JPH0237336A - Emission quantity controller for electronic flash device - Google Patents

Emission quantity controller for electronic flash device

Info

Publication number
JPH0237336A
JPH0237336A JP63187119A JP18711988A JPH0237336A JP H0237336 A JPH0237336 A JP H0237336A JP 63187119 A JP63187119 A JP 63187119A JP 18711988 A JP18711988 A JP 18711988A JP H0237336 A JPH0237336 A JP H0237336A
Authority
JP
Japan
Prior art keywords
photometric
output
light emission
light
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63187119A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakamoto
宏 坂本
Norikazu Yokonuma
則一 横沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP63187119A priority Critical patent/JPH0237336A/en
Priority to US07/354,352 priority patent/US4951080A/en
Publication of JPH0237336A publication Critical patent/JPH0237336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Exposure Control For Cameras (AREA)
  • Stroboscope Apparatuses (AREA)

Abstract

PURPOSE:To achieve optimum exposure, which is finely corrected in response to the condition of a field, with simple circuit configuration by providing plural metering means with different areas of a field that these means meter selectively, comparing the metered output with the other converted one and stopping light generation when the relative relation between them is inverted. CONSTITUTION:As at least two metering means, the metering means which is composed of photodetectors 1 and 2 and metering amplifiers 3 and 4, for instance, and which selectively meters the central part, and the average metering means which is composed of the photodetectors 1 and 2 and the metering amplifiers 3 and 4. After a converting circuit 5 converts both of or either of metered outputs, a comparing means 6 compares both converted outputs or the unconverted output with the converted one, and when the relative relation between them is inverted, an emission stop signal is outputted to an emission control circuit 7. As a result, plural reference voltages and comparators necessary for fine control are not needed any more. Under the simple circuit configuration, emission quantity can be controlled by finely correcting it in response to the condition of the field.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、適正露出が得られるように発光量を制御する
電子閃光装置の発光量制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light emission amount control device for an electronic flash device that controls the amount of light emission so as to obtain proper exposure.

[従来の技術] 従来、この種の発光量制御装置として、ストロボ光の被
写体反射を被写界の特定領域から受光し、その他の領域
からの測光値との関係によって、基準露光量に対して補
正をかけ、適正露光を1昇るように発光停止信号を出力
しているものがある。
[Prior Art] Conventionally, this type of light emission amount control device receives strobe light reflected from a subject from a specific area of the subject, and adjusts it to a standard exposure amount based on the relationship with photometric values from other areas. There are some that apply correction and output a light emission stop signal so that the proper exposure is increased by one.

[発明が解決しようとする問題点] しかしながら、このような従来の発光量制御にあっては
、常に基準露光量やその他の基準値に対応した多くの基
準電圧が必要となり、きめ細かな制御を行なおうとすれ
ば、数多くの基準電圧を用意しなければならず、また判
定のためのコンパレータも同様に多く必要となる傾向に
あり、回路スペースか増加しコストアップになる問題が
あった。
[Problems to be Solved by the Invention] However, in such conventional light emission control, many reference voltages corresponding to the reference exposure amount and other reference values are always required, making it difficult to perform fine control. If this were to be done, a large number of reference voltages would have to be prepared, and a large number of comparators for determination would also tend to be required, which would increase the circuit space and cost.

本発明は、このような従来の問題点に鑑みてなされたも
ので、最少の回路構成で、被写界の状況に対応した細か
な補正がストロボ@影時に得られる電子閃光装置の発光
量制御装置を提供することをことを目的とする。
The present invention has been made in view of these conventional problems, and provides light emission control for an electronic flash device that allows detailed corrections corresponding to the conditions of the subject to be obtained when strobes are in the shadows with a minimum circuit configuration. The purpose is to provide equipment.

[問題点を解決するための手段] この目的を達成するため本発明にあっては、ストロボ光
の測光系から発光停止制御回路に至る間に発光量制御装
置を設けることで、簡単な回路構成により細かなきめ制
御を行なえるようにする。
[Means for Solving the Problems] In order to achieve this object, the present invention provides a light emission amount control device between the strobe light metering system and the light emission stop control circuit, thereby simplifying the circuit configuration. This allows for more fine-grained control.

即ち、本発明にあっては、少なくとも2つの測光手段と
して、例えば受光素子と測光アンプによる中央部重点の
測光手段と、受光素子と測光アンプによる平均測光手段
を備える。
That is, in the present invention, at least two photometric means include, for example, a center-weighted photometric device including a photodetector and a photometric amplifier, and an average photometric device including a photodetector and a photometric amplifier.

そして2つの測光手段のいずれか一方又は両方の測光出
力を変換回路で変換処理した後に、比較手段で両方の変
換出力同志の比較、又はいずれか一方の変換出力と他方
の測光出力とを比較し、両者の相対的関係が反転した時
に発光停止制御回路に対し発光停止信号を出力する。
After the photometric output of one or both of the two photometric means is converted by the conversion circuit, the comparison means compares both converted outputs or compares the converted output of either one with the photometric output of the other. , outputs a light emission stop signal to the light emission stop control circuit when the relative relationship between the two is reversed.

