use in large-scale equipment as mentioned above,
Applications of superconducting materials to various electronic devices have also been proposed. A typical example is an element that utilizes the Josephson effect, in which quantum effects appear macroscopically due to applied current when superconducting materials are weakly bonded together. Tunnel junction type Josephson devices are expected to be extremely high-speed switching devices with low power consumption because the energy gap of superconducting materials is small. Furthermore, since the Josephson effect on electromagnetic waves and magnetic fields appears as a precise quantum phenomenon, it is expected that Josephson elements will be used as ultra-sensitive sensors for magnetic fields, microwaves, radiation, etc. Furthermore, as the degree of integration of electronic circuits increases, it is expected that power consumption per unit area will reach the limit of cooling capacity. Therefore, there is a need for the development of superconducting elements for ultra-high-speed computers.

従来、様々な努力にもかかわらず、超電導材料の超電導
臨界温度Tcは長期間に亘ってNb、Geの23Kを越
えることができなかった。これに対して、1986年に
、ベドノーツおよびミューラー等によって、複合酸化物
系超電導材料が高いT。を有することが発見されるに至
って、高温超電導の可能性が大きく開けてきた( Be
dnorz、 Mtjller、”Z、 Phys。
Conventionally, despite various efforts, the superconducting critical temperature Tc of superconducting materials could not exceed 23K for Nb and Ge for a long period of time. On the other hand, in 1986, Bednotes and Mueller et al. reported that complex oxide superconducting materials have high T. With the discovery that Be
dnorz, Mtjller, “Z, Phys.

B64.1986.189” )。B64.1986.189”).

これまでにも複合酸化物系のセラミック材料が超電導特
性を示すということ自体は知られていた。
It has been known for some time that composite oxide ceramic materials exhibit superconducting properties.

例えば、米国特許第3.932.315号には、Ba−
Pb−B1系の複合酸化物が超電導特性を示すというこ
とが記載されており、また、特開昭60−173.88
5号公報にはBa−B1系の複合酸化物が超電導特性を
示すということが記載されている。しかし、これまでに
知られていた複合酸化物超電導材料のT。は、10に以
下と全般的に極めて低く、超電導現象を得るには高価且
つ稀少な液体ヘリウム(沸点4.2K)の使用が不可避
であった。
For example, U.S. Pat. No. 3,932,315 describes Ba-
It has been described that Pb-B1-based composite oxides exhibit superconducting properties, and JP-A-60-173.88
No. 5 describes that a Ba-B1-based composite oxide exhibits superconducting properties. However, the T of the complex oxide superconducting materials known so far. is generally extremely low at less than 10, and the use of expensive and rare liquid helium (boiling point 4.2K) was unavoidable in order to obtain superconducting phenomena.

ベドノーツおよびミューラー等によって発見された酸化
物超電導体は、(La、 Ba)2Cub、なる組成を
有し、K、NiF、型の結晶構造を有するものと見られ
ている。この複合酸化物系超電導材料は、従来から知ら
れていたペロブスカイト型酸化物系超電導材料と結晶構
造が類似しているが、Tcは従来の超電導材料に比べて
飛躍的に高い約30にという値であった。
The oxide superconductor discovered by Bednotes and Muller et al. has a composition of (La, Ba)2Cub, and is thought to have a K, NiF type crystal structure. This composite oxide-based superconducting material has a crystal structure similar to that of previously known perovskite-type oxide-based superconducting materials, but its Tc is approximately 30, which is significantly higher than that of conventional superconducting materials. Met.

また、1987年2月に、チ二一等によって90に級の
臨界温度を示すBa−Y−Cu系の複合酸化物が発見さ
れた。このYBCOと通称される複合酸化物はY1Ba
2Cu30t−xで表される組成を有すると考えられて
いる。
Furthermore, in February 1987, a Ba-Y-Cu-based composite oxide having a critical temperature of 90 degrees was discovered by Chijiichi et al. This composite oxide commonly known as YBCO is Y1Ba
It is thought to have a composition expressed as 2Cu30t-x.

