JPH0235912A - Removing process for special material gas - Google Patents

Removing process for special material gas

Info

Publication number
JPH0235912A
JPH0235912A JP63182803A JP18280388A JPH0235912A JP H0235912 A JPH0235912 A JP H0235912A JP 63182803 A JP63182803 A JP 63182803A JP 18280388 A JP18280388 A JP 18280388A JP H0235912 A JPH0235912 A JP H0235912A
Authority
JP
Japan
Prior art keywords
gas
special material
material gas
reaction
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63182803A
Other languages
Japanese (ja)
Inventor
Yasutoshi Yamashita
山下 安俊
Toshinori Takemori
竹森 利則
Yasuo Yamada
康雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Kako Co Ltd
Original Assignee
Kyowa Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Kako Co Ltd filed Critical Kyowa Kako Co Ltd
Priority to JP63182803A priority Critical patent/JPH0235912A/en
Publication of JPH0235912A publication Critical patent/JPH0235912A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To treat special material gas efficiently by reacting the special material gas containing SiH4, B2H6, PH3, AsH3 and the like with Cl2 and absorbing and removing a reaction product by means of an alkali solution. CONSTITUTION:Special material gas containing SiH4, B2H6, PH3, AsH3 and the like fed from a gas feeding box 1 is fed into a gas reaction column 4 together with Cl2 fed from a duct 3 to form a chloride, and a reaction composition is absorbed and removed by means of alkali solution such as NaOH or the like introduced into an absorption tower 6. Absorption solution after the completion of absorption is fed into a tank 10 and recirculated by a pump 11. Gas after treatment is exhausted out of an exhaust block 8 as purified gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体製造工場等で使用されて微量であって
も極めて有害な特殊材料ガスの効率的な除去方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an efficient method for removing special material gases that are used in semiconductor manufacturing factories and the like and are extremely harmful even in minute amounts.

〔従来の技術〕[Conventional technology]

特殊材料ガスとは、微量であっても、人体の極めて有害
なガス成分が数多く含有され、その代表的なものにシラ
ン、ジボラン、ホスフィン及びアルシンがある。
Special material gases contain many gas components that are extremely harmful to the human body, even in trace amounts, and typical examples include silane, diborane, phosphine, and arsine.

特殊材料ガスは、半導体の製造に使用されるが、その使
用量は、年々増加の傾向にアシ、使用後の該ガスの有効
な除去技術の確立が強く要望されていたものである。
Special material gases are used in the manufacture of semiconductors, and the amount used has been increasing year by year, and there has been a strong desire to establish an effective removal technique for the gases after use.

しかして、従来の方法は、共存する単位ガスを各個に固
体吸着剤を使用して固相吸着せしめて除去するもの、又
は湿式に吸収するもの、さらに、燃焼せしめて除去する
方法等があるが、結局は単−成分を夫々別異の条件で反
応せしめて除去するものであシ、上記の従来方法には下
記の如き欠点を有していた。即ち、 a、吸着法は、比較的高除去率が期待できるが、高濃度
処理の場合、コスト高となる す、湿式吸収法は、7ランの除去率が低く、後処理工程
における空気酸化によるダストの処理が煩わしい C2燃焼方式は、安全性及びS10□ダストの発生の問
題が残る 等でありさらに解決すべき課題が多く存在していた。
Conventional methods include methods in which the coexisting unit gases are removed by solid-phase adsorption using a solid adsorbent, wet absorption methods, and methods in which the coexisting unit gases are removed by combustion. In the end, each single component is removed by reacting under different conditions, and the above-mentioned conventional method has the following drawbacks. That is, a. Although the adsorption method can be expected to have a relatively high removal rate, it is expensive in the case of high-concentration treatment. The wet absorption method has a low removal rate in 7 runs, and the removal rate is low due to air oxidation in the post-treatment process. The C2 combustion method, which requires troublesome dust disposal, still has many problems to be solved, such as safety and the generation of S10□ dust.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記の実状に鑑みてなされたもので、特殊材
料ガスに共存するシラン、ジボラy、ホスフィン及びア
ルシンなどの代表的な有毒成分を一挙に高除去率をもっ
て除去し、しかも、高濃度から低濃度までの広い範囲の
特殊材料ガスが処理が可能で、ダストの発生がなく、安
全でかつ低コストな除去方法を提供することをその目的
とするものである。
The present invention was made in view of the above-mentioned circumstances, and it removes typical toxic components such as silane, dibora y, phosphine, and arsine that coexist in special material gases at once with a high removal rate. The purpose is to provide a safe and low-cost removal method that can process a wide range of special material gases from low concentrations to low concentrations, does not generate dust.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、 料ガスを 1i)  塩素ガスと反応せしめ (iii)  反応生成物をアルカリ溶液に誘導して該
溶液に吸収して除去する 以上を要旨として成立するもので、特に、特殊材料ガス
中の代表的な猛毒の単位成分であるシラン、?5−)y
、ホスフィン及びアルシンなどの各ガスと塩素ガスとを
ガス−ガス反応せしめて一挙に除去することをその重要
な特徴部分とするものである。
The present invention is based on the following aspects: 1i) Reacting a raw material gas with chlorine gas (iii) Inducing the reaction product to an alkaline solution and absorbing and removing it in the solution. Silane, which is a representative highly toxic unit component of ? 5-)y
An important characteristic of this method is that each gas such as phosphine, arsine, and chlorine gas is subjected to a gas-gas reaction to be removed all at once.