具体的には、中央部重点の測光出力を変換回路で処理し
た後、比較手段にて平均測光出力と比較し、両者の相対
的関係が反転したとき、発光停止制御回路に発光停止信
号を出力して発光を停止する。
Specifically, after the center-weighted photometric output is processed by a conversion circuit, it is compared with the average photometric output by a comparing means, and when the relative relationship between the two is reversed, a light emission stop signal is output to the light emission stop control circuit. to stop emitting light.

[作用コ このような構成を備えた本発明の電子閃光装置の発光量
制御装置におっては、被写界に対し重点的に測光する領
域が異なる少なくとも2つの測光手段をもち、この測光
手段の測光出力の少なくとも一方を変換して比較するこ
とで、両者の相対的関係が反転した時に発光停止を行な
うため、従来のようにきめ細かな制御に必要な多数の基
準電圧やコンパレータが不要となり、簡単な回路構成に
より被写界の状況に対応してきめ細かな補正が施される
発光量制御を行なうことができる。
[Function] The light emission amount control device for an electronic flash device of the present invention having such a configuration has at least two photometering means that focus on different areas of the photographic subject, and the light metering means By converting and comparing at least one of the photometric outputs of the two, the light emission is stopped when the relative relationship between the two is reversed, eliminating the need for numerous reference voltages and comparators required for fine-grained control as in the past. With a simple circuit configuration, it is possible to control the amount of light emitted with fine corrections corresponding to the conditions of the photographic field.

[実施例] 第1図は本発明の一実施例を示したブロック図であり、
本発明の発光量制御装置はストロボ光の測光系から発光
停止制御回路7に至る間に設けられている。
[Embodiment] FIG. 1 is a block diagram showing an embodiment of the present invention,
The light emission amount control device of the present invention is provided between the strobe light metering system and the light emission stop control circuit 7.

第1図において、受光素子1と測光アンプ3により中央
部重点の測光系が構成され、また、受光素子2と測光ア
ンプ4により平均測光系が構成される。
In FIG. 1, the light receiving element 1 and the photometric amplifier 3 constitute a center-weighted photometric system, and the light receiving element 2 and the photometric amplifier 4 constitute an average photometric system.

この実施例にあっては、受光素子1と測光アンプ3で構
成される中央部重点の測光系の測光出力を変換回路5で
変換した後、比較手段としてのコンパレータ6の一方に
入力し、コンパレータ6の他方には受光素子2と測光ア
ンプ4で構成された平均測光系の測光出力を直接入力し
ている。コンパレータ6は変換回路5の変換出力と測光
アンプ4の測光出力とを比較し、両者の相対的関係が反
転したときに発光停止制御回路7に対し発光停止信号を
出力して発光を停止させる。
In this embodiment, the photometric output of a center-weighted photometric system consisting of a photodetector 1 and a photometric amplifier 3 is converted by a conversion circuit 5, and then inputted to one side of a comparator 6 as comparison means. The photometric output of the average photometric system composed of the light receiving element 2 and the photometric amplifier 4 is directly input to the other side of the photometric amplifier 6. The comparator 6 compares the conversion output of the conversion circuit 5 and the photometric output of the photometric amplifier 4, and when the relative relationship between the two is reversed, outputs a light emission stop signal to the light emission stop control circuit 7 to stop light emission.

第2図は第1図の実施例で用いられる光学系の一例を示
した説明図であり、この実施例にあってはTTL自動調
光を例にとっている。
FIG. 2 is an explanatory diagram showing an example of the optical system used in the embodiment of FIG. 1, and this embodiment takes TTL automatic light control as an example.

尚、本発明にあっては、被写界に対しそれぞれ指向性の
異なる少なくとも2つの測光系が存在すれば良いことか
ら、装置自体は電子閃光装置内に設けても良いし、第2
図のTTL自動調光に示すようにカメラ側に設けても良
い。
In addition, in the present invention, since it is sufficient to have at least two photometric systems each having different directivity for the field of view, the device itself may be provided within an electronic flash device, or a second photometric system may be provided.
It may also be provided on the camera side as shown in the TTL automatic light control in the figure.

第2図において、9は囮影レンズであり、撮影レンズ9
によって焦点面17に被写体像が結像している。実際に
測光を行なうのは例えば、フ1−カルプレーンシャッタ
ーの全開時となるので、焦点面17はフィルム面となる
In FIG. 2, 9 is a decoy lens, and the photographic lens 9
Therefore, a subject image is formed on the focal plane 17. Since photometry is actually performed, for example, when the focal plane shutter is fully open, the focal plane 17 becomes the film plane.

そこでフィルム面となる焦点面17の反射光を例えば、
ミラーボックス下部に配置した受光素子1.2で受光す
る。受光素子1,2は撮影レンズ9の光軸上に配置する
ことができないため、撮影レンズ9の光軸外の所定位置
から焦点面17となるフィルム面を見るように配置され
る。
For example, the reflected light from the focal plane 17, which becomes the film plane, is
The light is received by a light receiving element 1.2 placed at the bottom of the mirror box. Since the light-receiving elements 1 and 2 cannot be placed on the optical axis of the photographic lens 9, they are arranged so as to view the film plane, which is the focal plane 17, from a predetermined position off the optical axis of the photographic lens 9.

