JPH0235071A - Time constant controlling type cell electrostimulator - Google Patents

Time constant controlling type cell electrostimulator

Info

Publication number
JPH0235071A
JPH0235071A JP63184057A JP18405788A JPH0235071A JP H0235071 A JPH0235071 A JP H0235071A JP 63184057 A JP63184057 A JP 63184057A JP 18405788 A JP18405788 A JP 18405788A JP H0235071 A JPH0235071 A JP H0235071A
Authority
JP
Japan
Prior art keywords
chamber
cell suspension
resistance
time constant
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63184057A
Other languages
Japanese (ja)
Other versions
JP2621384B2 (en
Inventor
Kotaro Noda
野田 幸太郎
Koji Sogawa
十川 好志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63184057A priority Critical patent/JP2621384B2/en
Publication of JPH0235071A publication Critical patent/JPH0235071A/en
Application granted granted Critical
Publication of JP2621384B2 publication Critical patent/JP2621384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To enable application of a voltage pulse a time constant optimum for fusion conditions across opposite electrodes by providing a circuit for measuring a resistance value across the opposite electrodes in a cell fusion cell and further a means for calculating specific resistance from the resultant value. CONSTITUTION:Many capacitors 10-1 to 10-n having different capacities are connected in parallel to opposite electrodes of a cell 2 carrying out fusion between mutual cells, cells and genes or proteins with a DC voltage pulse and a charging power source 8 is connected thereto. A circuit 20 for passing all AC current across the opposite electrodes of the cell 2 and measuring the resistance value is provided. A specific resistance of a cell suspension is calculated from the measured values and chamber constant using a specific resistance calculating means 22. The optimum capacitor is selected from the resultant specific resistance and electrode spacing and time constant, etc., using a condition setting means 24.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は遺伝子又は蛋白などの物質を細胞とともに混合
した細胞懸濁液に電気パルスを印加することによって遺
伝子や蛋白などを細胞内に取り込ませる遺伝子導入装置
や、細胞に電気刺激を与えて細胞どおしを電気的に融合
させる細胞融合装置などの細胞電気刺激装置に関するも
のである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention incorporates genes, proteins, etc. into cells by applying electric pulses to a cell suspension in which substances such as genes or proteins are mixed with cells. The present invention relates to cell electrical stimulation devices such as gene introduction devices and cell fusion devices that electrically fuse cells by applying electrical stimulation to cells.

遺伝子導入装置は細胞に与える電気刺激として直流電圧
パルスのみを与えるのに対して、細胞融合装置では交流
電圧を与えて誘電電気泳動により細胞とおしを接触させ
た後、直流電圧パルスを与えて融合させる。細胞融合装
置では交流電源がさらに必要であるが、両者はその他の
構成においては共通であるので、以下の説明では主とし
て遺伝子導入装置について説明するが、本発明は細胞融
合装置にも適用されるものである。
Gene transfer devices apply only DC voltage pulses as electrical stimulation to cells, whereas cell fusion devices apply AC voltage to bring cells into contact with each other through dielectric electrophoresis, and then apply DC voltage pulses to fuse them. . Although the cell fusion device additionally requires an AC power source, other configurations of both devices are the same, so the following explanation will mainly be about the gene transfer device, but the present invention is also applicable to the cell fusion device. It is.

(従来の技術) 遺伝子導入装置の一例として、第4図に示されるように
直流電圧をコンデンサ(容量C(F) )に充電した後
、細胞懸濁液(抵抗R(Ω))を負荷として時定数τ=
CR(秒)で放電させる装置が提案されている( rP
lant Ce1l Physiol、J 27(4)
 :619−626(1986)参照)62はチャンバ
であり、対向電極4,6を備え、対向電極4,6間には
細胞!@濁液を収容して細胞に電界を印加する。8は直
流電源、9は俸抗である。チャンバ2と電源8に対して
容量の異なるコンデンサ10−1〜10−nが並列に設
けられている。コンデンサ10−1〜10−nの容量は
それぞれC,〜Cn(F)である。12−1〜12−n
はコンデンサ10−1〜10−nのいずれかを選択する
スイッチ、14は選択されたコンデンサを電源8に接続
するためのスイッチである。15は充電されたコンデン
サをチャンバ2に接続するためのスイッチである。
(Prior art) As an example of a gene transfer device, as shown in FIG. Time constant τ=
A device that discharges at CR (seconds) has been proposed (rP
lant Ce1l Physiol, J 27(4)
619-626 (1986)) 62 is a chamber, which is provided with opposing electrodes 4 and 6, and cells are placed between the opposing electrodes 4 and 6. @ Contain a suspension and apply an electric field to the cells. 8 is a DC power supply, and 9 is a resistor. Capacitors 10-1 to 10-n having different capacities are provided in parallel to the chamber 2 and the power source 8. The capacitances of the capacitors 10-1 to 10-n are C and -Cn(F), respectively. 12-1 to 12-n
14 is a switch for selecting one of the capacitors 10-1 to 10-n, and 14 is a switch for connecting the selected capacitor to the power supply 8. 15 is a switch for connecting the charged capacitor to the chamber 2;

