JPH0237926B2 - DODENSEISOSEIBUTSUNOSEIZOHOHO - Google Patents

DODENSEISOSEIBUTSUNOSEIZOHOHO

Info

Publication number
JPH0237926B2
JPH0237926B2 JP13683182A JP13683182A JPH0237926B2 JP H0237926 B2 JPH0237926 B2 JP H0237926B2 JP 13683182 A JP13683182 A JP 13683182A JP 13683182 A JP13683182 A JP 13683182A JP H0237926 B2 JPH0237926 B2 JP H0237926B2
Authority
JP
Japan
Prior art keywords
reaction
temperature
cyano group
double bond
acrylonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13683182A
Other languages
Japanese (ja)
Other versions
JPS59135208A (en
Inventor
Teruichiro Matsumura
Akio Takahashi
Jun Tsukamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13683182A priority Critical patent/JPH0237926B2/en
Priority to US06/520,197 priority patent/US4673720A/en
Publication of JPS59135208A publication Critical patent/JPS59135208A/en
Priority to US07/039,239 priority patent/US4778625A/en
Publication of JPH0237926B2 publication Critical patent/JPH0237926B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導電性組成物の製造法に関する。炭素
系の導電性組成物は種々の方法で製造できるが、
気相熱分解が最も重要な方法の一つと考えられ、
これまでに数多くの具体策が提案されてきた。メ
タン、プロパン、プロピレン、ベンゼン、アセチ
レンなどの化合物を高温で熱分解するのもその一
つであるが、反応温度は一般に高く通常900℃以
上2500℃を要し、エネルギー多消費型である。し
かもこの範囲中でも低温の領域では、導電性の高
い生成物は得られにくい。 本発明においてシアノ基と二重結合を持つ化合
物の低温反応によつても充分高い導電性を有する
組成物の得られる方法が提案される。本発明の目
的はすでに述べたように導電性組成物の製造にあ
るが、単独使用以外にも他の耐熱性材料たとえば
炭素、セラミツク、金属などの被服層として利用
する事も可能である。 なお本発明における導電性組成物とは金属なみ
の高い電気伝導度を示す組成物は勿論の事、判導
体領域の電気伝導度をもつ組成物をも含んでい
る。 以下に本発明の方法を詳細に述べる。本発明の
要旨はシアノ基と二重結合を持つ化合物を500〜
3200℃の温度で反応させる事にある。 本発明の方法において使用されるシアノ基と二
重結合を含む化合物の具体例は、アクリロニトリ
ル、メタクリロニトリル、テトラシアノエチレ
ン、クロロアクリロニトリル、およびその他のシ
アノ基と二重結合を持つ炭化水素であり、これら
は単独で用いてもよいが、2種以上混合してもよ
く、さらにその他の脂肪族炭化水素、脂環族炭化
水素、芳香族炭化水素、不飽和炭化水素などと混
合して用いてもよい。反応に際して窒素、ヘリウ
ム、アルゴン、水素等の反応雰囲気中で不活性ガ
スで通常3―40%、好ましくは10―30%の濃度に
希釈しておく事が出来る。 これらのガス状の原料は500〜3200℃、好まし
くは600〜2000℃、さらに好ましくは700〜1500℃
の温度で反応させる。反応は種々のメカニズムで
進行すると考えられる。たとえば、先ず二重結合
が開き、ついでシアノ基の閉環による環化が起
り、さらに反応温度の上昇とともに脱水素環化そ
の他の反応が複雑に起こり、さらに高温ではグラ
フアイト化が進むと考えられる。これ以外にもイ
オンや他のラジカルへの開裂を経るメカニズムも
考えられる。反応生成物は反応条件にもよるが、
種々の構造の混在した複雑な組成物と考えられ
る。 反応時間は条件にもよるが、700℃程度では50
秒程度で十分である。これ以上の時間でも勿論よ
く、またこれ以下の時間でもそれなりに効果はあ
る。 本発明の方法によれば低温の段階で窒素を含む
新規な化合物がまず生成する。反応温度が上ると
窒素の含有率は低下しいわゆるグラフアイト構造
に近づくと考えられる。この場合従来の気相熱分
解炭素の製造法に比べると、反応速度が大きいの
で低温反応が可能で、省エネルギーの観点からみ
てもきわめて高い価値がある。 本発明の方法で得られ導電性組成物を他の材料
の表面被覆層として用いる際の基盤としては、石
英、ガラス、窒化ホウ素、窒化ケイ素、サフアイ
ア、シリコン等の無機質の材料、アルミニウム、
ステンレス、銅その他の金属材料、グラフアイ
ト、炭素繊維等の炭素材料等が用いられる。基盤
としてエピタキシヤル重合に用いられる結晶性基
盤さらにグラフオエピタキシヤルに用いられる基
盤も勿論用いる事が出きる。 本発明は触媒を使用しない熱反応を典型的実施
態様としているが、触媒を用いる方法もまた可能
である。触媒としてはアルミナ、鉄、コバルト、
ニツケル、バナジウム、等の重金属、これらの合
金、酸化物、炭化物その他の化合物が用いられ
る。触媒を用いる事により反応の温度をさらに低
下させる事が出来る。さらにプラズマ重合の手法
を併用する事も出来る。 本発明により得られる導電性組成物は一般には
基盤上に付着物としてして得られるが、繊維状ま
たは短繊維状の生成物も勿論本発明の範囲に包含
される。 本発明により得られる導電性組成物の電気電導
度はドーピングおよびインターカレーシヨンの手
法により向上させ得る。ドーパントとしてはヨウ
素、五フツ化ヒ素、三塩化アンチモンおよびその
他の公知の化合物が用いられ得る。 以下に実施例により本発明の方法を詳細に説明
する。 実施例 1 内径15mmの石英製の反応管に反応の基盤として
石英板を入れ、電気炉を用いて600℃に加熱する。
ここに窒素ガスをキヤリヤーとし、これにアクリ
ロニトリル、メタクリロニトリル、テトラシアノ
エチレン、メタン、プロピレン、アセチレン、n
―ヘプタン、ベンゼン、アセトニトリル、ジエチ
レントリアミン、2―ビニルピリジン、およびク
ロルアクリロニトリルをそれぞれ別に20容量%含
む原料ガスを100ml/minの速度で2時間供給し
た。反応後基盤である石英板を取り出し反応生成
物を肉眼で観察した。アクリロニトリル、メタク
リロニトリル、テトラシアノエチレン、およびク
ロロアクリロニトリルでは金属光沢を持つ反応物
が基盤上に生成していたが、これ以外の原料では
表面被覆層の生成はなかつた。 実施例 2 アクリロニトリルをアルゴンを用いて5%に希