ここで受光素子1,2は受光素子自体の光学系によって
、受光素子1は中央部重点となる指向性を持ら、一方、
受光素子2は平均測光の指向性を持っている。
Here, due to the optical system of the light receiving elements 1 and 2, the light receiving element 1 has a directivity that is centered on the central part, and on the other hand,
The light receiving element 2 has an average photometric directivity.

再び、第1図を参照するに、測光アンプ3.4はISO
感度に対応したゲイン切換回路や温度保償回路を備えた
周知のアンプ回路を有し、受光素子1,2による光量積
分値に比例した測光電圧を出力する。具体的には電源電
圧■CCを基準としてGND電位に向けて減少する測光
電圧の出力を行なう。
Referring again to Figure 1, the photometric amplifier 3.4 is
It has a well-known amplifier circuit equipped with a gain switching circuit and a temperature guarantee circuit corresponding to the sensitivity, and outputs a photometric voltage proportional to the integral value of the light amount by the light receiving elements 1 and 2. Specifically, a photometric voltage that decreases toward the GND potential is output based on the power supply voltage CC.

また、各測光アンプ3,4のゲイン調整は、それぞれ単
独で標準的な反射率の被写体に対し光量積分値が、例え
ば、電源電圧vCCから所定電圧を差し引いた基準電圧
vth、例えば、■th=Vcc−0,5Vに達したと
きに基準露光量が得られるように調整されている。
In addition, the gain adjustment of each of the photometric amplifiers 3 and 4 is performed so that the integral value of light amount for a subject with a standard reflectance is determined by, for example, a reference voltage vth obtained by subtracting a predetermined voltage from the power supply voltage vCC, for example, ■th= Adjustment is made so that the reference exposure amount is obtained when Vcc-0.5V is reached.

この基準露光量が得られる特性を第3図に示す。FIG. 3 shows the characteristics by which this reference exposure amount is obtained.

第3図において、光量積分値を表わす測光出力VCは、
仮りに発光強度が時間の経過に対し一定ならば時間Tに
比例して図示の直線で示すように減少する。
In Fig. 3, the photometric output VC representing the integrated value of light amount is
If the emission intensity is constant over time, it decreases in proportion to time T as shown by the straight line in the figure.

従来のTTL自動調光にあっては、測光出力VCが所定
の基準電圧vthに達した時刻tnで発光停止信号を出
力している。
In conventional TTL automatic light control, a light emission stop signal is output at time tn when the photometric output VC reaches a predetermined reference voltage vth.

第1図の実施例においても平均測光の測光系は第3図に
示すように従来と同じ測光出力を取り出す。
Even in the embodiment shown in FIG. 1, the average photometry photometry system outputs the same photometry output as the conventional one, as shown in FIG.

一方、第1図に示したように測光アンプ3による中央部
重点の測光系による測光出力は、変換回路5により次の
ような変換を受けるものとする。
On the other hand, as shown in FIG. 1, the photometric output from the center-weighted photometric system of the photometric amplifier 3 is subjected to the following conversion by the conversion circuit 5.

変換回路5は例えば、アナログ乗算器を使用しており、
2つの入力の積を1つの出力として与えることができ、
通常ワンチップのICで構成することができる。
For example, the conversion circuit 5 uses an analog multiplier,
The product of two inputs can be given as one output,
It can usually be configured with a one-chip IC.

ここでアナログ乗算器ICの演算方式が電流入力、電流
出力のものであれば、電源電圧VCCと測光出力Vcの
差を電圧−電流変換して入力すれば良い。また、電流出
力についても逆変換により電圧に変換して出力電圧yo
utを得れば良い。
Here, if the calculation method of the analog multiplier IC is current input/current output, the difference between the power supply voltage VCC and the photometric output Vc may be input after voltage-current conversion. In addition, the current output is also converted to voltage by inverse conversion, and the output voltage yo
All you have to do is get ut.

従って、測光アンプ3による中央部重点の測光出力と電
源電圧vCCの差を変換回路5を構成するアナログ乗算
器の2つの入力の両方に与えることで、入力信号の二乗
演算による変換出力を得ることができる。
Therefore, by applying the difference between the center-weighted photometric output from the photometric amplifier 3 and the power supply voltage vCC to both of the two inputs of the analog multiplier that constitutes the conversion circuit 5, a conversion output can be obtained by calculating the square of the input signal. Can be done.

このため変換回路5を構成するアナログ乗算器のゲイン
を適切に調整すると、第4図に示すような変換特性を得
ることができる。
Therefore, by appropriately adjusting the gain of the analog multiplier constituting the conversion circuit 5, conversion characteristics as shown in FIG. 4 can be obtained.

第4図において、横軸は入力電圧Vin、即ち、測光出
力Vcであり、縦軸は変換回路5の出力電圧であり、無
変換の場合が(a)で示す直線特性となり、二乗変換に
よる特性は(a−)の曲線となる。
In FIG. 4, the horizontal axis is the input voltage Vin, that is, the photometric output Vc, and the vertical axis is the output voltage of the conversion circuit 5. In the case of no conversion, the linear characteristic shown in (a) is obtained, and the characteristic due to square conversion. becomes the curve (a-).