更に、続いて発見された[3i −3r −Ca−Cu
系およびTI −Ba −Ca−Cu系複合酸化物は、
Tcが100K以上であるばかりでなく化学的にも安定
しており、YBCO等のような超電導特性の経時的劣化
が少ないことから実用に向いているのではないかと期待
されている。
Furthermore, it was subsequently discovered that [3i -3r -Ca-Cu
system and TI-Ba-Ca-Cu system composite oxide,
Not only does it have a Tc of 100K or higher, but it is also chemically stable, and its superconducting properties do not deteriorate over time as much as YBCO does, so it is expected to be suitable for practical use.

これらの新しい複合酸化物系超電導材料の発見によって
高温超電導体実現の機運が昨今俄かに高まっている。
The discovery of these new composite oxide-based superconducting materials has recently increased the momentum for realizing high-temperature superconductors.

発明が解決しようとする課題 ところで、今日の電子技術分野で広く使用されている半
導体集積回路は、一般にシリコン等の半導体単結晶基板
上に絶縁膜を形成し、更に所定のパターンに従って熱拡
散、イオン注入等のドーピングを行う等して所望の素子
あるいは回路を形成している。このような回路における
配線パターンは、金属材料を蒸着することにより形成さ
れているが、断面積が非常に微小であることから信号電
流の損失が極めて大きい。また、電流の損失は熱として
放散されるので、従来の技術を使用する限り、集積度あ
るいは動作速度には限界がある。
Problems to be Solved by the Invention Incidentally, semiconductor integrated circuits widely used in today's electronic technology field generally form an insulating film on a semiconductor single crystal substrate such as silicon, and then heat diffusion and ionization according to a predetermined pattern. A desired element or circuit is formed by performing doping such as implantation. The wiring patterns in such circuits are formed by vapor-depositing metal materials, but their cross-sectional areas are extremely small, resulting in extremely large signal current losses. Furthermore, since current loss is dissipated as heat, there is a limit to the degree of integration or operating speed using conventional techniques.

従って、このうよな集積回路の分野において、配線を超
電導化することによって、これらの集積回路の特性の限
界を越えることが可能になる。
Therefore, in the field of integrated circuits, by making wiring superconducting, it becomes possible to overcome the limits of the characteristics of these integrated circuits.

また、超電導体と半導体とを組み合わせたトランジスタ
ーやホットエレクトロントランジスター等の超電導体と
半導体を組み合わせた素子、あるいはジョセフソン素子
等の超電導現象を利用した素子が種々提案されているが
、具体的にこれを作製し得る部材は現在知られていない
In addition, various devices have been proposed that combine superconductors and semiconductors, such as transistors that combine superconductors and semiconductors, hot electron transistors, and devices that utilize superconductivity phenomena such as Josephson devices. Currently, there are no known members that can be used to make this.

そこで、本発明の目的は、超電導配線あるいは超電導素
子の作製に使用することのできる超電導層を含む新規な
半導体基板を提供することにある。
Therefore, an object of the present invention is to provide a novel semiconductor substrate including a superconducting layer that can be used for producing superconducting wiring or superconducting elements.

問題点を解決するための手段 本発明に従うと、Si単結晶基板と、該Si単結晶基板
上に形成されたSi以外の材料による半導体層と、該半
導体層の上に形成された複合酸化物系超電導材料層とを
具備することを特徴とする半導体基板が提供される。
Means for Solving the Problems According to the present invention, a Si single crystal substrate, a semiconductor layer made of a material other than Si formed on the Si single crystal substrate, and a composite oxide formed on the semiconductor layer are provided. Provided is a semiconductor substrate comprising a superconducting material layer.