釈し50ml/minの速度で600、800、1500℃に温度
をあげた反応管に入れた石英板の上で反応させ
た。1時間の反応後基盤として用いた石英板を取
り出し、基盤上の生成物をとり元素分析を行なつ
た。結果は次の通りでああつた。
The present invention relates to a method of manufacturing a conductive composition. Carbon-based conductive compositions can be produced by various methods, but
Gas phase pyrolysis is considered to be one of the most important methods,
Many concrete measures have been proposed so far. One example of this is the thermal decomposition of compounds such as methane, propane, propylene, benzene, and acetylene at high temperatures, but the reaction temperature is generally high and usually requires a temperature of 900°C to 2500°C, which is energy-intensive. Moreover, within this range, it is difficult to obtain a highly conductive product in the low temperature region. The present invention proposes a method for obtaining a composition having sufficiently high conductivity even by low-temperature reaction of a compound having a cyano group and a double bond. As mentioned above, the purpose of the present invention is to produce a conductive composition, but in addition to its use alone, it can also be used as a coating layer for other heat-resistant materials such as carbon, ceramics, metals, etc. Incidentally, the conductive composition in the present invention includes not only a composition exhibiting a high electrical conductivity comparable to that of a metal, but also a composition having an electrical conductivity of a conductive region. The method of the present invention will be described in detail below. The gist of the present invention is that compounds having cyano groups and double bonds can be
The purpose is to react at a temperature of 3200℃. Specific examples of compounds containing a cyano group and a double bond used in the method of the invention are acrylonitrile, methacrylonitrile, tetracyanoethylene, chloroacrylonitrile, and other hydrocarbons containing a cyano group and a double bond. , These may be used alone, or may be used as a mixture of two or more, or may be used in combination with other aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, unsaturated hydrocarbons, etc. Good too. During the reaction, it can be diluted with an inert gas in a reaction atmosphere such as nitrogen, helium, argon, hydrogen, etc. to a concentration of usually 3-40%, preferably 10-30%. These gaseous raw materials are heated at 500 to 3200°C, preferably 600 to 2000°C, and more preferably 700 to 1500°C.
React at a temperature of The reaction is thought to proceed by various mechanisms. For example, it is thought that first the double bond opens, then cyclization occurs by ring closure of the cyano group, and then dehydrogenation and other reactions occur in a complicated manner as the reaction temperature increases, and graphitization progresses at higher temperatures. Other possible mechanisms include cleavage into ions and other radicals. The reaction product depends on the reaction conditions, but
It is considered to be a complex composition containing a mixture of various structures. The reaction time depends on the conditions, but at about 700℃