そして無変換の直線(a)と変換曲線(a′)の交点は
基準電圧vthにおる。
The intersection of the unconverted straight line (a) and the conversion curve (a') is at the reference voltage vth.

このような変換特性について別の表現をとれば、基準電
圧vthより光量積分の進んでない領域では出力電圧v
Outをより光量積分の進んでない電圧に変換する。
To express this conversion characteristic in another way, in a region where the light intensity integral is less advanced than the reference voltage vth, the output voltage v
Out is converted into a voltage where the light amount integration is less advanced.

逆に、基準電圧vthより光量積分の進んだ領域では出
力電圧voutをより光量積分の進んだ電圧に変換して
いることを意味する。
Conversely, in a region where the light amount integration is more advanced than the reference voltage vth, it means that the output voltage vout is converted into a voltage where the light amount integration is more advanced.

また、第4図においては、時間軸が存在しないが、各時
刻における入力電圧■inと出力電圧Voutの関係は
時刻t1.tn、t2等における点の集合として表わさ
れ、この点の集合が変換曲線(aiと考えることができ
る。従って、特別に時間軸を意識しなくても以後の説明
は電圧のみのパラメータをグラフ上で扱って説明するこ
とにする。
Although there is no time axis in FIG. 4, the relationship between the input voltage ■in and the output voltage Vout at each time is the time t1. It is expressed as a set of points at tn, t2, etc., and this set of points can be thought of as a conversion curve (ai. Therefore, even if you are not particularly aware of the time axis, the following explanation will be based on the graph of voltage-only parameters. I will deal with it and explain it above.

次に、本発明による露光量制御の具体的な実施例による
動作を第5図を参照して説明する。
Next, the operation of a specific embodiment of exposure control according to the present invention will be described with reference to FIG.

第5図は第4図の具体的な入出力電圧値V i n。FIG. 5 shows specific input/output voltage values V i n of FIG. 4.

vou↑に加え、これらの入出力電圧vin、vo、u
tに相当する露光量の基準に対する△EV値を合わせて
示し、電源電圧VCCは5V、基準露光mに対応する基
準電圧vthは4,5■としている。
In addition to vou↑, these input and output voltages vin, vo, u
The ΔEV value with respect to the reference exposure amount corresponding to t is also shown, the power supply voltage VCC is 5V, and the reference voltage vth corresponding to the reference exposure m is 4.5■.

第6図は第5図の積分開始直後の部分を取り出して拡大
して示した説明図であり、同様に入出力電圧とそれに対
応したΔEV値を示している。
FIG. 6 is an enlarged explanatory diagram of a portion immediately after the start of integration in FIG. 5, and similarly shows the input/output voltages and the corresponding ΔEV values.

第5,6図において、直線Aは中央部重点測光の測光出
力を無変換で表わしたものであり、曲線へ−は変換回路
5で二乗変換した結果を表わしている。
In FIGS. 5 and 6, the straight line A represents the photometric output of center-weighted photometry without conversion, and the curve A represents the result of square conversion in the conversion circuit 5.

このグラフに無変換の直線Aに対応する平均測光を行な
った測光アンプ4の測光出力による直線81〜B5を加
えてみると、中央部重点測光の測光出力に対して平均測
光の積分が遅れている場合は、第6図の直線B1.B2
に示すように傾きが小さく、平均測光の積分が進んでい
る場合は第5図の直線B4.B5に示すように傾きの大
きい直線となる。
When we add straight lines 81 to B5, which are the photometric outputs of the photometric amplifier 4 that performed average photometry corresponding to the unconverted straight line A, to this graph, we find that the integration of the average photometry lags behind the photometric output of center-weighted photometry. If so, the straight line B1 in FIG. B2
As shown in Figure 5, if the slope is small and the integration of average photometry is progressing, the straight line B4 in Figure 5. As shown in B5, this becomes a straight line with a large slope.

また、標準反射板のような被写体に対しては中央部重点
測光と平均測光の測光出力が等しくなるので、第6図に
示すように直線Aに重なる曲線B3がこの場合の平均測
光の測光出力となる。
Furthermore, for a subject such as a standard reflector, the photometric output of center-weighted metering and average metering is equal, so as shown in Figure 6, curve B3 that overlaps straight line A is the photometric output of average metering in this case. becomes.

次に直線81〜B5と二乗変換した曲線へ−と交点で発
光を停止した場合の作用を説明する。
Next, the effect when light emission is stopped at the intersection with the straight line 81 to B5 and the square-converted curve will be described.

まず、第6図において、直線B1と曲線へ−の交点P1
を考える。この交点P1の状態にあっては中央部重点の
測光は一2ΔEVまで進んでいる。
First, in FIG. 6, the intersection point P1 between the straight line B1 and the curved line
think of. In the state of this intersection P1, the center-weighted photometry has progressed to -2ΔEV.

即ち、曲線へ−の21点から、その入力値INPUTに
対応したΔEVを読むことにより一2ΔEVがわかる。
That is, by reading the ΔEV corresponding to the input value INPUT from the 21 points on the curve, -2ΔEV can be found.

