JPH0235693B2 - - Google Patents

Info

Publication number
JPH0235693B2
JPH0235693B2 JP57195683A JP19568382A JPH0235693B2 JP H0235693 B2 JPH0235693 B2 JP H0235693B2 JP 57195683 A JP57195683 A JP 57195683A JP 19568382 A JP19568382 A JP 19568382A JP H0235693 B2 JPH0235693 B2 JP H0235693B2
Authority
JP
Japan
Prior art keywords
solution
zinc
carbonate
impurities
basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57195683A
Other languages
Japanese (ja)
Other versions
JPS5988319A (en
Inventor
Tatsuyuki Kasai
Tatsuo Niikura
Yoshimasa Kawami
Minoru Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Tsukishima Kikai Co Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Tsukishima Kikai Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19568382A priority Critical patent/JPS5988319A/en
Publication of JPS5988319A publication Critical patent/JPS5988319A/en
Publication of JPH0235693B2 publication Critical patent/JPH0235693B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、FeおよびPbを少くとも含むZn含有
物からの塩基性炭酸亜鉛(以下、炭酸亜鉛とい
う)の回収方法に関する。 〔従来の技術と背景〕 塗料の顔料やタイヤの加硫促進剤として用いら
れる酸化亜鉛(ZnO)は一般に次のような製法に
よつて得られる。 (1) 乾式法 この乾式法には、亜鉛地金を原料とするフラ
ンス法と、亜鉛鉱石から製造するアメリカ法と
がある。フランス法は、亜鉛地金をるつぼに入
れ約1000℃に加熱気化し、熱空気で酸化するも
のである。他方、アメリカ法は、(ZnMn)
FeO4などの揮発分の少い鉱石に、石炭などの
還元剤を加え、レトルトまたは反射炉等で焙焼
すると亜鉛が還元されて蒸気となつて揮発する
ので、これを熱空気で酸化するものである。 (2) 湿式法 この湿式法は、金属亜鉛を塩酸に溶解し、20
度ボーメとし、これに20度ボーメの炭酸ソーダ
溶液を加え、炭酸亜鉛を沈澱させ、これを水洗
乾燥後約600℃で〓成するものである。 一方、製鉄所設備、たとえば還元鉄設備のキル
ンダストからZnOとして回収することが行なわれ
ている。そのキルンダスト等の添加物において
は、亜鉛:7〜50%、鉄:90〜45%、鉛:2〜8
%、およびその他の成分を含んでおり、いずれも
酸化物の割合が多い。 〔発明が解決しようとする問題点〕 このZn含有物を原料とし、ZnOを得るような
場合、前記の乾式法を採用すると、ダスト中の鉄
は粉塵となつて外部に飛散し、鉛は蒸発し製品に
数千PPM混入してしまう。また湿式法によると、
ダストを塩酸に溶解すると、鉄も溶解し、それが
数万PPMとなり商品となり得ない。 一般に、鉄、鉛分が数千PPMであつても用途
によつては支障がないことがあるが、用途によつ
て100PPM以下が望まれることが多い。 本発明は、このような要請に答え、少くとも
Fe、Pbを含むZn含有物からFe、Pb分を極力少
い炭酸亜鉛を得て、そのままメツキ用として、あ
るいはさらに焼成してZnO等の原料とする回収方
法を提供するものである。 〔問題点を解決するための手段〕 上記目的を達成するために、本第1発明は、少
くともFe、Pbを含むZn含有物を、少くともそれ
ぞれ5〜40wt%のNH4OHおよび(NH42CO3
含む水溶液と接触させて、該溶液にZnを溶解さ
せるとともに、この溶解過程で金属亜鉛を添加
し、Znの溶解によつて生ずる未溶解残渣を除去
し、次いで溶解処理後の溶液について、金属亜鉛
を添加し、金属亜鉛と不純物との間にイオン置換
反応を行ない残渣分を除去した後、炭酸亜鉛の結
晶化を行うことを特徴とするものである。 また本第2発明は、少くともFe、Pbを含むZn
含有物を、少くともそれぞれ5〜40wt%の
NH4OHおよび(NH42CO3を含む水溶液と接触
させて、該溶液にZnを溶解させるとともに、こ
の溶解過程で金属亜鉛を添加し、Znの溶解によ
つて生ずる未溶解残渣を除去し、次いで溶解処理
後の溶液について、金属亜鉛を添加し、金属亜鉛
と不純物Fe、Pb等との間にイオン置換反応を行
ない、その後塩基性炭酸亜鉛の部分晶析を行な
い、溶液中に不純物として溶存する重金属イオン
の大部分を水酸化物および/または炭酸塩もしく
は塩基性炭酸塩として共沈させ、沈澱物を分別
し、その後その溶液について塩基性炭酸亜鉛の本
析出を行うことを特徴とするものである。 本第3発明は、少くともFe、Pbを含むZn含有
物を、少くともそれぞれ5〜40wt%のNH4OHお
よび(NH42CO3を含む水溶液と接触させて、該
溶液にZnを溶解させるとともに、この溶解過程
で金属亜鉛を添加し、Znの溶解によつて生ずる
未溶解残渣を除去し、その後溶解処理後の溶液に
気曝または酸化剤の添加により酸化処理を行い、
3価の水酸化鉄の除去を行い、次いでその溶液に
ついて、金属亜鉛を添加し、金属亜鉛と不純物
Fe、Pb等との間にイオン置換反応を行ない、そ
の後塩基性炭酸亜鉛の部分晶析を行ない、溶液中
に不純物として溶存する重金属イオンの大部分を
水酸化物および/または炭酸塩もしくは塩基性炭
酸塩として共沈させ、沈澱物を分別し、その後そ
の溶液について塩基性炭酸亜鉛の本析出を行うこ
とを特徴とするものである。 さらに本第4発明は、少くともFe、Pbを含む
Zn含有物を、少くともそれぞれ5〜40wt%の
NH4OHおよび(NH42CO3を含む水溶液と接触
させて、該溶液にZnを溶解させるとともに、生
ずる残渣を除去した後、前晶析操作を行い、不純
物を除去し、得られる炭酸亜鉛溶液に対してZn
含有物の溶解を行い、この溶解過程で金属亜鉛を
添加し、Znの溶解によつて生ずる未溶解残渣を
除去し、次いで溶解処理後の溶液について、金属
亜鉛を添加し、金属亜鉛と不純物との間にイオン
置換反応を行ない残渣分を除去した後、炭塩亜鉛
の結晶化を行うことを特徴とするものである。 〔作用〕 このように、本発明は、湿式法を基本とするも
ので、亜鉛が両性金属であることに着目したもの
である。また基本的な考え方は、Zn含有物を溶
解液と接触させZnを溶解させ、亜鉛化合物を沈
澱させ、未溶解残渣を除去した残液を結晶化処理
することによつて炭酸亜鉛を、 〔ZnCO32〔Zn(OH)23および/またはZnCO3
して回収しようとするものである。 前述のように、従来の湿式法は塩酸による溶解
であつた。そして従来の湿式法では、出発物質が
金属亜鉛単味であるが故に、不純物処理について
考慮を払わなくてよい。しかし、本発明は、Fe、
Pbを少くとも含む還元鉄設備のキルンダスト等
のZn含有物を対象とするので、いかに主にFe、
Pbを除去して不純物の少い炭酸亜鉛を得るかに
最大の注意を払わなくてはならない。 そこで、本発明は、Znが幸い両性金属である
が故に、Zn溶解液としてNH4OHと(NH42CO3
とを少くとも含む水溶液(以下溶解液という)が
適しているとの従来にない知見を基礎としてい
る。 本発明によれば、Zn含有物はまずZn溶解液と
接触され、Zn溶解が行なわれる。Zn含有物とZn
溶解液との接触は、たとえばZn溶解液槽にZn含
有物を投入し、必要ならば撹拌状態にて行う。こ
こに、Zn溶解を行い、Znを含有する前記溶解液
を以下に亜鉛溶液という。 一方、亜鉛溶液をそのまま晶析しても、得られ
る結晶体のFe分およびPb分の含有量は数千PPM
のオーダーとなり、実用に供し得ない。そこで
Znの溶解過程で金属亜鉛を添加すると、Fe分お
よびPb分ともにかなり低下することが認められ
ていたが、未だ高純度炭酸亜鉛を得ることができ
ない。 また、金属亜鉛の添加を行うことなしに得られ
た亜鉛溶液に対して、金属亜鉛を添加し、後に晶
析を行なうと、Fe分およびPb分の低下が認めら
れたが、未だ満足する高純度炭酸亜鉛を得ること
ができない。 これに対して、驚くべきことに、Znの溶解過
程で金属亜鉛の添加を行い残渣を除去した後の亜
鉛溶液に対して、さらに金属亜鉛を添加してZn
とFeおよびPbとのイオン置換反応を行なうと、
Fe分およびPb分の含有量が共に十分に満足でき
る程度に低下した高純度の炭酸亜鉛を得ることが
できることを知見した。 他方、イオン置換反応後の亜鉛溶液に対して、
部分晶析を行つた後、本晶析を行うと、高純度化
にきわめて有効であることが判明した。 また、特にFe分の含有量を低下させようとす
る場合、金属亜鉛添加を伴う溶解工程とイオン置
換反応工程との間に酸化処理工程を設けると、
Fe分が少い高純度炭酸亜鉛を得ることができる
ことも知見した。酸化処理は部分晶析を行う場合
に比較して、設備費の低減が可能となる。 またZnの溶解に先立つて、前晶析操作を行う
とともに、その晶析により不純物を結晶とともに
濾過した後の濾液(亜鉛溶液)に対して、Zn含
有物の溶解を行うと、より純度の高い製品結晶を
得ることができる。 〔実施例〕 以下種々の実施例を挙示しながら、本発明の構
成および作用効果について明らかにする。 実施例 1 Znの溶解に当つて、溶解液の濃度は重要なフ
アクターであり、NH4OHおよび(NH42CO3
それぞれの濃度は、5〜40wt%、特に10〜30wt
%が好ましい。この理由は、次の実験1および2
を参照しながら説明する。 <実験1> アンモニアNH4OHと炭酸アンモニウム
(NH42CO3との濃度を種々変えながらある製鉄
所から得られたZn含有ダストのZn(OH)2の形で
の溶解度(単位:g/)を調べたところ、第1
表の結果を得た。
[Industrial Application Field] The present invention relates to a method for recovering basic zinc carbonate (hereinafter referred to as zinc carbonate) from a Zn-containing material containing at least Fe and Pb. [Prior Art and Background] Zinc oxide (ZnO), which is used as a pigment in paints and a vulcanization accelerator in tires, is generally obtained by the following manufacturing method. (1) Dry method This dry method includes the French method, which uses zinc ingots as raw material, and the American method, which uses zinc ore as raw material. The French method involves placing zinc ingots in a crucible, heating them to about 1000°C, vaporizing them, and oxidizing them with hot air. On the other hand, American law states that (ZnMn)
When a reducing agent such as coal is added to ore with a low volatile content such as FeO 4 and roasted in a retort or reverberatory furnace, zinc is reduced and volatilized as steam, which is then oxidized with hot air. It is. (2) Wet method This wet method involves dissolving metallic zinc in hydrochloric acid and
To this, a sodium carbonate solution of 20 degrees Baume is added to precipitate zinc carbonate, which is washed with water and dried at about 600 degrees Celsius. On the other hand, ZnO is recovered as ZnO from kiln dust of steel works equipment, such as reduced iron equipment. In the additives such as kiln dust, zinc: 7 to 50%, iron: 90 to 45%, lead: 2 to 8
%, and other components, both of which have a high proportion of oxides. [Problem to be solved by the invention] When using this Zn-containing material as a raw material to obtain ZnO, if the dry method described above is adopted, the iron in the dust becomes dust and scatters outside, and the lead evaporates. However, thousands of PPM are mixed into the product. Also, according to the wet method,
When dust is dissolved in hydrochloric acid, iron is also dissolved, resulting in tens of thousands of ppm, which cannot be used as a commercial product. In general, iron and lead contents of several thousand ppm may not cause any problems depending on the application, but depending on the application, a content of 100 ppm or less is often desired. The present invention responds to such demands and achieves at least
The present invention provides a method for recovering zinc carbonate containing as little Fe and Pb as possible from a Zn-containing material containing Fe and Pb, and using the zinc carbonate as it is for plating or as a raw material for ZnO or the like after further calcination. [Means for Solving the Problems] In order to achieve the above object, the first invention provides Zn-containing materials containing at least Fe and Pb with at least 5 to 40 wt% of NH 4 OH and (NH 4 ) Contact with an aqueous solution containing 2 CO 3 to dissolve Zn in the solution, add metal zinc during this dissolution process, remove undissolved residue generated by dissolving Zn, and then after the dissolution treatment. The method is characterized in that metal zinc is added to the solution, an ion displacement reaction is performed between the metal zinc and impurities, the residual components are removed, and then zinc carbonate is crystallized. Further, the second invention provides Zn containing at least Fe and Pb.
