JPH0238555B2 - ENSEKIGAISENHIITAANARABINISONOSEIZOHO - Google Patents

ENSEKIGAISENHIITAANARABINISONOSEIZOHO

Info

Publication number
JPH0238555B2
JPH0238555B2 JP17936085A JP17936085A JPH0238555B2 JP H0238555 B2 JPH0238555 B2 JP H0238555B2 JP 17936085 A JP17936085 A JP 17936085A JP 17936085 A JP17936085 A JP 17936085A JP H0238555 B2 JPH0238555 B2 JP H0238555B2
Authority
JP
Japan
Prior art keywords
far
solution
molded body
acetate
infrared heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17936085A
Other languages
Japanese (ja)
Other versions
JPS6241788A (en
Inventor
Katsutoshi Kakizawa
Yutaka Hagiwara
Tetsuji Iyoda
Hideyuki Sajimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawai Musical Instrument Manufacturing Co Ltd
Original Assignee
Kawai Musical Instrument Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawai Musical Instrument Manufacturing Co Ltd filed Critical Kawai Musical Instrument Manufacturing Co Ltd
Priority to JP17936085A priority Critical patent/JPH0238555B2/en
Publication of JPS6241788A publication Critical patent/JPS6241788A/en
Publication of JPH0238555B2 publication Critical patent/JPH0238555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、遠赤外線ヒーター並にその製造法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a far-infrared heater and a method for manufacturing the same.

(従来の技術) 従来、酸化アルミニウムやガラスなどのシリカ
を主成分とするものなどのセラミツク材の成形体
基体とし、その表面に導電性膜や発熱抵抗体膜を
生成した製品とするには、金属や金属酸化物を、
真空蒸着法、スパツタリング法、イオンプレーテ
イング法、プラズマ溶射法、湿式電気メツキ法、
導電塗料の塗布法などが採用されている。又発熱
線と放射板とを機械的に組み合わせた遠赤外線ヒ
ーターも公知である。
(Prior art) Conventionally, in order to produce a product using a molded body of a ceramic material such as aluminum oxide or glass whose main component is silica, and a conductive film or a heating resistor film formed on the surface, metals and metal oxides,
Vacuum deposition method, sputtering method, ion plating method, plasma spraying method, wet electroplating method,
Methods such as applying conductive paint have been adopted. Further, a far-infrared heater that mechanically combines a heating wire and a radiation plate is also known.

(発明が解決しようとする問題点) 上記従来の製造法や装置は製造作業が面倒で且
つ製造コストが高くなり、又遠赤外線ヒーターと
して必ずしも有効でない。
(Problems to be Solved by the Invention) The conventional manufacturing methods and devices described above require troublesome manufacturing operations and high manufacturing costs, and are not necessarily effective as far-infrared heaters.

(問題点を解決するための手段) 本発明は、上記の問題点を解決し、波長4μm
〜100μmの範囲、特に人体に有効な8μm〜15μm
の遠赤外線を放射し得る安定堅牢なセラミツク遠
赤外線ヒーターを提供するものである。
(Means for solving the problems) The present invention solves the above problems and has a wavelength of 4 μm.
~100μm range, especially effective for the human body from 8μm to 15μm
The present invention provides a stable and robust ceramic far-infrared heater that can emit far-infrared rays.

即ち、本発明の遠赤外線ヒーターは、セラミツ
ク成形体の表面にアセトナト酢酸インジウムIn
(OAc)x(acac)3-x(ここで、Acは酢酸基、0<
x<3)の酸化分解生成物から成る酸化インジウ
ムを主成分とした酸化スズとの複合酸化物の焼成
薄膜を一体に有して成る。尚、アセトナト酢酸イ
ンジウムの式In(OAc)x(acac)3-x中、xの範囲
を0<x<3と表したのは、かかるアセトナト酢
酸インジウムはその製造に際し、In(acac)3やIn
(OAc)3の混入が避けられないものであり、原料
アセトナト酢酸インジウムにこれらIn(acac)3
In(OAc)3が混入したものを本願発明から排除す
るものではない。
That is, the far-infrared heater of the present invention has acetonatoacetate indium In on the surface of the ceramic molded body.
(OAc) x (acac) 3-x (where Ac is acetic acid group, 0<
It integrally comprises a fired thin film of a composite oxide containing indium oxide as a main component and tin oxide, which is an oxidative decomposition product of x < 3). In the formula In(OAc) x (acac) 3-x of indium acetonate acetate, the range of x is expressed as 0<x< 3 . In
(OAc) 3 is unavoidable, and these In(acac) 3 and
The invention does not exclude those containing In(OAc) 3 .