また、平均測光は一4八EVまでしか進んでいない。従
って、両者の差は2ΔEVであるが、このときの露光状
態を考えると、これは被写体中央部の被写体のみが明る
く輝き、従来の平均測光や中央部重点測光でも被写体が
オーバー露光に飛びやすい場合である。具体的には夜景
をバックにしたポートレート撤影で、例えば化粧した顔
面が白くとんでしまうような場合である。
Also, the average photometry has progressed only to 148 EV. Therefore, the difference between the two is 2ΔEV, but considering the exposure condition at this time, this means that only the subject in the center of the subject shines brightly, and even with conventional average metering and center-weighted metering, the subject tends to be overexposed. It is. Specifically, this is the case when removing a portrait with a night view in the background, for example, when a face with makeup looks white.

従って、このような場合には早めに発光を停止してアン
ダー補正をかけることが望ましい。
Therefore, in such a case, it is desirable to stop light emission early and perform under-correction.

即ち、本発明にあっては、直線B1と曲線A′の交点P
1で与えられる中央部重点測光値が一2へEV程度で発
光を停止することになり、平均的にはアンダー露光とな
る状態にあっても被写体自体については適正な露光量が
得られる。
That is, in the present invention, the intersection point P of the straight line B1 and the curve A'
Light emission is stopped when the center-weighted photometry value given by 1 is about 12 EV, and even if the subject is underexposed on average, a proper exposure amount can be obtained for the subject itself.

勿論、被写体の被写界にしめる割合が大きい場合は、平
均測光出力と中央部重点測光出力の差がこれ程大きくな
らず、後の説明で明らかにするように僅かな補正の範囲
に納まる。従って、前)ホしたような夜景をバックにし
たポートレート撤影のような極端な場合にのみ、21点
に示す一2八E■となる強い補正がかかることになる。
Of course, if the proportion of the subject in the field is large, the difference between the average photometric output and the center-weighted photometric output will not be so large, and will fall within the range of slight correction, as will be explained later. Therefore, a strong correction of 128E■ as shown in point 21 will be applied only in extreme cases such as portrait shadowing with a night view in the background as described above.

次に平均測光の積分がそれ程遅れていない直線B2の場
合を説明する。このときの直線B2と曲IIA′の交点
はP2で与えられ、中央部重点測光の出力が一1八EV
相当となったときに発光停止を行なうことができる。即
ち、中央部重点測光と平均測光の差が1段程度で前述し
た21点より補正量が少なくて済む場合である。
Next, the case of straight line B2 in which the integration of average photometry is not so delayed will be explained. At this time, the intersection of straight line B2 and curve IIA' is given by P2, and the output of center-weighted metering is 118 EV.
Light emission can be stopped when the situation becomes appropriate. That is, this is a case where the difference between center-weighted photometry and average photometry is about one step, and the amount of correction can be smaller than the 21 points described above.

具体的には反射率の比較的小さい壁の前で人物等の倣形
を行なった場合である。
Specifically, this is the case when a person or the like is imitated in front of a wall with relatively low reflectance.

次に第6図の直線B3は直線Aと同じであり、標準反射
板等をVR影した場合と同じ条件である。
Next, the straight line B3 in FIG. 6 is the same as the straight line A, and is under the same conditions as when a standard reflector or the like is subjected to VR shadowing.

この場合には標準反射板に基づいた基準露光量と、この
基準露光量に対応した基準電圧■thが決められている
ため、露光量を何ら補正する必要はない。このため第6
図においても直線B3と曲線へ−の交点P3はΔEVが
零の点であり、補正がかかっていないことを示す。
In this case, since the reference exposure amount based on the standard reflector and the reference voltage th corresponding to this reference exposure amount are determined, there is no need to correct the exposure amount at all. For this reason, the sixth
In the figure as well, the intersection P3 between the straight line B3 and the curved line is a point where ΔEV is zero, indicating that no correction has been applied.

これが変換回路5に変換特性を設定する際に基準露光量
に相当する点に関しては無変換となるように調整する理
由である。
This is the reason why when setting the conversion characteristics in the conversion circuit 5, the adjustment is made so that no conversion occurs at the point corresponding to the reference exposure amount.

更に第5図に示す直線B4.B5と曲線Δ′の交点P4
.P5において発光を停止する場合の考え方は同じであ
り、例えば画面周辺にストロボの発光部が鏡面等に反射
して映り込んでしまったような場合等にあっては、交点
P5のように+1゜5ΔEVのオーバー補正を行なって
主要被写体に適正露光量を与えるようになる。
Furthermore, the straight line B4 shown in FIG. Intersection point P4 of B5 and curve Δ'
.. The idea is the same when stopping the light emission at P5. For example, in cases where the light emitting part of the strobe is reflected on a mirror surface etc. around the screen, it is necessary to stop the light emission by +1° as at intersection P5. An over-correction of 5ΔEV is performed to give the main subject an appropriate exposure amount.

第7図は第1図の変換回路5の具体的な実施例を示した
回路ブロック図である。
FIG. 7 is a circuit block diagram showing a specific embodiment of the conversion circuit 5 of FIG. 1.