containing at least 5 to 40 wt% of each
Contact with an aqueous solution containing NH 4 OH and (NH 4 ) 2 CO 3 to dissolve Zn in the solution, and during this dissolution process, metal zinc is added to remove undissolved residue caused by dissolving Zn. Then, metallic zinc is added to the solution after the dissolution treatment, and an ion displacement reaction is performed between metallic zinc and impurities such as Fe, Pb, etc., and then partial crystallization of basic zinc carbonate is performed to eliminate impurities in the solution. Most of the heavy metal ions dissolved as hydroxide and/or carbonate or basic carbonate are coprecipitated as hydroxide and/or carbonate or basic carbonate, the precipitate is separated, and then basic zinc carbonate is precipitated from the solution. It is something to do. In the third invention, a Zn-containing material containing at least Fe and Pb is brought into contact with an aqueous solution containing at least 5 to 40 wt% of each of NH 4 OH and (NH 4 ) 2 CO 3 to add Zn to the solution. At the same time as dissolving, metallic zinc is added during this dissolution process, undissolved residues generated by dissolving Zn are removed, and then the solution after dissolution treatment is subjected to oxidation treatment by aeration or addition of an oxidizing agent,
Trivalent iron hydroxide is removed, and then metallic zinc is added to the solution to remove metallic zinc and impurities.
An ion displacement reaction is performed with Fe, Pb, etc., followed by partial crystallization of basic zinc carbonate, and most of the heavy metal ions dissolved as impurities in the solution are converted into hydroxide and/or carbonate or basic zinc carbonate. This method is characterized by co-precipitating as a carbonate, separating the precipitate, and then performing main precipitation of basic zinc carbonate from the solution. Furthermore, the fourth invention contains at least Fe and Pb.
At least 5 to 40 wt% of each Zn-containing material.
After contacting with an aqueous solution containing NH 4 OH and (NH 4 ) 2 CO 3 to dissolve Zn in the solution and removing the resulting residue, a pre-crystallization operation is performed to remove impurities and the resulting carbonate Zn for zinc solution
The contained materials are dissolved, metallic zinc is added during this dissolution process, undissolved residues generated by dissolving Zn are removed, and metallic zinc is then added to the solution after the dissolution treatment to separate metallic zinc and impurities. This method is characterized in that after an ion substitution reaction is performed during the process to remove residual components, the zinc carbonate is crystallized. [Function] As described above, the present invention is based on a wet method, and focuses on the fact that zinc is an amphoteric metal. The basic idea is to bring the Zn-containing substance into contact with the solution to dissolve the Zn, precipitate the zinc compound, and remove the undissolved residue. By crystallizing the residual solution, zinc carbonate can be produced. 3 ] 2 [Zn(OH) 2 ] 3 and/or ZnCO 3 . As mentioned above, the conventional wet method involved dissolution using hydrochloric acid. In the conventional wet method, since the starting material is only metallic zinc, there is no need to consider impurity treatment. However, in the present invention, Fe,
Since the target is Zn-containing materials such as kiln dust of reduced iron equipment that contains at least Pb,
The greatest care must be taken to remove Pb and obtain zinc carbonate with few impurities. Therefore, in the present invention, since Zn is fortunately an amphoteric metal, NH 4 OH and (NH 4 ) 2 CO 3 are used as a Zn solution.
This is based on the unprecedented knowledge that an aqueous solution (hereinafter referred to as a solution) containing at least the following is suitable. According to the present invention, the Zn-containing material is first brought into contact with a Zn dissolving solution to effect Zn dissolution. Zn-containing materials and Zn
The contact with the solution is carried out, for example, by putting the Zn-containing material into a Zn solution tank and, if necessary, under stirring. Here, Zn is dissolved, and the solution containing Zn is hereinafter referred to as a zinc solution. On the other hand, even if the zinc solution is crystallized as it is, the Fe and Pb contents of the crystals obtained are several thousand ppm.
order, and cannot be put to practical use. Therefore
It has been recognized that when metallic zinc is added during the Zn dissolution process, both the Fe content and the Pb content are significantly reduced, but it is still not possible to obtain high purity zinc carbonate. Furthermore, when metallic zinc was added to a zinc solution obtained without the addition of metallic zinc and crystallization was performed afterwards, a decrease in Fe and Pb content was observed, but the content remained at a satisfactory level. Unable to obtain purity zinc carbonate. On the other hand, surprisingly, metal zinc was added to the zinc solution after the residue was removed during the Zn dissolution process.
When performing an ion substitution reaction with Fe and Pb,
It has been found that it is possible to obtain highly pure zinc carbonate in which both the Fe and Pb contents are sufficiently reduced. On the other hand, for the zinc solution after the ion displacement reaction,
It has been found that performing main crystallization after partial crystallization is extremely effective in achieving high purity. In addition, especially when trying to reduce the Fe content, if an oxidation treatment step is provided between the dissolution step involving the addition of metallic zinc and the ion replacement reaction step,
It was also discovered that high purity zinc carbonate with a low Fe content can be obtained. Oxidation treatment can reduce equipment costs compared to partial crystallization. In addition, prior to dissolving Zn, a pre-crystallization operation is performed, and impurities are filtered out together with the crystals, and Zn-containing substances are dissolved in the filtrate (zinc solution). You can get the product crystal. [Example] The structure and effects of the present invention will be explained below by referring to various examples. Example 1 In dissolving Zn, the concentration of the solution is an important factor, and the respective concentrations of NH 4 OH and (NH 4 ) 2 CO 3 are 5 to 40 wt%, especially 10 to 30 wt%.
% is preferred. The reason for this is the following experiments 1 and 2.
This will be explained with reference to. <Experiment 1> Solubility in the form of Zn(OH) 2 (unit: g) of Zn-containing dust obtained from a steel mill with various concentrations of ammonia NH 4 OH and ammonium carbonate (NH 4 ) 2 CO /) and found that the first
Obtained the results in the table.