〔実施例〕〔Example〕

以下、図面を参照し実施例に基づいて本発明を説明する
Hereinafter, the present invention will be described based on examples with reference to the drawings.

第1図は、本発明の原理図でガス供給箱1から定量的に
排出される特殊材料ガスが導管2をとおシ、塩素ガス源
(図示せず)から導管3に導かれる塩素ガスと会合して
、ガス反応塔4内でガス−ガス反応せしめられる。
FIG. 1 is a diagram showing the principle of the present invention, in which a special material gas quantitatively discharged from a gas supply box 1 passes through a conduit 2 and combines with chlorine gas led from a chlorine gas source (not shown) to a conduit 3. A gas-gas reaction is then carried out in the gas reaction tower 4.

この場合、各単位ガスは、下記の如く反応する。In this case, each unit gas reacts as follows.

SiH4+ 2C12→5ICt4+2 H2(又は)
 SiH4+ CL2→ 5IH2CL2+ H2B2
H6+3C22→2BC2,+ 3H22PH3+ 3
C12→2PC13+ 3H22に8H,+ 3C12
→2AsCt、 + 3H2上記の各反応生成物は、導
管5を通シ、吸収塔6に導かれるが、この際、該塔上部
から撒布されるアルカリ吸収液により充填層61内で吸
収される。吸収は、下式の如く行われる。
SiH4+ 2C12→5ICt4+2 H2 (or)
SiH4+ CL2→ 5IH2CL2+ H2B2
H6+3C22→2BC2,+ 3H22PH3+ 3
C12→2PC13+ 3H22 to 8H, + 3C12
→2AsCt, +3H2 Each of the above reaction products is led to the absorption tower 6 through the conduit 5, where it is absorbed in the packed bed 61 by the alkaline absorption liquid sprayed from the upper part of the tower. Absorption is performed as shown below.

5ICL4+ 6 NaOH−+Na5A03 + 4
 NaC1+3 H20BC4+ 6 NaOH−+ 
Nas Bo3+ 3 NaC4+ 3H20PCLs
 + 6NaOH→Na3PO3+ 3NaC6+ 3
H20AsCt3+ 6NaOH−+Na5As03 
+ 3NaCt+ 3H20次に第2図には、塩素ガス
が塩素ガスボンベ14Aから供給される例が、また、第
3図には、塩素ガス発生器14Bから供給される例が示
される。後者は、塩素ガスが下式の如く、導管15から
誘導される次亜塩素酸塩又は過酸化水素の各溶液と導管
16から誘導される塩酸とを攪拌器17で攪拌作用せし
めて製造される。
5ICL4+ 6 NaOH-+Na5A03 + 4
NaC1+3 H20BC4+ 6 NaOH-+
Nas Bo3+ 3 NaC4+ 3H20PCLs
+ 6NaOH→Na3PO3+ 3NaC6+ 3
H20AsCt3+ 6NaOH-+Na5As03
+ 3NaCt+ 3H20 Next, FIG. 2 shows an example in which chlorine gas is supplied from a chlorine gas cylinder 14A, and FIG. 3 shows an example in which chlorine gas is supplied from a chlorine gas generator 14B. The latter is produced by stirring each solution of hypochlorite or hydrogen peroxide derived from a conduit 15 and hydrochloric acid derived from a conduit 16 with a stirrer 17 using chlorine gas as shown in the following formula. .