作用 本発明の超電導体層を有する半導体基板は、81基板上
に形成された半導体層上に複合酸化物超電導体薄膜が形
成されているところにその主要な特徴がある。すなわち
、本発明の超電導層を有する半導体基板は、公知任意の
半導体と複合酸化物超電導体を組み合わせた新規な半導
体デバイスの材料となるものである。
Function The main feature of the semiconductor substrate having a superconductor layer of the present invention is that a composite oxide superconductor thin film is formed on the semiconductor layer formed on the 81 substrate. That is, the semiconductor substrate having a superconducting layer of the present invention can be used as a material for a novel semiconductor device that combines any known semiconductor and a composite oxide superconductor.

本発明の超電導体層を有する半導体基板は、複合酸化物
超電導体を単なる配線用材料として使用するだけでなく
、複合酸化物超電導体の部分にジョセフソン接合を形成
した半導体デバイスあるいは半導体基板と超電導体とを
組み合わせた超電導トランジスタやホットエレクトロン
トランジスタのような新規な超電導素子を形成するため
の集積回路基板あるいはデバイス用基材として用いるこ
とができる。
The semiconductor substrate having a superconductor layer of the present invention can be used not only as a simple wiring material, but also as a superconductor with a semiconductor device or a semiconductor substrate in which a Josephson junction is formed in the composite oxide superconductor. It can be used as an integrated circuit substrate or device substrate for forming new superconducting elements such as superconducting transistors and hot electron transistors in combination with other materials.

特に好ましい複合酸化物系超電導材料としては、一般式
: (αl−X βX)γyO7(但し、αは周期律表
Ila族に含まれる元素であり、βは周期律表[La族
に含まれる元素であり、Tは周期律表Ib、nb、mb
、rVaおよび■族から選択される少なくとも一つの元
素であり、xSy、zはそれぞれ0.1 ≦X≦0.9
.0.4≦y≦3.0.1≦2≦5を満たす数である) で示される組成を有し、ペロブスカイト型または擬似ペ
ロブスカイト型酸化物を主体としたものが挙げられる。
A particularly preferred composite oxide superconducting material has the general formula: (αl-X βX)γyO7 (where α is an element included in the Ila group of the periodic table, and β is an element included in the La group of the periodic table). , T is the periodic table Ib, nb, mb
, rVa, and at least one element selected from group ■, and xSy and z are each 0.1≦X≦0.9
.. 0.4≦y≦3.0.1≦2≦5) and is mainly composed of perovskite-type or pseudo-perovskite-type oxides.

ここで、上記周期律kna族元素αとしては、Ba5S
r、 Ca、 Mg、 Be等を具体的に例示すること
ができ、更に、特に好ましい元素としてBa、 Srを
挙げることができ、更に、元素αの10〜80%をMg
1Ca、 Srから選択された1種または2種の元素で
置換することもできる。
Here, as the KNA group element α of the periodic law, Ba5S
Specific examples include r, Ca, Mg, Be, etc. Particularly preferable elements include Ba and Sr, and 10 to 80% of the element α is Mg.
It is also possible to substitute one or two elements selected from 1Ca and Sr.

上記元素βとしては、Yの他La、 Sc、 Ce、 
Gd。
In addition to Y, the above element β includes La, Sc, Ce,
Gd.

80% ErSTm、 yb、 Lu等が具体的に例示
でき、特に好ましいものとしてY、 La、 tlo等
を挙げることができ、更に、元素βのうち、10〜80
%をScまたはランタノイド元素から選択された1種ま
たは2種の元素で置換することもできる。
Specific examples include 80% ErSTm, yb, Lu, etc., and particularly preferable examples include Y, La, tlo, etc., and furthermore, 10 to 80% of the element β
% can also be replaced with one or two elements selected from Sc or lanthanide elements.

元素rは一般にCuであるが、他にA1、Fe、 Co
Element r is generally Cu, but may also include A1, Fe, Co
.

Ni、 Zn、 Ag、 Ti等を使用することもでき
、更に、その一部を周期律表1b、nb、■b、■aお
よび■族から選択される他の元素、例えば、Ti、 V
等で置換することもできる。
Ni, Zn, Ag, Ti, etc. can also be used, and some of them can also be used with other elements selected from groups 1b, nb, ■b, ■a and ■ of the periodic table, such as Ti, V
You can also replace it with .