【表】 また、溶解液温度40℃のときの溶解度を第1図
に示す。 この第1図に着目すると、たとえばNH4OH=
171g/、(NH42CO3=100g/の溶液には、
亜鉛がZn(OH)2の形で140g/溶解する。 そこで、この実験につき、これに従う溶解度の
操作と共に考えてみると、Zn溶解液を加温およ
びまたは真空としてアンモニアを蒸発すると得ら
れる結晶は、塩基性炭酸亜鉛〔ZnCO32〔Zn
(OH)23であり、亜鉛の一部が炭酸と結合して析
出するので、溶液中の炭酸アンモニウム
(NH42CO3の濃度が減少し、溶解度状態は、同
図A→Bへの点線に沿つて移行し、Zn(OH)2
溶解度が減少し、〔ZnCO32〔Zn(OH)23の結晶を
得ることができる。 またA点の溶解液にCO2ガスを吹込むと、水酸
化アンモニウムNH4OHと反応して、炭酸アンモ
ニウム(NH42CO3となるので、NH4OH濃度は
減少し、他方(NH42CO3濃度は増大するので、
溶解度状態はA→Cへの点線に沿つて移行し、
Zn(OH)2の溶解度は減少し、炭酸亜鉛の結晶を
得ることができる。 そして結晶量を多く得るためには、NH4OH濃
度変化に対してZn(OH)2の溶解度変化が最も大
きい所で行うのが有利であり、第1図では
(NH42CO3=200g/、NH4OH=171g/
の所からアンモニアを蒸発することにより炭酸亜
鉛を析出するのがよいことを示している。また
NH4OH濃度が高くたとえば300g/を超えた
り、低くたとえば50g/未満であると、析出量
が少いことが判る。このように、50g/未満で
は析出量が少いし、400g/特に300g/を超
えると、加えるZn溶解薬剤量に対する析出量の
割合が少く、薬剤量を多く使用することにより経
済的でなく、またあまり大量に溶解させてもその
場合にはアンモニアの蒸発量が多くなり熱的にみ
て経済的でない。さらに、第1図によると、
NH4OHまたは(NH42CO3単独では溶解度が低
く、両者の併用によることが望ましいことが判
る。 <実験2> NH4OH濃度を0〜300g/、(NH42CO3
度を0〜400g/に変化させた溶解20mlに、Zn
含有ダストを浸漬し、亜鉛を溶解後濾過し、濾液
を加熱しアンモニアを蒸発し〔ZnCO32〔Zn
(OH)23の結晶を得て、この中に含まれる不純物
としてのFe、Pbの量を分析した。 その結果を第2表に示す。
[Table] Figure 1 also shows the solubility when the solution temperature is 40°C. Focusing on this Figure 1, for example, NH 4 OH=
For a solution of 171g/, (NH 4 ) 2 CO 3 = 100g/,
140g/dissolved of zinc in the form of Zn(OH) 2 . Therefore, considering this experiment along with the solubility manipulation that follows, the crystals obtained by heating and/or vacuuming the Zn solution to evaporate ammonia are basic zinc carbonate [ZnCO 3 ] 2 [Zn
(OH) 2 ] 3 , and part of the zinc combines with carbonic acid and precipitates, so the concentration of ammonium carbonate (NH 4 ) 2 CO 3 in the solution decreases, and the solubility state changes from A to B in the same figure. , the solubility of Zn(OH) 2 decreases, and crystals of [ZnCO 3 ] 2 [Zn(OH) 2 ] 3 can be obtained. Furthermore, when CO 2 gas is blown into the solution at point A, it reacts with ammonium hydroxide NH 4 OH to form ammonium carbonate (NH 4 ) 2 CO 3 , so the NH 4 OH concentration decreases and the other (NH 4 4 ) 2 CO 3 concentration increases, so
The solubility state transitions along the dotted line from A to C,
The solubility of Zn(OH) 2 decreases and zinc carbonate crystals can be obtained. In order to obtain a large amount of crystals, it is advantageous to carry out the process at a location where the solubility of Zn(OH) 2 changes the most with respect to a change in NH 4 OH concentration, and in Figure 1, (NH 4 ) 2 CO 3 = 200g/, NH 4 OH=171g/
This shows that it is best to precipitate zinc carbonate by evaporating ammonia from the point. Also
It can be seen that when the NH 4 OH concentration is high, for example over 300 g/, or low, for example less than 50 g/, the amount of precipitation is small. In this way, when the amount is less than 50g/, the amount of precipitation is small, and when it exceeds 400g/especially 300g/, the ratio of the amount of precipitation to the amount of Zn dissolving agent added is small, and it is not economical to use a large amount of the agent. Even if too much ammonia is dissolved, the amount of evaporation of ammonia will increase, making it uneconomical from a thermal standpoint. Furthermore, according to Figure 1,
It can be seen that the solubility of NH 4 OH or (NH 4 ) 2 CO 3 alone is low, and that it is desirable to use both in combination. <Experiment 2> Zn was added to 20 ml of dissolved NH 4 OH concentration varying from 0 to 300 g/, and (NH 4 ) 2 CO 3 concentration varying from 0 to 400 g/.
The contained dust is immersed, the zinc is dissolved and then filtered, and the filtrate is heated to evaporate the ammonia [ZnCO 3 ] 2 [Zn
Crystals of (OH) 2 ] 3 were obtained, and the amounts of Fe and Pb as impurities contained therein were analyzed. The results are shown in Table 2.