本発明は、更に上記の導電性ヒーターを容易且
つ経済的に得られるその製造法を提供するもの
で、セラミツク成形体を加熱した表面にアセトナ
ト酢酸インジウムIn(OAc)x(acac)3-x(ここで
Acは酢酸基、0<x<3)の溶液に少量のアル
コキシ塩化スズSnCly(OR)4-y(ここでRはアル
キル基、0<y<3)を混入した溶液を均一に付
着させると共に加熱酸化分解反応を行い、酸化イ
ンジウムを主成分とした酸化スズとの複合酸化物
の焼成薄膜を一体に生成せしめることを特徴とす
る。尚、アルコキシ塩化スズの式SnCly(OR)4-y
中yの範囲を0<y<3と表したのは、かかるア
ルコキシ塩化スズはその製造に際し、Sn(OR)4
の混入が避けられないものであり、原料アルコキ
シ塩化スズにこのSn(OR)4が混入したものを本
願発明から排除するものではない。
The present invention further provides a manufacturing method for easily and economically obtaining the conductive heater described above, in which indium acetonate acetate In(OAc) x (acac) 3-x ( here
Ac is an acetate group, and a small amount of alkoxytin chloride SnCly(OR) 4-y (where R is an alkyl group, 0<y<3) is mixed into a solution of 0<x<3), and a solution is uniformly deposited. It is characterized by carrying out a heating oxidative decomposition reaction to integrally produce a fired thin film of a composite oxide containing indium oxide as a main component and tin oxide. Furthermore, the formula of alkoxytin chloride is SnCl y (OR) 4-y
The reason why the range of y is expressed as 0<y<3 is because such alkoxytin chloride is manufactured by Sn(OR) 4
The contamination of Sn(OR) 4 is unavoidable, and the contamination of this Sn(OR) 4 in raw material alkoxytin chloride is not excluded from the present invention.