第7図において、変換回路5以外については基本的には
第1図の実施例と同じであり、変換回路5は2組のオペ
アンプ10、高増幅率のトランジスタ11及び抵抗R1
によって測光アンプ3の出力電圧の電流−電流変換を行
なって測光出力に対応した2つの入力電流1inを作り
出す。この2つの入力電流■inをマルチプライア12
に入力し、 l0ut=Iln2 の変換を行ない、抵抗R2に出力電流1outに比例し
た電圧を発生し、コンパレータ6で測光アンプ4の測光
電圧と比較する。
In FIG. 7, the components other than the conversion circuit 5 are basically the same as the embodiment shown in FIG.
performs current-to-current conversion of the output voltage of the photometric amplifier 3 to produce two input currents 1 inch corresponding to the photometric output. These two input currents ■in are multiplier 12
A voltage proportional to the output current 1out is generated in the resistor R2, and the comparator 6 compares it with the photometric voltage of the photometric amplifier 4.

また、第6図に示すように測光開始直後にあっては、コ
ンパレータ6の入力電圧は共に電源電圧Vccに等しく
、コンパレータ6の動作が不安定となる。更にマルチプ
ライア12の実際の特性を考えると、入力電流■inが
極端に小ざい状態では変換精度が不足する。
Further, as shown in FIG. 6, immediately after the start of photometry, the input voltages of the comparator 6 are both equal to the power supply voltage Vcc, and the operation of the comparator 6 becomes unstable. Furthermore, considering the actual characteristics of the multiplier 12, the conversion accuracy is insufficient when the input current ■in is extremely small.

そこで第7図の実施例にあっては、露出補正の範囲が例
えば−2ΔEVまでできればよいとすれば、−2ΔEV
までの間は、発光停止制御回路7に対しコンパレータ6
より発光停止信号が出力されないようにANDゲート1
4で禁止をかける。
Therefore, in the embodiment shown in FIG. 7, if the range of exposure compensation is -2ΔEV, then -2ΔEV
Until then, the comparator 6 is connected to the light emission stop control circuit 7.
AND gate 1 to prevent the emission stop signal from being output.
4 to ban.

即ち、コンパレータ16で中央部重点測光の出力電圧V
Cが一2ΔEV相当の基準電圧Vref1になるまでは
、Lレベル出力としてANDゲート14に禁止をかける
ようにする。
That is, the comparator 16 outputs the center-weighted photometry output voltage V.
Until C reaches the reference voltage Vref1 equivalent to 12ΔEV, the AND gate 14 is inhibited as an L level output.

更にオーバー補正についてもある範囲でリミッ1〜を設
定する必要があれば、第7図に示すようにANDゲート
14の前段にORゲート13を設け、ORゲート13の
他方にコンパレータ15の出力を入力し、コンパレータ
15にオーバー補正をある範囲内で規制する基準電圧V
re’f’2を設定し、測光アンプ3の測光出力VCが
基準電圧Vref2として設定したある露光量以上とな
ったときにコンパレータ15のHレベル出力により強制
的に発光停止信号を発生するようにしてもよい。
Furthermore, if it is necessary to set the limit 1 to within a certain range for over-correction, an OR gate 13 is provided in the front stage of the AND gate 14 as shown in FIG. Then, a reference voltage V is applied to the comparator 15 to regulate over-correction within a certain range.
re'f'2 is set, and when the photometric output VC of the photometric amplifier 3 exceeds a certain exposure amount set as the reference voltage Vref2, a light emission stop signal is forcibly generated by the H level output of the comparator 15. It's okay.

以上が第1図の実施例の具体的な説明であるが、本発明
において変換回路5に要求される条件は次の2つとなる
The above is a detailed explanation of the embodiment shown in FIG. 1, and the following two conditions are required of the conversion circuit 5 in the present invention.

(a)総合的に見て基準露光量相当の電圧に対しては無
変換であること、 (b)変換回路を中央部重点測光系に入れるとすれば、
基準露光量以前の値は更に小光量相当の値に変換し、基
準露光量以降の値は更に大光量相当の値に変換すること
である。
(a) Overall, there is no conversion for the voltage equivalent to the standard exposure amount. (b) If the conversion circuit is installed in a center-weighted photometry system,
Values before the standard exposure amount are further converted to values corresponding to a small amount of light, and values after the standard exposure amount are further converted to values equivalent to a large amount of light.

また、上記の実施例にあっては変換回路5で二乗変換を
用いたが、N乗変換(但し、N〉1)や、指数関数に近
似させた変換により同様の作用を得るようにしてもよい
In the above embodiment, the conversion circuit 5 uses square conversion, but the same effect may also be obtained by N-power conversion (where N>1) or conversion approximating an exponential function. good.

一方、第1図の実施例にあっては、中央部重点測光の測
光出力に変換をかけているが、逆に第1図の変換回路5
の逆変換を平均測光系の測光出力に対して行なえば、同
様の結果を得ることができる。
On the other hand, in the embodiment shown in FIG. 1, the photometric output of center-weighted photometry is converted;
A similar result can be obtained by performing the inverse transformation of the photometric output of the average photometric system.