【表】 結晶は、NH4OH=200g/、(NH42CO3
100g/の条件下での結晶は色も白く、収量操
作も易しいことが判つた。(NH42CO3濃度につ
いてみれば、200g/の条件下のものが、Fe、
Pb不純物含有量が多く、焼いた亜鉛華も掲色に
着色する。(NH42CO3濃度が100g/と200
g/とを比較すると、NH4OH濃度の低い方が
鉄不純物量が多くなつているのに対して、鉛不純
物量はNH4OH濃度が高い方が多くなつている。 NH4OHおよび(NH42CO3が共に300g/
の条件下では、Fe=108PPM、Pb=1120PPMと
なつて少くなり、(NH42CO3=400g/の条件
では、(NH42CO3がアンモニア水溶液に溶け難
くなり、下に未溶解の結晶が残る。不純物のFe
またはPbの何れに着目するかによつて各濃度を
選択するが、ともあれ各々50〜400g/、特に
50〜300g/の濃度が好ましい。 一方、前記説明で触れたように、炭酸亜鉛の結
晶化手段としては、未溶解残渣溶液を(1)加温また
は真空により、あるいはそれらの併用によりアン
モニアを蒸発させる方法、(2)前記溶液に直接CO2
ガスを吹込む方法、(3)(1)の方法の後にCO2ガスを
吹込む方法がある。(1)の場合には、〔ZnCO32
〔Zn(OH)23の形で、(2)に場合ZnCO3の形で、(3)
の場合両形態でそれぞれ炭酸亜鉛が得られる。 実施例 2 また、用途により不純物含有量を著しく嫌う場
合がある。この場合、本晶出に先立つて部分晶出
を行う次の方法が適していることが判つた。 この結論に至る過程で、本発明者は、(1)結晶析
出時不純物が結晶と共に析出するか否か、(2)それ
とも不純物は溶液中に溶解し、炭酸亜鉛を濾過す
るときに炭酸亜鉛結晶に付着するものか、(3)炭酸
亜鉛結晶が出はじめたときと最終に出る結晶とで
は不純物量が違うのか、(4)再結晶すれば不純物を
除去できるのか、(5)電気分解により不純物を除去
できるかをそれぞれ検討してみたが、経済性およ
び操作性などの点で、部分晶出方法が最適な方法
であることが判明した。 部分晶出法は具体的に次のように行う。まず、
Zn含有物を前述のZn溶解液と接触させ、Znを溶
解させ、未溶解残渣を除去し、さらにイオン置換
反応を行つた後の亜鉛溶液に対して炭酸亜鉛の部
分析出(晶出)操作を行う。この部分晶析の場
合、先に述べた炭酸亜鉛の本晶析操作のいずれの
操作も行い得る。アンモニアの蒸発による部分析
出に当つては、前記溶液を好ましくは40〜85℃に
加温するおよび/または真空にしてアンモニアを
部分蒸発させる。40℃未満では、アンモニアの蒸
発に当つて、加温操作単独では無理でありかつか
なり高い真空度とせねばならず不適である。85℃
を超えた場合、結晶の収率が落ちるし、部分晶出
を行うことなく本晶出のみを行つたのと同様とな
り、不純物除去効果が見出せない。この方法に代
えてあるいは併用してCO2ガスの吹込みを行つて
もよい。 部分晶出が終つたならば、濾過による濾液また
は静置分離による上澄液に対して、同様な操作に
より本晶出を行う。もしアンモニア蒸発法による
場合、85%を超える温度の加温および/または真
空にして行う。ここで、85℃を境にして析出形態
が異なるのは、理由は明らかでないが、現象的に
みれば、85℃以上に加温すると、アンモニアを然
程飛んだと思われないのに、結晶が大量に析出す
るところからみると、85℃付近で何らかの熱的平
衡関係があるのではないかと推測される。 <実験3> Fe、Pbを多く溶解させるために濃度を上げ、
NH4OH=200g/、(NH42CO3=300g/
の水溶液に、亜鉛含有ダストを浸漬し、Zn溶解
を行い、不溶解残渣を濾過した溶液を各々10ml試
験管に取り、16.1NH2SO4を別々に量を変えて加
え、析出した結晶中のZn、Fe、Pbの含有量を分
析したところ、第3表の通りであつた。
[Table] Crystals are NH 4 OH = 200g/, (NH 4 ) 2 CO 3 =
It was found that the crystals under the condition of 100 g/g were white in color and easy to control the yield. (NH 4 ) 2 CO 3 concentration under the condition of 200g/Fe,
The content of Pb impurities is high, and the baked zinc white is also colored. (NH 4 ) 2 CO 3 concentration is 100g/200
g/, the amount of iron impurities increases when the NH 4 OH concentration is low, while the amount of lead impurities increases when the NH 4 OH concentration is high. Both NH 4 OH and (NH 4 ) 2 CO 3 are 300g/
Under the conditions of , Fe = 108PPM and Pb = 1120PPM, and the amount decreases, and under the condition of (NH 4 ) 2 CO 3 = 400g/, (NH 4 ) 2 CO 3 becomes difficult to dissolve in the ammonia aqueous solution, and the amount of unused water at the bottom is reduced. Dissolved crystals remain. Impurity Fe
The concentration is selected depending on whether to focus on Pb or Pb.
A concentration of 50 to 300 g/g is preferred. On the other hand, as mentioned in the above explanation, methods for crystallizing zinc carbonate include (1) evaporating ammonia from an undissolved residue solution by heating or vacuum, or a combination thereof; direct CO2
There is a method of blowing gas, (3) and a method of blowing CO 2 gas after method (1). In the case of (1), [ZnCO 3 ] 2
[Zn(OH) 2 ] In the form of 3 , (2) In the form of ZnCO 3 , (3)
Zinc carbonate is obtained in both forms. Example 2 Furthermore, depending on the application, the content of impurities may be extremely objectionable. In this case, it has been found that the following method of performing partial crystallization prior to main crystallization is suitable. In the process of reaching this conclusion, the inventors have determined whether (1) the impurities precipitate together with the crystals during crystal precipitation, and (2) whether the impurities are dissolved in the solution and when the zinc carbonate is filtered, the zinc carbonate crystals are removed. (3) Is the amount of impurities different between when zinc carbonate crystals start to appear and when they finally appear? (4) Can impurities be removed by recrystallization? (5) Does electrolysis remove impurities? We investigated whether it would be possible to remove this, and it turned out that the partial crystallization method was the best method in terms of economy and operability. The partial crystallization method is specifically performed as follows. first,
Partial precipitation (crystallization) of zinc carbonate is performed on the zinc solution after contacting the Zn-containing material with the above-mentioned Zn solution, dissolving Zn, removing undissolved residue, and performing an ion replacement reaction. I do. In the case of this partial crystallization, any of the operations for main crystallization of zinc carbonate described above may be performed. For partial extraction of ammonia by evaporation, the solution is preferably heated to 40 DEG -85 DEG C. and/or vacuum is applied to partially evaporate the ammonia. At temperatures below 40°C, it is impossible to evaporate ammonia by heating alone, and a considerably high degree of vacuum must be applied, which is unsuitable. 85℃
If it exceeds this, the yield of crystals will drop, and the result will be the same as performing only main crystallization without partial crystallization, and no impurity removal effect will be found. In place of or in combination with this method, CO 2 gas may be blown. After the partial crystallization is completed, the main crystallization is carried out in the same manner on the filtrate obtained by filtration or the supernatant obtained by stationary separation. If the ammonia evaporation method is used, it is carried out at a temperature of more than 85% and/or under vacuum. The reason why the precipitation forms differ at 85°C is not clear, but from a phenomenon perspective, when heated above 85°C, crystallization occurs even though the ammonia does not seem to have been blown off to a large extent. Judging from the fact that a large amount of is precipitated, it is assumed that there is some kind of thermal equilibrium relationship around 85℃. <Experiment 3> Increase the concentration to dissolve more Fe and Pb,
NH 4 OH = 200g/, (NH 4 ) 2 CO 3 = 300g/
Zinc- containing dust was immersed in the aqueous solution of When the contents of Zn, Fe, and Pb were analyzed, they were as shown in Table 3.