About a second is sufficient. Of course, longer times are fine, and shorter times are also somewhat effective. According to the method of the present invention, a novel compound containing nitrogen is first produced at a low temperature stage. It is thought that as the reaction temperature increases, the nitrogen content decreases and approaches a so-called graphite structure. In this case, compared to the conventional method for producing gas-phase pyrolytic carbon, the reaction rate is higher, so a low-temperature reaction is possible, and it is extremely valuable from an energy-saving perspective. When the conductive composition obtained by the method of the present invention is used as a surface coating layer of other materials, examples of substrates include inorganic materials such as quartz, glass, boron nitride, silicon nitride, sapphire, silicon, aluminum,
Stainless steel, copper and other metal materials, graphite, carbon fibers and other carbon materials, etc. are used. As a substrate, it is of course possible to use a crystalline substrate used in epitaxial polymerization as well as a substrate used in grapheoepitaxial polymerization. Although the present invention typically embodies a non-catalyzed thermal reaction, catalyzed methods are also possible. Alumina, iron, cobalt,
Heavy metals such as nickel and vanadium, alloys thereof, oxides, carbides and other compounds are used. By using a catalyst, the reaction temperature can be further lowered. Furthermore, a plasma polymerization method can also be used in combination. The conductive composition obtained according to the invention is generally obtained as a deposit on a substrate, but products in the form of fibers or short fibers are of course included within the scope of the invention. The electrical conductivity of the conductive composition obtained according to the invention can be improved by doping and intercalation techniques. Iodine, arsenic pentafluoride, antimony trichloride and other known compounds can be used as dopants. The method of the present invention will be explained in detail by way of examples below. Example 1 A quartz plate is placed as a reaction base in a quartz reaction tube with an inner diameter of 15 mm, and heated to 600°C using an electric furnace.
Here, nitrogen gas is used as a carrier, and acrylonitrile, methacrylonitrile, tetracyanoethylene, methane, propylene, acetylene, n
- Raw material gas containing 20% by volume of each of heptane, benzene, acetonitrile, diethylenetriamine, 2-vinylpyridine, and chloroacrylonitrile was supplied at a rate of 100ml/min for 2 hours. After the reaction, the quartz plate serving as the base was taken out and the reaction products were observed with the naked eye. Acrylonitrile, methacrylonitrile, tetracyanoethylene, and chloroacrylonitrile produced reactants with metallic luster on the substrate, but no surface coating layer was produced with other raw materials. Example 2 Acrylonitrile was diluted to 5% using argon and reacted on a quartz plate placed in a reaction tube heated to 600, 800, and 1500° C. at a rate of 50 ml/min. After 1 hour of reaction, the quartz plate used as a substrate was taken out, and the product on the substrate was taken for elemental analysis. The results were as follows.