第8図は平均測光出力に平方根の変換を行ない、中央部
重点測光の測光出力と比較した場合の電圧関係を示す。
FIG. 8 shows the voltage relationship when the average photometric output is subjected to square root conversion and compared with the photometric output of center-weighted photometry.

第8図において、平均測光用ツノに平方根変換を行なっ
た変換回路の入出力関係を曲線C−で示し、無変換とな
る中央部重点測光の測光出力を直線D1〜D3で示して
おり、その結果、両者の交点01〜Q3を発光停止点と
して得ることができる。
In Fig. 8, the input/output relationship of the conversion circuit that performs square root conversion on the average photometry horn is shown by the curve C-, and the photometry outputs of center-weighted photometry, which is not converted, are shown by straight lines D1 to D3. As a result, the intersection points 01 to Q3 between the two can be obtained as the emission stop points.

即ち、第8図にあっては平均測光値に比べ中央部重点測
光の光量積分の方が、例えば直線D1のように進んでい
る場合は、交点Q1でコンパレータ6が反転し、中央部
重点測光が一1ΔEVのときに発光停止することがわか
る。
In other words, in FIG. 8, when the light intensity integral of center-weighted photometry is progressing more than the average photometry value, as shown in the straight line D1, for example, the comparator 6 is inverted at the intersection Q1, and the center-weighted photometry is It can be seen that the light emission stops when the value is -11ΔEV.

次に均一な被写体に対しては交点Q2で発光が停止し、
補正はかからない。更に直線D3の交点Q3についても
例えば第6図の交点P3の場合と同様な結果が得られる
Next, for a uniform subject, the light emission stops at the intersection Q2,
No correction is required. Furthermore, for the intersection Q3 of the straight line D3, the same result as for example the intersection P3 in FIG. 6 can be obtained.

従って、本発明における複数の測光系の測光出力は両者
の相対的な関係が重要であり、変換回路はどちらの測光
系に入れてもよい。また、望ましい補正パターンを更に
複雑な関数を使用して作り出すことも可能であり、場合
によっては測光系毎に変換回路を入れて相対的な関係の
反転により発光停止タイミングを決めることができる。
Therefore, in the present invention, the relative relationship between the photometric outputs of the plurality of photometric systems is important, and the conversion circuit may be included in any of the photometric systems. Furthermore, it is possible to create a desired correction pattern using a more complicated function, and in some cases, a conversion circuit may be installed in each photometry system to determine the light emission stop timing by reversing the relative relationship.

[発明の効果] 以上説明してきたように本発明によれば、被写界に対し
重点的に測光する領域が異なる少なくとも測光手段をも
ち、この測光手段の測光出力の少なくとも一方を変換し
て比較し、両者の相対的関係が反転したときに発光停止
を行なうため、プリ発光を必要とする事前演算や躍影者
による判断操作等を行なわなくても、自動的に発光が始
まってから最適な発光停止タイミングで発光を停止する
ことができる。
[Effects of the Invention] As explained above, according to the present invention, at least one photometry means is provided in which areas to be focused on are different for the subject, and at least one of the photometry outputs of the photometry means is converted and compared. However, since the light emission is stopped when the relative relationship between the two is reversed, the optimum light emission is automatically set after the light emission starts, without any prior calculations that require pre-flash or judgment operations by the photographer. Light emission can be stopped at the light emission stop timing.

また、従来のきめ細かな発光?制御に必要な多数の基準
電圧やコンパレータが不要であり、簡単な回路構成によ
り被写界の状況に対応してきめ細かな補正が施された最
適露光を行なうことができる。
Also, the conventional fine-grained light emission? There is no need for a large number of reference voltages and comparators required for control, and a simple circuit configuration allows optimal exposure to be performed with detailed corrections corresponding to the conditions of the photographic scene.

更に本発明の露光量制御はアナログ処理であるため、無
段階の微妙な調整ができるという利点を有する。
Furthermore, since the exposure amount control according to the present invention is an analog process, it has the advantage that stepless and delicate adjustments can be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示したブロック図;第2図
は第1図の実施例で用いる測光系の光学的配置をTTL
自動調光を例にとって示した説明図:第3図は均一な発
光強度の発光に対する測光出力の時間変化を示したグラ
フ図; 第4図は第1図の実施例に用いた変換回路の入出力特性
を示したグラフ図; 第5図は第1図の実施例にあける発光タイミングを得る
ための説明グラフ図: 第6図は第5図の一部拡大図: 第7図は第1図の具体的実施例を示した回路ブロック図
; 第8図は第1図の平均測光系側に変換回路を設けた本発
明の他の実施例による発光タイミングを得るだめの説明
グラフ図である。 1.2:受光素子 3.4:測光アンプ 5:変換回路 6:コンパレータ 7:発光停止制御回路 10:オペアンプ 11:トランジスタ 12:マルチプライア 13:ORゲート 14:ANDゲート 15.16:コンパレータ
Figure 1 is a block diagram showing an embodiment of the present invention; Figure 2 shows the optical arrangement of the photometry system used in the embodiment of Figure 1.
An explanatory diagram illustrating automatic light control as an example: Figure 3 is a graph showing the time change of photometric output for light emission with uniform intensity; Figure 4 shows the input of the conversion circuit used in the example of Figure 1. A graph showing the output characteristics; FIG. 5 is an explanatory graph for obtaining the light emission timing that differs from the embodiment in FIG. 1; FIG. 6 is a partially enlarged view of FIG. 5; FIG. FIG. 8 is an explanatory graph diagram for obtaining the light emission timing according to another embodiment of the present invention in which a conversion circuit is provided on the average photometry system side of FIG. 1. 1.2: Photodetector 3.4: Photometric amplifier 5: Conversion circuit 6: Comparator 7: Light emission stop control circuit 10: Operational amplifier 11: Transistor 12: Multiplier 13: OR gate 14: AND gate 15.16: Comparator