【表】 この結果から、初めに出る結晶ほど、Fe、Pb
共多く含まれていることが判る。Feは、液のPH
が8.5〜7では160〜270PPMで一定し、8.5以上お
よび2以下になれば970PPMに近づく。Pbは、
溶液中にPH=9で860PPM、PH=8.5で130、PH=
8以下では50PPM以下であり、初めに出る結晶
ほど良い結晶であるという通念は逆の結果となつ
ている。 <実験4> 再結晶および電気分解によるFe、Nn含有量を
測定した。NH4OH=200g/、(NH42CO3
100g/の水溶液にZn含有ダストを浸漬しZnを
溶解し、残渣を濾別し、濾液を90℃に昇温し、ア
ンモニアを蒸発し、炭酸亜鉛の結晶を沈殿させ濾
別し、Fe=123PPM、Pb=1790PPMの結晶を得
て、この結晶を、NH4OH=200g/、
(NH42CO3=100g/の溶液と、この液に
(NH42S=100g/、NH4SCN=100g/を
溶解した液とで、それぞれ再結晶を行つた。また
NH4OH=200g/、(NH42CO3=100g/
の溶液中にZn含有ダスト浸漬残渣濾別した溶解
液を、亜鉛電極を使用して電気分解を行つた後、
90℃に昇温し、結晶を採取したものについて、
Fe、Pbの分析値を第4表に示す。不純物(Fe、
Pb)量の単位はPPM。上段は結晶状態での、下
段は濾液での不純物量である。
[Table] From this result, the earlier the crystals appear, the more Fe, Pb
It can be seen that they contain a large amount of both. Fe is the pH of the liquid
is constant at 160-270PPM when it is 8.5 to 7, and approaches 970PPM when it is 8.5 or more and 2 or less. Pb is
860 PPM at PH=9 in solution, 130 at PH=8.5, PH=
If it is less than 8, it is less than 50 PPM, and the common belief that the first crystal that appears is the better crystal has the opposite result. <Experiment 4> Fe and Nn contents were measured by recrystallization and electrolysis. NH 4 OH = 200g/, (NH 4 ) 2 CO 3 =
Zn-containing dust is immersed in 100g/aqueous solution to dissolve Zn, the residue is filtered off, the filtrate is heated to 90°C, ammonia is evaporated, zinc carbonate crystals are precipitated and filtered out, Fe=123PPM , Pb=1790PPM crystal was obtained, and this crystal was mixed with NH 4 OH=200g/,
Recrystallization was performed using a solution of (NH 4 ) 2 CO 3 =100 g/ and a solution in which (NH 4 ) 2 S = 100 g/ and NH 4 SCN = 100 g/ were dissolved. Also
NH 4 OH = 200g/, (NH 4 ) 2 CO 3 = 100g/
Zn-containing dust was immersed in the solution.The filtered solution was electrolyzed using a zinc electrode.
Regarding the crystals collected after heating to 90℃,
Table 4 shows the analytical values for Fe and Pb. Impurities (Fe,
Pb) The unit of amount is PPM. The upper row shows the amount of impurities in the crystalline state, and the lower row shows the amount of impurities in the filtrate.