(実施例) セラミツク材としては、従来公知の各種のセラ
ミツク材を使用できるが、好ましくは、酸化アル
ミニウムAl2O3、酸化ジルコニウムZrO2の単独又
はこれを主成分とする複合セラミツク材を使用す
る。本発明によれば、かゝるセラミツク材の成形
体、例えば、板状の成形体を、電気炉などにより
加熱し、その加熱した表面にIn(OAc)x(acac)3-
(ここでAcは酢酸基、0<x<3)の組成のア
セトナト酢酸インジウム溶液にSnCly(OR)4-y
(ここでRはアルキル基、0<y<3)の組成ア
ルコキシ塩化スズを混入した溶液を噴霧や塗布な
どでその全面に均一に付着させる。その溶剤とし
ては、水、アルコール系、エステル系、芳香族系
などの有機系溶剤の単独又はこれらの混合が使用
できる。その成形体の加熱温度は該溶液が加熱酸
化分解反応をおこし、酸化インジウムに酸化スズ
の複合酸化物を主体とした数10Ω/□以上の導電
性の焼成膜となるに足る300℃以上好ましくは、
450℃程度以上を要する。かくして一般に数
10Ω/□以上数100Ω/□以下の発熱抵抗体膜を
得る。その焼成膜の厚さは数μ〜数百オングスト
ロームの薄膜が一般に得られ、その成形体表面に
強固に密着した安定堅牢な製品が得られ、従来の
真空蒸着法等による如き高価な設備や面倒な作業
を要せず、製造コストの低減した発熱体膜が得ら
れ、又その焼成膜は透明で外観上体裁がよい。
尚、溶液の成形体表面への付着は、噴霧による場
合には、その吹付量の調整が容易で直ちに焼成膜
を均一に得られ、且つ導電度の調整が容易で所定
の各種の導電性をもつセラミツク成形体を得るこ
とができ有利である。
(Example) As the ceramic material, various conventionally known ceramic materials can be used, but it is preferable to use aluminum oxide Al 2 O 3 or zirconium oxide ZrO 2 alone or a composite ceramic material containing these as main components. . According to the present invention, such a molded body of ceramic material, for example, a plate-shaped molded body, is heated in an electric furnace or the like, and In(OAc) x (acac) 3- is applied to the heated surface.
x (where Ac is an acetate group, 0<x<3) in an acetonatoindium acetate solution with SnCly(OR) 4-y
(Here, R is an alkyl group, and a solution containing alkoxytin chloride having a composition of 0<y<3) is uniformly deposited on the entire surface by spraying or coating. As the solvent, water, alcohol-based, ester-based, aromatic and other organic solvents can be used alone or in combination. The heating temperature of the molded body is preferably 300°C or higher, which is sufficient to cause the solution to undergo a thermal oxidation decomposition reaction and form a fired film with conductivity of several tens of Ω/□ or more, mainly consisting of a composite oxide of indium oxide and tin oxide. ,
Requires a temperature of about 450℃ or higher. Thus generally the number
Obtain a heating resistor film with a resistance of 10Ω/□ or more and several 100Ω/□ or less. The thickness of the fired film is generally from several microns to several hundred angstroms, and a stable and robust product that firmly adheres to the surface of the molded product can be obtained. It is possible to obtain a heating element film that requires no additional work and has a reduced manufacturing cost, and the fired film is transparent and has a good appearance.
In addition, when the solution is applied to the surface of the molded body by spraying, the amount of spraying can be easily adjusted, and a fired film can be obtained immediately and uniformly, and the conductivity can be easily adjusted, so that various predetermined conductivities can be obtained. It is advantageous to be able to obtain a ceramic molded body with

次に本発明の具体的な実施例として人体に有用
な8μm〜15μmの波長の遠赤外線を特に大量に発
生し得る遠赤外線ヒーターにつき説明する。
Next, as a specific embodiment of the present invention, a far-infrared heater capable of generating a particularly large amount of far-infrared rays having a wavelength of 8 μm to 15 μm, which is useful for the human body, will be described.

メタノールにIn(OAc)x(acac)3-x(但しAcは
酢酸基、0<x<3)を1.00mol/溶解すると
ともに更にこのアセトナト酢酸インジウムに対し
2mol%に相当する0.02mol/のSnOly(OR)4-y
(但しRはアルキル基、0y<3)を添加溶解した
溶液を予め電気炉などで105mm×105mm×5mm(厚
さ)の板状の酸化アルミニウム成形体を500℃に
加熱したその加熱表面にスプレーガンを使用し、
空気圧力1Kg/cm2でその全面に均一に付着させ
た。噴霧圧力は0.4Kg/cm2〜2.0Kg/cm2の範囲が一
般であるが、1Kg/cm2前後が好ましく、良好な霧
粒子で吹付けることができた。
Dissolve 1.00 mol/In(OAc) x (acac) 3-x (where Ac is an acetic acid group, 0<x<3) in methanol and further
0.02 mol/SnOly(OR) 4-y corresponding to 2 mol%
(where R is an alkyl group, 0y<3) is added and dissolved in a solution and sprayed onto the heated surface of a plate-shaped aluminum oxide molded body of 105 mm x 105 mm x 5 mm (thickness) heated to 500°C in advance in an electric furnace. using a gun,
It was applied uniformly to the entire surface using an air pressure of 1 Kg/cm 2 . The spray pressure is generally in the range of 0.4 Kg/cm 2 to 2.0 Kg/cm 2 , but preferably around 1 Kg/cm 2 , and it was possible to spray with good mist particles.