また、本発明に係る半導体基板の超電導材料層に適用で
きる他の有利な材料として、 式:α4(β+−x、Cax)mcunOp+y(ここ
で、αは81またはTIであり、βはαが81のときは
Srであり、αがTIのときはBaであり、 mは6≦m≦10を満たし、 nは4≦n≦8を満たし、 p=6+m+nであり、 Xは0.2<X<0.8を満たし、 yは一2≦y≦2を満たす数を表す) で表される組成の複合酸化物超電導体を挙げることがで
きる。
Other advantageous materials that can be applied to the superconducting material layer of the semiconductor substrate according to the invention include the formula: α4(β+-x,Cax)mcunOp+y, where α is 81 or TI; When α is TI, it is Sr, when α is TI, it is Ba, m satisfies 6≦m≦10, n satisfies 4≦n≦8, p=6+m+n, and X is 0.2<X <0.8, and y represents a number satisfying -2≦y≦2.

また、本発明の超電導体層を有する半導体基板に使用す
る半導体は、Ge、■−■族化合物半導体、I[−VI
族化合物半導体、rV−IV族化合物半導体、多元系化
合物半導体のいずれの半導体でもよく、具体的には、G
e単結晶、SiC単結晶、GaAs単結晶GaP単結晶
、InP単結晶、InSb単結晶、Zn5e単結晶、C
dTe単結晶、HgCdTe単結晶、GaA IAs単
結晶、Ga1nAs単結晶、InAlAs単結晶または
InGaAs P単結晶等を例示することができる。
Furthermore, the semiconductors used in the semiconductor substrate having a superconductor layer of the present invention include Ge, ■-■ group compound semiconductor, I[-VI
Any semiconductor may be used, including group compound semiconductors, rV-IV group compound semiconductors, and multi-component compound semiconductors.
e single crystal, SiC single crystal, GaAs single crystal, GaP single crystal, InP single crystal, InSb single crystal, Zn5e single crystal, C
Examples include dTe single crystal, HgCdTe single crystal, GaA IAs single crystal, Ga1nAs single crystal, InAlAs single crystal, and InGaAs P single crystal.

本発明の超電導体層を有する半導体基板を作製するには
、以下の手順によることが好ましい。81基板上にCV
D法、MBE法等の公知の方法で半導体単結晶層を形成
し、該半導体層上にスパッタリング、真空蒸着、分子線
エピタキシ、イオンビーム蒸着等の物理蒸着法で複合酸
化物超電導体薄膜を形成する。物理蒸着法としては、特
にマグネトロンスパッタリングが好ましい。また、成膜
後、酸素雰囲気中で熱処理を行うとかあるいは酸素プラ
ズマに曝す等の後処理を行い、上記の薄膜を構成してい
る複合酸化物超電導体結晶中の酸素濃度を適正に調整す
ることが好ましい。これらの処理を行う際に、半導体の
特性を損なわないよう十分注意する必要がある。そこで
、特に超電導体薄膜を成膜する際の基板温度は700℃
以下にすることが好ましく、また、後処理の際にも基板
温度を必要以上に高くすることは避けなければならない
In order to produce a semiconductor substrate having a superconductor layer of the present invention, it is preferable to follow the following procedure. CV on 81 board
A semiconductor single crystal layer is formed by a known method such as the D method or MBE method, and a composite oxide superconductor thin film is formed on the semiconductor layer by a physical vapor deposition method such as sputtering, vacuum evaporation, molecular beam epitaxy, or ion beam evaporation. do. As the physical vapor deposition method, magnetron sputtering is particularly preferred. In addition, after the film is formed, post-treatment such as heat treatment in an oxygen atmosphere or exposure to oxygen plasma is performed to appropriately adjust the oxygen concentration in the composite oxide superconductor crystal that constitutes the above-mentioned thin film. is preferred. When performing these treatments, sufficient care must be taken not to damage the characteristics of the semiconductor. Therefore, the substrate temperature when forming a superconductor thin film is 700°C.
It is preferable to keep the temperature below, and it is also necessary to avoid increasing the substrate temperature unnecessarily during post-processing.