【表】 この結果から、再結晶法や電気分解法によつて
も鉛の含有量を低減させることが難しいことが判
明されよう。これは、濾液中のFe、Pbの溶解量
をみれば、8〜3PPMしか濾液に溶けないので結
晶中に出てしまうからである。NH4SCNを加え
たものは、Pb量が10以下となり、濾液に
200PPM溶けているので、再結晶化が可能である
が、結晶に付着したNH4SCNは約200℃でなけれ
ば分解しないので、混入される許される所の用途
が限られる。 <実験5> このように、一旦晶出操作した結晶を処理して
も、不純物量を下げることができないので、結晶
を出す前に不純物を除去しなければならない。そ
こで次の分別晶析実験を行つた。 すなわち、アンモニア蒸発量を制御することは
難しいので、たとえば常圧760mmHg・absで温度
とアンモニア濃度と分圧は一定となるので、温度
を中間温度70〜85℃に上げ、結晶を一部析出濾過
し、濾液を90℃に昇温し、本晶析し、不純物を分
析したところ第5表に示す結果を得た。同表中の
「処理方法」の欄の数値は、〔ZnCO32〔Zn
(OH)23の結晶量(単位gr)である。
[Table] From these results, it is clear that it is difficult to reduce the lead content even by recrystallization or electrolysis. This is because if you look at the amount of dissolved Fe and Pb in the filtrate, only 8 to 3 PPM is dissolved in the filtrate, so they are released into the crystals. When NH 4 SCN is added, the Pb content is less than 10 and the filtrate is
Since 200 PPM is dissolved, recrystallization is possible, but since the NH 4 SCN attached to the crystals will not decompose unless the temperature is about 200°C, the applications where it is allowed to be mixed are limited. <Experiment 5> As described above, the amount of impurities cannot be reduced even if the crystals that have been crystallized are treated once, so the impurities must be removed before the crystals are produced. Therefore, we conducted the following fractional crystallization experiment. In other words, since it is difficult to control the amount of ammonia evaporation, for example, the temperature, ammonia concentration, and partial pressure are constant at normal pressure of 760 mmHg/abs, the temperature is raised to an intermediate temperature of 70 to 85 °C, and some of the crystals are precipitated and filtered. Then, the filtrate was heated to 90°C, subjected to main crystallization, and impurities were analyzed, and the results shown in Table 5 were obtained. The numerical values in the “Treatment method” column in the same table are [ZnCO 3 ] 2 [Zn
(OH) 2 ] 3 is the amount of crystals (unit: gr).