Claims (1)

【特許請求の範囲】[Claims] (1)被写界に対して重点的に測光する領域が互いに異
なる少なくとも2つの測光手段を備え、閃光発光時の被
写体反射光を上記各測光手段で光量積分しながら測光し
、それらの測光出力に基づいて電子閃光装置に発光停止
信号を出力して発光量を制御する電子閃光装置の発光量
制御装置に於いて、 前記光量積分値に伴いほぼ線形に変化する前記測光手段
の測光出力のいずれか一方又は両方を時間経過に伴い非
線形に変化するように逐時変換する変換回路と、該変換
回路の変換出力同士の比較、又はいずれか一方の変換出
力と他方の測光出力とを比較する比較手段とを備え、該
比較手段の比較により両者の相対的関係が反転した時に
発光停止信号を発生することを特徴とする電子閃光装置
の発光量制御装置。
(1) Equipped with at least two photometering means that focus on different areas for photometry with respect to the subject, and metering the light reflected from the subject when the flash is fired while integrating the amount of light with each of the above photometering means, and outputting their photometry output. In a light emission amount control device for an electronic flash device that outputs a light emission stop signal to the electronic flash device to control the light emission amount based on the amount of light emitted from the electronic flash device, the photometric output of the photometric means changes approximately linearly with the integral value of the light amount. A conversion circuit that sequentially converts one or both of them so that they change nonlinearly over time, and a comparison of the conversion outputs of the conversion circuits, or a comparison that compares the conversion output of either one with the photometric output of the other. 1. A light emission amount control device for an electronic flash device, comprising means for controlling light emission amount of an electronic flash device, and generating a light emission stop signal when the relative relationship between the two is reversed as a result of comparison by the comparison means.
JP63187119A 1988-05-24 1988-07-27 Emission quantity controller for electronic flash device Pending JPH0237336A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63187119A JPH0237336A (en) 1988-07-27 1988-07-27 Emission quantity controller for electronic flash device
US07/354,352 US4951080A (en) 1988-05-24 1989-05-19 Device for controlling the amount of emission of electronic flash apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63187119A JPH0237336A (en) 1988-07-27 1988-07-27 Emission quantity controller for electronic flash device

Publications (1)

Publication Number Publication Date
JPH0237336A true JPH0237336A (en) 1990-02-07

Family

ID=16200442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63187119A Pending JPH0237336A (en) 1988-05-24 1988-07-27 Emission quantity controller for electronic flash device

Country Status (1)

Country Link
JP (1) JPH0237336A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133723A (en) * 1980-03-24 1981-10-20 Olympus Optical Co Ltd Control circuit for light emission of flash discharging tube
JPS61275733A (en) * 1985-05-31 1986-12-05 Olympus Optical Co Ltd Controller for light emission of strobe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133723A (en) * 1980-03-24 1981-10-20 Olympus Optical Co Ltd Control circuit for light emission of flash discharging tube
JPS61275733A (en) * 1985-05-31 1986-12-05 Olympus Optical Co Ltd Controller for light emission of strobe

Similar Documents

Publication Publication Date Title
US4474451A (en) Diaphragm control circuit for TTL automatic electronic flash
US4456354A (en) Exposure controller for a camera
JP2814498B2 (en) camera
US4768876A (en) Image sensing system using illuminating device
US3781119A (en) Dual light-measurement and compensation circuitry for cameras
US4503508A (en) Exposure control apparatus
JP2926597B2 (en) Automatic light control device for camera
JP4416272B2 (en) IMAGING DEVICE AND CONTROL METHOD OF IMAGING DEVICE
JPH0237336A (en) Emission quantity controller for electronic flash device
US4530585A (en) Automatic strobe apparatus
US4357084A (en) Exposure control device for cameras
JPS621225B2 (en)
US4497562A (en) Exposure control device for flash photography
US4241279A (en) Control circuit for an automatic electronic flash light device
JPH02100027A (en) Measuring method for subject brightness
JP2585989B2 (en) Camera control device
US4514074A (en) Exposure control circuit for TTL automatic electronic flash
US3781551A (en) Electronic shutter-control circuits for cameras
US4564281A (en) Signal selector for automatic exposure apparatus of camera
US4264163A (en) Exposure control apparatus with compensation for film reciprocity failure
JP2578165B2 (en) Camera strobe system
JP2884691B2 (en) TTL automatic light control camera
JP2571558B2 (en) Flash photography device or imaging equipment that can use flash photography device
JPH04114134A (en) Photometry device
JPH1138463A (en) Photometry device for camera