NaCtO+ 2 HCt→NaC2+ H20+ C
t2↑H20□+2 HCA→2H20+C22↑ガス
反応筒4は、円筒状で内径100m、高さ1mに形成さ
れ、また、吸収塔6も円筒状で内径100■、高さ1m
に形成されるが、この内部で15mφの2ツヒシリング
が600目高に充填されて対抗接触の湿式充填塔となっ
ている。さらに、吸収液は10 % NaOH溶液で、
塔内通過ガス速度は、30薗/秒となっている。処理さ
れる前のガンμS−1で、また、処理後のガスはS−2
で採取され、夫々のガス濃度が測定される。
NaCtO+ 2 HCt→NaC2+ H20+ C
t2↑H20□+2 HCA→2H20+C22↑The gas reaction cylinder 4 is cylindrical and has an inner diameter of 100 m and a height of 1 m, and the absorption tower 6 is also cylindrical and has an inner diameter of 100 m and a height of 1 m.
Inside this tower, two 15 mφ double-sided rings are packed to a height of 600 meshes to form a wet-type packing tower with counter-contact. Furthermore, the absorption liquid was a 10% NaOH solution,
The gas velocity passing through the tower was 30 m/sec. The gun μS-1 before being treated, and the gas S-2 after being treated.
and the concentration of each gas is measured.

吸収塔6内でガス吸収反応によp NaC1等が混入し
た吸収液は導管13からタンクIOK貯えられたのち、
ポンプ11で導管12t−揚液され吸収塔6に再循環せ
しめられる。処理された後のガスは、導管7.排気プロ
ワ8を通シ排出9される。この際S−2で、ガス濃度が
測定される。各種濃度のCt2ガスを使用して、本発明
に係る処理を実施した結果の特殊材料ガスにおける各成
分ガスの除去率は第1表のとお)である。
After the absorption liquid mixed with p-NaC1 etc. due to the gas absorption reaction in the absorption tower 6 is stored in the tank IOK from the conduit 13,
The liquid is pumped up through the conduit 12t by the pump 11 and recirculated to the absorption tower 6. After being treated, the gas is transferred to conduit 7. It is discharged 9 through an exhaust blower 8. At this time, gas concentration is measured in S-2. Table 1 shows the removal rate of each component gas in the special material gas as a result of carrying out the treatment according to the present invention using Ct2 gas of various concentrations.

また、別の実施例として、第4図に示す生成NaC1の
電解槽14Dを設けたものがある。この方式では、上側
におけるタンク10が電解槽として使用されるのが一般
的である。即ち、吸収塔6を通過した吸収液が導管13
をとおシ、陽極18と陰極19とが隔膜20を介して対
設されてなる電解槽14Dに供給される。通電により陽
極18側に発生した塩素ガスが導管3を通りて導管2に
供給されることは前掲のとおシである。夕次に、別の実
施例をして、防爆構造化されたガス反応塔が第5図に示
される。ガス供給箱1から供給される特殊材料ガスは導
管2を通電がス反応塔に誘導されるが、比較的激しいj
スーガス反応による不慮の災害等を防ぐためガス反応塔
を防爆構造とすることが望ましい。即ち、ガ?反応塔内
部には、塩素ガスの導管3に接続される2重構造の多数
のパイプ21 、21 、e・・が設けられ、A?パイ
プは側壁に多数の孔22.22.・・・が穿設される。
Further, as another example, there is one provided with an electrolytic cell 14D for generated NaC1 shown in FIG. In this system, the upper tank 10 is generally used as an electrolytic cell. That is, the absorption liquid that has passed through the absorption tower 6 is transferred to the conduit 13.
Through this, the anode 18 and the cathode 19 are supplied to an electrolytic cell 14D which is arranged opposite to each other with a diaphragm 20 in between. As mentioned above, the chlorine gas generated on the anode 18 side by energization is supplied to the conduit 2 through the conduit 3. Next, another embodiment of a gas reaction tower having an explosion-proof structure is shown in FIG. The special material gas supplied from the gas supply box 1 is guided to the reaction tower by energizing the conduit 2, but the current is relatively strong.
In order to prevent unexpected disasters caused by soogas reactions, it is desirable that the gas reaction tower has an explosion-proof structure. In other words, moth? Inside the reaction tower, a large number of pipes 21, 21, e, etc. with a double structure connected to the chlorine gas conduit 3 are provided. The pipe has a number of holes 22.22 in the side wall. ... is drilled.