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、最終的に得られ
た塩基性炭酸亜鉛が、不純物Fe、Pbなどの含有
量が極めて微量の高純度の塩基性炭酸亜鉛を、廃
棄物としてのZn含有物から回収することができ
る。
As described above, according to the present invention, the basic zinc carbonate finally obtained is a highly pure basic zinc carbonate containing extremely small amounts of impurities such as Fe and Pb, and is used as a Zn-containing waste. It can be recovered from.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明Zn溶解液に対するZn溶解度を
示す関係図、第2図および第3図は本発明工程例
を実験結果とともに示したフローシート、第4図
は本発明法の有効性の理由について確認した実験
結果を示すグラフである。
Figure 1 is a relationship diagram showing the solubility of Zn in the Zn solution of the present invention, Figures 2 and 3 are flow sheets showing examples of the process of the present invention along with experimental results, and Figure 4 is the reason for the effectiveness of the method of the present invention. It is a graph showing the experimental results confirmed regarding.

Claims (1)

【特許請求の範囲】 1 少くともFe、Pbを含むZn含有物を、少くと
もそれぞれ5〜40wt%のNH4OHおよび
(NH42CO3を含む水溶液と接触させて、該溶液
にZnを溶解させるとともに、この溶解過程で金
属亜鉛を添加し、Znの溶解によつて生ずる未溶
解残渣を除去し、次いで溶解処理後の溶液につい
て、金属亜鉛を添加し、金属亜鉛と不純物との間
にイオン置換反応を行ない残渣分を除去した後、
炭酸亜鉛の結晶化を行うことを特徴とするZn含
有物からの塩基性炭酸亜鉛回収方法。 2 少くともFe、Pbを含むZn含有物を、少くと
もそれぞれ5〜40wt%のNH4OHおよび
(NH42CO3を含む水溶液と接触させて、該溶液
にZnを溶解させるとともに、この溶解過程で金
属亜鉛を添加し、Znの溶解によつて生ずる未溶
解残渣を除去し、次いで溶解処理後の溶液につい
て、金属亜鉛を添加し、金属亜鉛と不純物Fe、
Pb等との間にイオン置換反応を行ない、その後
塩基性炭酸亜鉛の部分晶析を行ない、溶液中に不
純物として溶存する重金属イオンの大部分を水酸
化物および/または炭酸塩もしくは塩基性炭酸塩
として共沈させ、沈澱物を分別し、その後その溶
液について塩基性炭酸亜鉛の本析出を行うことを
特徴とするZn含有物からの塩基性炭酸亜鉛回収
方法。 3 少くともFe、Pbを含むZn含有物を、少くと
もそれぞれ5〜40wt%のNH4OHおよび
(NH42CO3を含む水溶液と接触させて、該溶液
にZnを溶解させるとともに、この溶解過程で金
属亜鉛を添加し、Znの溶解によつて生ずる未溶
解残渣を除去し、その後溶解処理後の溶液に気曝
または酸化剤の添加により酸化処理を行い、3価
の水酸化鉄の除去を行い、次いでその溶液につい
て、金属亜鉛を添加し、金属亜鉛と不純物Fe、
Pb等との間にイオン置換反応を行ない、その後
塩基性炭酸亜鉛の部分晶析を行ない、溶液中に不
純物として溶存する重金属イオンの大部分を水酸
化物および/または炭酸塩もしくは塩基性炭酸塩
として共沈させ、沈澱物を分別し、その後その溶
液について塩基性炭酸亜鉛の本析出を行うことを
特徴とするZn含有物からの塩基性炭酸亜鉛回収
方法。 4 少くともFe、Pbを含むZn含有物を、少くと
もそれぞれ5〜40wt%のNH4OHおよび
(NH42CO3を含む水溶液と接触させて、該溶液
にZnを溶解させるとともに、生ずる残渣を除去
した後、前晶析操作を行い、不純物を除去し、得
られる炭酸亜鉛溶液に対してZn含有物の溶解を
行い、この溶解過程で金属亜鉛を添加し、Znの
溶解によつて生ずる未溶解残渣を除去し、次いで
溶解処理後の溶液について、金属亜鉛を添加し、
金属亜鉛と不純物との間にイオン置換反応を行な
い残渣分を除去した後、炭酸亜鉛の結晶化を行う
ことを特徴とするZn含有物からの塩基性炭酸亜
鉛回収方法。
[Claims] 1. A Zn-containing material containing at least Fe and Pb is brought into contact with an aqueous solution containing at least 5 to 40 wt% of each of NH 4 OH and (NH 4 ) 2 CO 3 to add Zn to the solution. At the same time, metal zinc is added during this dissolution process to remove undissolved residues caused by the dissolution of Zn, and then metal zinc is added to the solution after the dissolution treatment, and the gap between metal zinc and impurities is removed. After removing the residue by performing an ion replacement reaction,
A method for recovering basic zinc carbonate from a Zn-containing material, the method comprising crystallizing zinc carbonate. 2 A Zn-containing material containing at least Fe and Pb is brought into contact with an aqueous solution containing at least 5 to 40 wt% of each of NH 4 OH and (NH 4 ) 2 CO 3 to dissolve Zn in the solution and Metallic zinc is added during the melting process, undissolved residues generated by dissolving Zn are removed, and then metallic zinc is added to the solution after the melting process, and metallic zinc and impurities Fe,
An ion displacement reaction is carried out with Pb, etc., followed by partial crystallization of basic zinc carbonate, and most of the heavy metal ions dissolved as impurities in the solution are converted into hydroxide and/or carbonate or basic carbonate. 1. A method for recovering basic zinc carbonate from a Zn-containing material, the method comprising co-precipitating the precipitate as a precipitate, separating the precipitate, and then performing main precipitation of basic zinc carbonate from the solution. 3 A Zn-containing material containing at least Fe and Pb is brought into contact with an aqueous solution containing at least 5 to 40 wt% of each of NH 4 OH and (NH 4 ) 2 CO 3 to dissolve Zn in the solution, and to dissolve the Zn in the solution. Metallic zinc is added during the dissolution process to remove undissolved residues generated by dissolving Zn, and then the solution after dissolution treatment is oxidized by aeration or by addition of an oxidizing agent to remove trivalent iron hydroxide. Then, metal zinc is added to the solution to remove metal zinc and impurity Fe,
An ion displacement reaction is carried out with Pb, etc., followed by partial crystallization of basic zinc carbonate, and most of the heavy metal ions dissolved as impurities in the solution are converted into hydroxide and/or carbonate or basic carbonate. 1. A method for recovering basic zinc carbonate from a Zn-containing material, the method comprising co-precipitating the precipitate as a precipitate, separating the precipitate, and then performing main precipitation of basic zinc carbonate from the solution. 4 Contact a Zn-containing material containing at least Fe and Pb with an aqueous solution containing at least 5 to 40 wt% of each of NH 4 OH and (NH 4 ) 2 CO 3 to dissolve Zn in the solution and generate After removing the residue, a pre-crystallization operation is performed to remove impurities, and Zn-containing substances are dissolved in the resulting zinc carbonate solution. Metallic zinc is added during this dissolution process, and by dissolving Zn, Zn-containing substances are dissolved. The resulting undissolved residue is removed, and then metallic zinc is added to the solution after the dissolution treatment,
A method for recovering basic zinc carbonate from a Zn-containing material, which comprises performing an ion substitution reaction between metallic zinc and impurities to remove residual components, and then crystallizing zinc carbonate.
JP19568382A 1982-11-08 1982-11-08 Method for recovering zinc carbonate from matter containing zn Granted JPS5988319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19568382A JPS5988319A (en) 1982-11-08 1982-11-08 Method for recovering zinc carbonate from matter containing zn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19568382A JPS5988319A (en) 1982-11-08 1982-11-08 Method for recovering zinc carbonate from matter containing zn