その付着霧粒子は、そのセラミツク成形体の
500℃付近の高温の加熱面のため直ちに酸化分解
反応を起こしてインジウム酸化物に少量のスズ酸
化物の混入した複合酸化物を主体とした厚さ1μ
m程度で抵抗値200〜300Ω/□の範囲の導電性薄
膜として得られた。かくしてその常温に放冷され
たものはセラミツク成形体の表面に強固に安定堅
牢に密着した良好な導電性発熱抵抗体膜を有する
セラミツク遠赤外線ヒーターとして得られた。こ
れに遠赤外線ヒーターとしての性能を検べるた
め、その板の両端縁に焼付けによつて銀電極を設
けこれに通電し、成形体の温度が150℃の時のそ
の焼成膜の遠赤外線等の発生量を測定した所、第
1図に示すように、特に人体に有効な8〜15μm
の波長の遠赤外線の発生量が著しく大きいが、や
けどを与えるおそれのある近赤外線の波長では発
生量が小さくなる特性のものが得られることが判
明した。
The adhering mist particles are attached to the ceramic molded body.
Due to the high-temperature heating surface of around 500℃, an oxidative decomposition reaction occurs immediately, resulting in a 1μ thick composite oxide consisting mainly of indium oxide mixed with a small amount of tin oxide.
A conductive thin film having a resistance value of 200 to 300 Ω/□ was obtained. In this way, the product allowed to cool to room temperature was obtained as a ceramic far-infrared heater having a good conductive heat generating resistor film that adhered firmly, stably and firmly to the surface of the ceramic molded body. In order to test its performance as a far-infrared heater, silver electrodes were baked on both edges of the plate and electricity was applied to it. As shown in Figure 1, we measured the amount of
It has been found that the amount of far infrared rays emitted is extremely large at wavelengths of , but the amount emitted is small at wavelengths of near infrared rays that may cause burns.

第2図は、セラミツク成形体としてAl2O3の代
りに、酸化ジルコニウムZrO2を使用した以外は、
前記の具体的と同様にして作成した導電性セラミ
ツクを同様の遠赤外線放射性の試験を行なつたそ
の測定結果を示し、上記と同様に特に遠赤外線ヒ
ーターとして有利な製品であることが認められ
た。
Figure 2 shows the ceramic molded body except that zirconium oxide ZrO 2 was used instead of Al 2 O 3 .
The conductive ceramic produced in the same manner as the above-mentioned concrete was subjected to a similar far-infrared radiation test and the measurement results were shown, and it was found that the product was especially advantageous as a far-infrared heater, as in the above. .

空気圧を1Kg/cm2と一定にした場合の溶液の噴
霧時間と溶液の濃度との関係を調べたが、アセト
ナト酢酸インジウムの濃度0.65mol/〜5mol/
の範囲では、2〜10秒の範囲で変わるが、いず
れも短時の吹付作業ですむ。噴霧圧力は0.4Kg/
cm2〜2.0Kg/cm2の範囲を一般とする。
We investigated the relationship between solution spray time and solution concentration when the air pressure was kept constant at 1 Kg/ cm2 , and found that the concentration of indium acetonate acetate was 0.65 mol/~5 mol/
The spraying time varies from 2 to 10 seconds in the range of 2 to 10 seconds, but all require short spraying time. Spray pressure is 0.4Kg/
Generally, the range is from cm2 to 2.0Kg/ cm2 .

次に、そのアセトナト酢酸インジウム単独及び
これにアルコキシ塩化スズを添加する量を色に変
えた溶液と導電性(抵抗性)との関係を調べた所
第3図示のような結果を得た。第3図に示す如
く、その抵抗値はドーバントの添加量によつて変
わる。一般にそのSn添加量は10mol%までが好ま
しい。
Next, we investigated the relationship between the conductivity (resistance) and the solution of indium acetonate acetate alone and the solution in which the amount of alkoxytin chloride was added to the solution changed in color, and the results shown in Figure 3 were obtained. As shown in FIG. 3, the resistance value changes depending on the amount of dopant added. Generally, the amount of Sn added is preferably up to 10 mol%.

かくして、その用途に応じ、抵抗値の異なる発
熱抵抗体膜を得るに当り、上記のように、ドーバ
ントの添加量をコントロールすることにより得ら
れる。
Thus, heating resistor films having different resistance values can be obtained depending on the application by controlling the amount of dopant added as described above.