このため、特殊材料ガスはノ々イブの間隙をX方向に分
流するのに対し、塩素ガスはY方向から衝突するように
なシ、両ガスは塔内全域に分布する多数の会合点で反応
し、爆発の危険性も減少する許シでなく、パイプの存在
がガスの流れを円滑にし、反応を促進する効果をも有し
て極めて好都合である。
For this reason, the special material gas is split in the X direction through the gap between Nonobu, while the chlorine gas collides from the Y direction, and both gases react at numerous meeting points distributed throughout the tower. However, the presence of the pipe not only reduces the risk of explosion, but also has the effect of smoothing the flow of gas and promoting the reaction, which is extremely convenient.

実施例2〜4の方法はいずれも有効であって、就中、塩
素ガスゲンベを使用するものは、操作が簡単であり、ま
た、塩素ガスを、次亜塩素酸ナトリウム溶液と塩酸又は
過酸化水素水と塩酸との夫夫の反応に基づいて生成する
方式は塩素ガスを必要量のみ発生させうるので、安全性
の問題が解決され、さらに、電解法は、塩素ガス供給と
吸収液補給の一連のサイクルが一体化され、これをリサ
イクルすることによシ吸収液の薬品等の消耗が殆んどな
くて2ンニングコストが低減され、管理が比較的容易で
ある。
All of the methods of Examples 2 to 4 are effective, and in particular, the method using chlorine gas is easy to operate, and the chlorine gas is mixed with sodium hypochlorite solution and hydrochloric acid or hydrogen peroxide. The method of generating chlorine gas based on the reaction between water and hydrochloric acid can generate only the required amount of chlorine gas, which solves the safety problem. The two cycles are integrated, and by recycling this, there is almost no consumption of chemicals in the absorption liquid, reducing running costs and making management relatively easy.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の構成に基づくものであって、少なくとも
、特殊材料ガス中の主要成分が、−挙に、高除去率をも
って除去されるもので、しかも高濃度から低濃度までの
広め範囲のガス成分の処理が可能であり、ダストの発生
がなく、安全で費用も少なくてすむ等多くの利点を有す
るもので、特殊材料ガスの除去手段として極めて有用で
あ、る。
The present invention is based on the above structure, and at least the main components in the special material gas can be removed with a high removal rate, and moreover, the main components in the special material gas can be removed in a wide range from high concentration to low concentration. It has many advantages such as being able to process components, not generating dust, being safe and being inexpensive, and is extremely useful as a means for removing special material gases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を示す説明図、第2図は塩素源に
塩素ガスゲンペを使用する例の説明図、第3図は塩素源
として塩素ガス発生器で生成する塩素?使用する例の説
明図、第4図はNaCLの電解による塩素を使用する例
の説明図、第5図は防傷構造のガス反応塔を示す説明図
である。 1・・・ガス供給箱、4・・・ガス反応塔、6・・・吸
収塔、8・・・排気ブロワ、10・・・タンク、14A
・・・塩素がスビンペ、14B・・・塩素ガス発生器、
14D・・・電解槽。 特許出願人  協和化工株式会社
Fig. 1 is an explanatory diagram showing the principle of the present invention, Fig. 2 is an explanatory diagram of an example of using a chlorine gas generator as a chlorine source, and Fig. 3 is an explanatory diagram showing an example of using a chlorine gas generator as a chlorine source. FIG. 4 is an explanatory diagram of an example in which chlorine is used by electrolyzing NaCL, and FIG. 5 is an explanatory diagram showing a gas reaction tower with a scratch-proof structure. 1... Gas supply box, 4... Gas reaction tower, 6... Absorption tower, 8... Exhaust blower, 10... Tank, 14A
...Chlorine is Subinpe, 14B...Chlorine gas generator,
14D... Electrolytic cell. Patent applicant Kyowa Kako Co., Ltd.