Publications (2)

Publication Number Publication Date
JPS5988319A JPS5988319A (en) 1984-05-22
JPH0235693B2 true JPH0235693B2 (en) 1990-08-13

Family

ID=16345259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19568382A Granted JPS5988319A (en) 1982-11-08 1982-11-08 Method for recovering zinc carbonate from matter containing zn

Country Status (1)

Country Link
JP (1) JPS5988319A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159181A (en) * 2009-01-08 2010-07-22 Hamada Heavy Industries Ltd Method for producing zinc carbonate
JP2012051772A (en) * 2010-09-02 2012-03-15 Hamada Heavy Industries Ltd Method for producing zinc carbonate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1260225A (en) * 1984-12-28 1989-09-26 Tatsushi Kasai Process for distillation-crystallization of zinc carbonate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114898A (en) * 1974-07-30 1976-02-05 Magune Kk Pitsukuringuniokeru sanaraiekichuno keisono jokyohoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114898A (en) * 1974-07-30 1976-02-05 Magune Kk Pitsukuringuniokeru sanaraiekichuno keisono jokyohoho

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159181A (en) * 2009-01-08 2010-07-22 Hamada Heavy Industries Ltd Method for producing zinc carbonate
JP2012051772A (en) * 2010-09-02 2012-03-15 Hamada Heavy Industries Ltd Method for producing zinc carbonate

Also Published As

Publication number Publication date
JPS5988319A (en) 1984-05-22

Similar Documents

Publication Publication Date Title
EP2450312A1 (en) Recovery of tungsten from waste material by ammonium leaching
MXPA04010244A (en) Process for the treatment or removal of impurities in a hydrometallurgical extraction process.
US5078786A (en) Process for recovering metal values from jarosite solids
US2039256A (en) Process of treating refinery sludges or slimes containing selenium and tellurium
JPS604892B2 (en) How to recover metal from copper refining anode slime
JPS6153103A (en) Recovery of high-purity tellurium from crude tellurium dioxide
PL205994B1 (en) Method for processing anode sludge
US2584700A (en) Treatment of iron ore containing impurities, including nickel and chromium
JPH10509212A (en) Recovery of metal and chemical value
JP5062111B2 (en) Method for producing high-purity arsenous acid aqueous solution from copper-free slime
US4225564A (en) Purification of rutile
JPH0235693B2 (en)
US1780323A (en) Utilization of galvanizer&#39;s waste
US2204454A (en) Process for decomposing zirconium ore
US4937056A (en) Process for obtaining high purity magnesium compounds from magnesium containing materials
US4908462A (en) Cobalt recovery method
US831280A (en) Process of treating vanadium ores.
US3464783A (en) Process for working up ores which contain tungsten
US4218425A (en) Process for extracting arsenic from oxidic materials
JP2000169116A (en) Selectively leaching recovery process of selenium
US4137292A (en) Purification of titanium trichloride
JPS60195021A (en) Method of recovery of arsenious acid from exhaust gas of refining
US1241966A (en) Zinc-extraction process.
US5173276A (en) Method for recovery of copper from copper-containing materials
US2425995A (en) Process for treating oxidized ores of zinc