成形体の加熱温度は第4図示の如く300℃以上
にするときは、導電性が得られ、赤外線ヒーター
の場合は数百Ω/□が望ましいので、これを得る
ために450℃程度以上が好ましい。
When the heating temperature of the molded body is set to 300°C or higher as shown in Figure 4, conductivity can be obtained, and in the case of an infrared heater, several hundred Ω/□ is desirable, so in order to obtain this, it is preferably about 450°C or higher. .

溶液の吹付量は、前記の具体的な実施例におけ
る溶液を使用した場合は第5図示の通りであつ
た。
The amount of solution sprayed was as shown in Figure 5 when the solution in the above specific example was used.

このように、加熱温度、吹付量の調製によつて
も、種々の特性の発熱抵抗体膜が得られる。
In this way, heating resistor films with various characteristics can be obtained by adjusting the heating temperature and spraying amount.

本発明の該焼成膜の組成は現在定かでないが、
純粋な酸化物ではないことから判断して、発熱抵
抗体になり得る理由は、結晶構造欠陥による金属
インジウム等の金属原子イオン、塩素イオンが電
子供与体及び受容体として働くためと推測され
る。
Although the composition of the fired film of the present invention is currently unknown,
Judging from the fact that it is not a pure oxide, the reason why it can become a heat generating resistor is presumed to be that metal atom ions such as metal indium and chlorine ions act as electron donors and acceptors due to crystal structure defects.

このように本発明によるときは、セラミツク成
形体を加熱しその加熱面に、アセトナト酢酸イン
ジウム溶液にアルコキシ塩化スズを混入した溶液
を付着させると共に加熱酸化分解反応させるの
で、そのセラミツク成形体の表面に強固に密着し
た堅牢な酸化インジウムを主成分とした酸化スズ
との複合酸化物の焼成薄膜を有する導電性セラミ
ツクが得られその製造コストは安価であり、遠赤
外線ヒーターとして優れた材料を提供する効果を
有する。
As described above, according to the present invention, a ceramic molded body is heated, and a solution of acetonate indium acetate mixed with alkoxytin chloride is applied to the heated surface of the ceramic molded body, and a heating oxidative decomposition reaction is caused. A conductive ceramic having a sintered thin film of a composite oxide with tin oxide, whose main component is indium oxide, which is firmly adhered and robust, is obtained, and its production cost is low, and it provides an excellent material for far-infrared heaters. has.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明製品の遠赤外線放射特性を示
すグラフ、第2図は他例のグラフ、第3図乃至第
5図は夫々Sn/Inの配合量、成形体の加熱温度、
溶液の吹付量と得られる製品の導電性との関係を
示すグラフである。
Fig. 1 is a graph showing the far-infrared radiation characteristics of the product of the present invention, Fig. 2 is a graph of another example, and Figs.
It is a graph showing the relationship between the amount of sprayed solution and the conductivity of the obtained product.

Claims (1)