【表】 反応温度が低い場合窒素を多量に含有する生成
物が得られる。反応生成物の電気伝導度を測定し
た結果は次の通りであつた。 反応温度 電気伝導度 600℃ 0.02 S/cm 800℃ 80 S/cm 1500℃ 900 S/cm 実施例 3 内径20cmの反応管に酸化第1鉄を塗布した磁性
のボートを入れ1000℃まで昇温しアクリロニトリ
ルを15cm/minの流速で2時間反応させた。反応
後磁性のボートを取り出し観察したところ長さ6
mmのウイスカーが密生していた。
[Table] When the reaction temperature is low, a product containing a large amount of nitrogen is obtained. The results of measuring the electrical conductivity of the reaction product were as follows. Reaction temperature Electric conductivity 600°C 0.02 S/cm 800°C 80 S/cm 1500°C 900 S/cm Example 3 A magnetic boat coated with ferrous oxide was placed in a reaction tube with an inner diameter of 20 cm, and the temperature was raised to 1000°C. Acrylonitrile was reacted at a flow rate of 15 cm/min for 2 hours. After the reaction, the magnetic boat was taken out and observed, and the length was 6.
mm whiskers were densely grown.

Claims (1)

【特許請求の範囲】 1 シアノ基と二重結合を含む化合物を500〜
3200℃の温度で反応させる事を特徴とする導電性
組成物の製造方法。 2 特許請求の範囲第1項の記載の方法におい
て、シアノ基と二重結合を含む化合物が下記の一
般式で示され、かつその炭素数が6以下である事
を特徴とする方法。 ここで、X、Y、Zは水素、ハロゲン、シアノ
基、およびアルキル基から選ばれる原子団。 3 特許請求の範囲第2項記載の方法において、
シアノ基を含む化合物がアクリロニトリル、α―
クロルアクリロニトリルまたはβクロルアクリロ
ニトリルである事を特徴とする方法。
[Claims] 1. A compound containing a cyano group and a double bond,
A method for producing a conductive composition, which is characterized by reacting at a temperature of 3200°C. 2. The method according to claim 1, wherein the compound containing a cyano group and a double bond is represented by the following general formula and has 6 or less carbon atoms. Here, X, Y, and Z are atomic groups selected from hydrogen, halogen, cyano group, and alkyl group. 3. In the method described in claim 2,
Compounds containing cyano groups are acrylonitrile, α-
A method characterized by using chloracrylonitrile or β-chloroacrylonitrile.
JP13683182A 1982-08-07 1982-08-07 DODENSEISOSEIBUTSUNOSEIZOHOHO Expired - Lifetime JPH0237926B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13683182A JPH0237926B2 (en) 1982-08-07 1982-08-07 DODENSEISOSEIBUTSUNOSEIZOHOHO
US06/520,197 US4673720A (en) 1982-08-07 1983-08-04 Electroconductive polymer and process for preparation thereof
US07/039,239 US4778625A (en) 1982-08-07 1987-04-17 Electroconductive polymer and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13683182A JPH0237926B2 (en) 1982-08-07 1982-08-07 DODENSEISOSEIBUTSUNOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS59135208A JPS59135208A (en) 1984-08-03
JPH0237926B2 true JPH0237926B2 (en) 1990-08-28

Family

ID=15184518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13683182A Expired - Lifetime JPH0237926B2 (en) 1982-08-07 1982-08-07 DODENSEISOSEIBUTSUNOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0237926B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510077A (en) * 1983-11-03 1985-04-09 General Electric Company Semiconductive glass fibers and method
US5028355A (en) * 1987-05-19 1991-07-02 Crest-Foam Corporation Conductive polyurethane foam containing picric acid and analog thereof
US4886626A (en) * 1987-05-19 1989-12-12 Crest-Foam Corporation Conductive polyurethane foam compositions containing tetralyanoethylene and method

Also Published As

Publication number Publication date
JPS59135208A (en) 1984-08-03

Similar Documents

Publication Publication Date Title
US4701317A (en) Highly electroconductive films and process for preparing same
US5143709A (en) Process for production of graphite flakes and films via low temperature pyrolysis
JP2944246B2 (en) Method for producing coiled carbon fiber
JPH0424320B2 (en)
JPH0142885B2 (en)
US4096297A (en) Isotropic boron nitride and method of making same
EP0723600B1 (en) Process for the preparation of silicon carbide films using single organosilicon compounds
US5017527A (en) Mechanical seals of SiC-coated graphite by rate-controlled generation of SiO and process therefor
JPH0237926B2 (en) DODENSEISOSEIBUTSUNOSEIZOHOHO
US20050255245A1 (en) Method and apparatus for the chemical vapor deposition of materials
JPS6225605B2 (en)
WO1990015776A1 (en) Process for production of graphite flakes and films via low temperature pyrolysis
US4673720A (en) Electroconductive polymer and process for preparation thereof
JPH03104927A (en) Coil-like carbon fiber and carbon composite material
Itzhak et al. Silicon-containing coatings produced by a chemical vapour deposition method on nickel-based superalloys
US5273778A (en) Method for producing graphite intercalation compound
JPS6262188B2 (en)
JPS636563B2 (en)
KR910000293B1 (en) Process for production of graphite coated silicon carbide
WO1989009753A1 (en) Process for producing molding composed of silicon carbide and carbon
JP3482480B2 (en) Graphite-silicon carbide composite having excellent oxidation resistance and method for producing the same
JPH01252519A (en) Bulk body consisting of boron, carbon and nitrogen and production thereof
JPS5874511A (en) Manufacture of rhombic boron nitride
JPS61225320A (en) Metal-containing carbonaceous fiber and production thereof
JPH062568B2 (en) Method for producing high-purity silicon carbide powder