以下、本発明を実施例により具体的に説明するが、以下
に記載するものは本発明の単なる実施例に過ぎず、以下
の開示により、本発明の範囲が何等制限されないことは
勿論である。
Hereinafter, the present invention will be specifically explained with reference to examples, but what is described below are merely examples of the present invention, and it goes without saying that the scope of the present invention is not limited in any way by the following disclosure.

実施例 Si基板上にGaAs半導体単結晶層を形成し、さらに
複合酸化物超電導体層を積層した本発明の超電導体層を
有する半導体基板、およびGaAs半導体単結晶層に替
えてInP半導体単結晶層を用いた本発明の超電導体層
を有する半導体基板を作製した。
Example A semiconductor substrate having a superconductor layer of the present invention in which a GaAs semiconductor single crystal layer is formed on a Si substrate and a composite oxide superconductor layer is further laminated thereon, and an InP semiconductor single crystal layer is used instead of the GaAs semiconductor single crystal layer. A semiconductor substrate having a superconductor layer of the present invention was manufactured using the above method.

Si基板上に、CVD法でそれぞれGaAs、 InP
単結晶層を形成した。
GaAs and InP were deposited on a Si substrate using the CVD method.
A single crystal layer was formed.

これら半導体単結晶層を形成した81基板上に、それぞ
れYBa2Cu4. s Ox焼結体粉末およびHoB
a、 5[”u4.ff Ox焼結体粉末をターゲット
として、公知のマグネトロンスパッタリング法により、
複合酸化物超電導体薄膜を形成した。基板とターゲット
の位置関係および高周波電力の大きさに特に注意し、基
板温度700℃でスパッタリングを行い、複合酸化物超
電導体層を1000人まで成長させた。
On the 81 substrates on which these semiconductor single crystal layers were formed, YBa2Cu4. s Ox sintered powder and HoB
a, 5[”u4.ff Using Ox sintered powder as a target, by a known magnetron sputtering method,
A composite oxide superconductor thin film was formed. Particular attention was paid to the positional relationship between the substrate and the target and the magnitude of the high-frequency power, and sputtering was performed at a substrate temperature of 700°C to grow a composite oxide superconductor layer of up to 1,000 layers.

上記のように作製した本発明の超電導体層を有する半導
体基板は、いずれのものも半導体と超電導体との界面の
状態がよく、半導体デバイス材料として優れた特性を有
していた。また、それぞれの試料の超電導体層の超電導
臨界温度を以下の第1表に示す。尚、第1表において、
Tcoは、試料の電気抵抗が急激に低下し始めた温度を
、Tciは電気抵抗が測定できなくなった温度をそれぞ
れ示している。
All of the semiconductor substrates having the superconductor layer of the present invention produced as described above had a good interface between the semiconductor and the superconductor, and had excellent properties as a semiconductor device material. Further, the superconducting critical temperature of the superconductor layer of each sample is shown in Table 1 below. Furthermore, in Table 1,
Tco indicates the temperature at which the electrical resistance of the sample begins to drop rapidly, and Tci indicates the temperature at which the electrical resistance can no longer be measured.

第1表 発明の効果 本発明により、新規な半導体デバイス材料としてたいへ
ん有効な超電導体層を有する半導体基板が提供される。
Table 1 Effects of the Invention The present invention provides a semiconductor substrate having a superconductor layer that is very effective as a new semiconductor device material.