【特許請求の範囲】 1 セラミツク成形体の表面にアセトナト酢酸イ
ンジウム(In(OAc)x(acac)3-x)(ここでAcは
酢酸基、0<x<3)の酸化分解生成物から成る
酸化インジウムを主成分とした酸化スズとの複合
酸化物の焼成薄膜を一体に有して成る遠赤外線ヒ
ーター。 2 セラミツク成形体を加熱した表面にアセトナ
ト酢酸インジウムIn(OAc)x(acac)3-x(ここで
Acは酢酸基、0<x<3)の溶液に少量のアル
コキシ塩化スズ(SnCly(OR)4-y)(ここでRはア
ルキル基、0<y<3)を混入した溶液を均一に
付着させると共に加熱酸化分解反応を行い、酸化
インジウムを主成分とした酸化スズとの複合酸化
物の焼成薄膜を一体に生成せしめることを特徴と
する遠赤外線ヒーターの製造法。 3 該成形体の加熱温度は300℃以上とし、該温
度に加熱された表面に噴霧により該溶液を均一に
付着させることを特徴とする特許請求の範囲2項
に記載の遠赤外線ヒーターの製造法。
[Claims] 1. On the surface of a ceramic molded body, there is formed an oxidative decomposition product of indium acetonate acetate (In(OAc) x (acac) 3-x ) (where Ac is an acetate group, 0<x<3). A far-infrared heater that integrally comprises a fired thin film of a composite oxide containing indium oxide as a main component and tin oxide. 2 Indium acetonate acetate In (OAc) x (acac) 3-x (here
Ac is an acetate group, 0<x<3), and a small amount of alkoxytin chloride (SnCl y (OR) 4-y ) (where R is an alkyl group, 0<y<3) is mixed in a solution. A method for producing a far-infrared heater, which comprises depositing the material and carrying out a heating oxidation decomposition reaction to integrally produce a fired thin film of a composite oxide containing indium oxide as a main component and tin oxide. 3. The method for producing a far-infrared heater according to claim 2, characterized in that the heating temperature of the molded body is 300°C or higher, and the solution is uniformly adhered to the surface heated to the temperature by spraying. .
JP17936085A 1985-08-16 1985-08-16 ENSEKIGAISENHIITAANARABINISONOSEIZOHO Expired - Lifetime JPH0238555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17936085A JPH0238555B2 (en) 1985-08-16 1985-08-16 ENSEKIGAISENHIITAANARABINISONOSEIZOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17936085A JPH0238555B2 (en) 1985-08-16 1985-08-16 ENSEKIGAISENHIITAANARABINISONOSEIZOHO

Publications (2)

Publication Number Publication Date
JPS6241788A JPS6241788A (en) 1987-02-23
JPH0238555B2 true JPH0238555B2 (en) 1990-08-30

Family

ID=16064487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17936085A Expired - Lifetime JPH0238555B2 (en) 1985-08-16 1985-08-16 ENSEKIGAISENHIITAANARABINISONOSEIZOHO

Country Status (1)

Country Link
JP (1) JPH0238555B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0554035B1 (en) * 1992-01-27 2001-10-17 Mitsubishi Denki Kabushiki Kaisha Solid state color video camera
JP2961466B2 (en) * 1992-08-19 1999-10-12 株式会社河合楽器製作所 heater
JP3072303B2 (en) * 1992-08-19 2000-07-31 株式会社河合楽器製作所 heater

Also Published As

Publication number Publication date
JPS6241788A (en) 1987-02-23

Similar Documents

Publication Publication Date Title
US4393095A (en) Chemical vapor deposition of vanadium oxide coatings
US4908065A (en) Coating solution for use in the formation of metal oxide film
JPH0160548B2 (en)
JP3970719B2 (en) Sputtering target based on titanium dioxide
US4960618A (en) Process for formation of metal oxide film
CN109862631A (en) A kind of preparation method of NEW TYPE OF COMPOSITE plate Electric radiant Heating Film
Matsushima et al. Fabrication of SnO2 particle-layer on the glass substrate using electrospray pyrolysis method and the gas sensitivity for H2
US4397915A (en) Electrical resistor material, resistor made therefrom and method of making the same
CN104602375A (en) Thermal sensitive ceramic electrically heated glass and preparation method thereof
SE462801B (en) PROCEDURE FOR PREPARING A THERMOCROME WINDOW
JPH0238555B2 (en) ENSEKIGAISENHIITAANARABINISONOSEIZOHO
JPS59130401A (en) Electric resistor and method of producing same
JPH0238556B2 (en) ENSEKIGAISENHIITAANARABINISONOSEIZOHO
Ridge et al. Composition control in conducting oxide thin films
JP2010021028A (en) Planar heating element and method of manufacturing the same
JP2961466B2 (en) heater
JPS6237894A (en) Far infrared ray heater and manufacture thereof
JPH0586605B2 (en)
JPS639327B2 (en)
JPH0217629B2 (en)
JPS59181413A (en) Tantalum oxide transparent conductor film and method of producing same
JPS61279082A (en) Far infrared heater and manufacture thereof
KR100384513B1 (en) Composition for transparent conductive double thin layers with low electric resistances, preparing method thereof and product including the same
Bolometer III V acuum P rocessing T echniques--III Abstract, 1o.--
Ritter Transparent Conductive Coatings