Claims (1)

【特許請求の範囲】 1、シラン、ジボラン、ホスフィン及びアルシンなどの
単位ガスの1種類又は2種類以上を共存する特殊材料ガ
ス(以下特殊材料ガスという。)を塩素ガスと反応せし
め、反応生成物をアルカリ溶液に誘導して該溶液に吸収
して除去することを特徴とする特殊材料ガスの除去方法 2、塩素ガスがガスボンベから発生する請求項1に記載
の特殊材料ガスの除去方法 3、塩素ガスが次亜塩素酸ナトリウムと塩酸との反応で
発生する請求項1に記載の特殊材料ガスの除去方法 4、塩素ガスが塩酸と過酸化水素との反応で発生する請
求項1に記載の特殊材料ガスの除去方法5、塩素ガスが
電気分解で発生する請求項1に記載の特殊材料ガスの除
去方法 6、特殊材料ガスと塩素ガスとを反応せしめるために使
用する反応塔が防爆構造に形成される請求項1に記載の
特殊材料ガスの除去方法。
[Claims] 1. A special material gas (hereinafter referred to as "special material gas") in which one or more types of unit gases such as silane, diborane, phosphine, and arsine coexist is reacted with chlorine gas to produce a reaction product. A method for removing a special material gas according to claim 1, wherein the chlorine gas is generated from a gas cylinder. The special material gas removal method 4 according to claim 1, wherein the gas is generated by a reaction between sodium hypochlorite and hydrochloric acid, and the method according to claim 1, wherein the chlorine gas is generated by a reaction between hydrochloric acid and hydrogen peroxide. Method 5 for removing material gas; Method 6 for removing special material gas according to claim 1, wherein chlorine gas is generated by electrolysis; 6, the reaction tower used for reacting the special material gas and chlorine gas is formed in an explosion-proof structure; The method for removing special material gas according to claim 1.
JP63182803A 1988-07-23 1988-07-23 Removing process for special material gas Pending JPH0235912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63182803A JPH0235912A (en) 1988-07-23 1988-07-23 Removing process for special material gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63182803A JPH0235912A (en) 1988-07-23 1988-07-23 Removing process for special material gas

Publications (1)

Publication Number Publication Date
JPH0235912A true JPH0235912A (en) 1990-02-06

Family

ID=16124701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63182803A Pending JPH0235912A (en) 1988-07-23 1988-07-23 Removing process for special material gas

Country Status (1)

Country Link
JP (1) JPH0235912A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6086838A (en) * 1998-12-17 2000-07-11 Morgan; Vernon E. Removal of silane from gas streams
JP2017132652A (en) * 2016-01-27 2017-08-03 住友電気工業株式会社 Production method of porous carbon material
US10415443B2 (en) 2015-06-11 2019-09-17 Kubota Corporation Engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6086838A (en) * 1998-12-17 2000-07-11 Morgan; Vernon E. Removal of silane from gas streams
US10415443B2 (en) 2015-06-11 2019-09-17 Kubota Corporation Engine
JP2017132652A (en) * 2016-01-27 2017-08-03 住友電気工業株式会社 Production method of porous carbon material

Similar Documents

Publication Publication Date Title
AU2016288473B2 (en) Method and apparatus for removing nitrogen oxides from air flow
US4612174A (en) Method of removing noxious substances from gases
US2871097A (en) Production of chlorine dioxide
US4110183A (en) Process for denitration of exhaust gas
HUT67738A (en) Process for removing hydrogen sulphide and/or carbon disulphide from exhaust gases
JPH0235912A (en) Removing process for special material gas
US4024219A (en) Process for removing nitrogen oxide from a waste gas
CN214635350U (en) Device for treating hydrogen fluoride gas
AU637686B2 (en) Process of purifying exhaust gas
US4355015A (en) Process for the production of finely divided oxides of metals
CA1219113A (en) Process and apparatus for the manufacture of hypochlorous acid
KR100521652B1 (en) Apparatus and Method for Producing Chlorine Dioxide Gas in a High-Purity and Long-Term Storage of Chlorine Dioxide
EA010599B1 (en) Process for production of chlorine dioxide
US5433938A (en) Chlorine-destruct method
CN108821315A (en) The method and device of thermochemical cycles mineralising CO2 while decomposing H 2O H2
US4584178A (en) Apparatus for the manufacture of hypochlorous acid
JPS62176592A (en) Apparatus for treating waste liquid containing sodium hypochlorite
TW200535088A (en) Process for production of chlorine dioxide
JP3188830B2 (en) Method and apparatus for removing NF3 exhaust gas
JP4362894B2 (en) How to collect bromine
CN220703436U (en) Safety treatment device for mask cleaning waste liquid
JPS61129026A (en) Purification of exhaust gas
JPS63162025A (en) Removing method for arsine and phosphine
CN213885626U (en) Waste chlorine treatment device in chlorinated polyethylene production
JPH0356123A (en) Removal of mercury and nox in gas