本発明により、半導体デバイスの高速化、高密度化がさ
らに推進される。さらに、本発明はジョセフソン素子と
異なり、3端子以上の端子を有する超電導体を利用した
半導体デバイス等に応用が可能である。
The present invention further promotes higher speed and higher density of semiconductor devices. Further, unlike Josephson devices, the present invention can be applied to semiconductor devices using superconductors having three or more terminals.

特許出願人  住友電気工業株式会社Patent applicant: Sumitomo Electric Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] Si単結晶基板と、該Si単結晶基板上に形成されたS
i以外の材料による半導体層と、該半導体層の上に形成
された複合酸化物系超電導材料層とを具備することを特
徴とする半導体基板。
Si single crystal substrate and S formed on the Si single crystal substrate
1. A semiconductor substrate comprising: a semiconductor layer made of a material other than i; and a composite oxide superconducting material layer formed on the semiconductor layer.
JP63278628A 1987-11-04 1988-11-04 Semiconductor substrate with superconductor layer Pending JPH02390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63278628A JPH02390A (en) 1987-11-04 1988-11-04 Semiconductor substrate with superconductor layer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-278659 1987-11-04
JP27865987 1987-11-04
JP63278628A JPH02390A (en) 1987-11-04 1988-11-04 Semiconductor substrate with superconductor layer

Publications (1)

Publication Number Publication Date
JPH02390A true JPH02390A (en) 1990-01-05

Family

ID=26552957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63278628A Pending JPH02390A (en) 1987-11-04 1988-11-04 Semiconductor substrate with superconductor layer

Country Status (1)

Country Link
JP (1) JPH02390A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571777A (en) * 1991-03-11 1996-11-05 Sumitomo Electric Industries, Ltd. Superconducting thin film having at least one isolated superconducting region formed of oxide superconductor material and method for manufacturing the same
US10379125B2 (en) 2013-12-27 2019-08-13 Becton, Dickinson And Company System and method for dynamically calibrating and measuring analyte concentration in diabetes management monitors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571777A (en) * 1991-03-11 1996-11-05 Sumitomo Electric Industries, Ltd. Superconducting thin film having at least one isolated superconducting region formed of oxide superconductor material and method for manufacturing the same
US10379125B2 (en) 2013-12-27 2019-08-13 Becton, Dickinson And Company System and method for dynamically calibrating and measuring analyte concentration in diabetes management monitors

Similar Documents

Publication Publication Date Title
EP0325877A1 (en) A semiconductor substrate having a superconducting thin film
JPH02390A (en) Semiconductor substrate with superconductor layer
JP2664070B2 (en) Preparation method of composite oxide superconducting thin film
JPH02391A (en) Superconductive field-effect transistor
JPH01100022A (en) Preparation of superconducting thin film
JPH02389A (en) Semiconductor substrate with superconductor layer
JP2544759B2 (en) How to make a superconducting thin film
JPH02388A (en) Semiconductor substrate with superconductor layer
JP2645730B2 (en) Superconducting thin film
JPH01170078A (en) Semiconductor substrate provided with superconductor layer
JPH01170070A (en) Semiconductor substrate equipped with superconductor layer
JPH01280375A (en) Semiconductor substrate having superconductor layer
JPH01170074A (en) Semicondcutor substrate provided with superconductor layer
JPH01170071A (en) Semiconductor substrate provided with superconductor layer
JP2544760B2 (en) Preparation method of superconducting thin film
JPH01170081A (en) Semiconductor substrate provided with superconductor layer
JPH01280378A (en) Semiconductor substrate having superconductor layer
JPH01170075A (en) Semiconductor substrate provided with superconductor layer
JPH01173669A (en) Semiconductor substrate containing superconductor layer
JPH01173661A (en) Semiconductor substrate containing superconductor layer
JPH01170079A (en) Semiconductor substrate provided with superconductor layer
JPH01170069A (en) Semiconductor substrate equipped with superconductor layer
JPH01170076A (en) Semiconductor substrate provided with superconductor layer
JPH01170077A (en) Semiconductor substrate provided with superconductor layer
JPH02181478A (en) Compound body having superconductor layer