遺伝子導入効率は細胞に印加されるコンデンサ放電波形
の初期電界強度E(V/cm)及び時定数τ=CR(秒
)によって変化する。第4図の装置では時定数τを可変
にするために、容量の異なるコンデンサ1o−1〜10
−nをスイッチ12−1〜12−nで切り替えている。
The gene transfer efficiency varies depending on the initial electric field strength E (V/cm) of the capacitor discharge waveform applied to the cells and the time constant τ=CR (seconds). In the device shown in Fig. 4, in order to make the time constant τ variable, capacitors 1o-1 to 10 with different capacities are used.
-n is switched by switches 12-1 to 12-n.

すなわち、スイッチ12−1〜12−nによってコンデ
ンサ10−1〜10−nを選択し、まずスイッチ14を
オン、スイッチ15をオフにしてその選択されたコンデ
ンサを充電し、その後スイッチ14をオフ。
That is, the capacitors 10-1 to 10-n are selected by the switches 12-1 to 12-n, the switch 14 is first turned on, the switch 15 is turned off to charge the selected capacitor, and then the switch 14 is turned off.

スイッチ15をオンにして充電電荷をチャンバ2に放電
させる。
The switch 15 is turned on to discharge the charged charge into the chamber 2.

(発明が解決しようとする課題) 第4図の装置ではコンデンサ10−1〜10−nの容量
の値C1〜Cnは離散値であるために、時定数でも離散
値となり、時定数に関する細かな最適化ができない。も
し、時定数の最適化を十分に行なおうとすれば、コンデ
ンサ10−1〜1〇−nの数を無限に増加させる必要が
あり、装置の規模から考えて実現しがたい。
(Problem to be Solved by the Invention) In the device shown in FIG. 4, since the capacitance values C1 to Cn of the capacitors 10-1 to 10-n are discrete values, the time constants are also discrete values, and the detailed values regarding the time constants are Cannot be optimized. If the time constants were to be sufficiently optimized, it would be necessary to increase the number of capacitors 10-1 to 10-n infinitely, which is difficult to achieve considering the scale of the device.

また、細胞懸濁液の抵抗値は塩濃度、遺伝子濃度、細胞
密度などによって変化するので、時定数の制御は容易で
はない。
Furthermore, since the resistance value of the cell suspension changes depending on the salt concentration, gene concentration, cell density, etc., it is not easy to control the time constant.

本発明はコンデンサを介して直流電圧パルスを印加する
場合の時定数を連続的に可変にすることのできる電気刺
激装置を提供することを目的とするものである。
An object of the present invention is to provide an electrical stimulation device that can continuously vary the time constant when applying a DC voltage pulse via a capacitor.

(課題を解決するための手段) 第1図に本発明を示す。(Means for solving problems) The invention is illustrated in FIG.

2はチャンバ、8は直流電圧電源、10−1〜10−n
は電源8により充電され、チャンバ2に放電する並列接
続された互いに容量の異なるコンデンサである。20は
チャンバ2に交流電流を流してチャンバ2の抵抗値を測
定する抵抗測定回路、22は抵抗測定回路の測定値rと
チャンバ定数にとから細胞懸濁液の比抵抗ρを算出する
比抵抗算出手段、24はチャンバ2の電極間間隔61時
定数τ、コンデンサ10−1〜10−nの容量値C□〜
Cn及び算出された比抵抗ρから最適コンデンサ10−
1を選定し、細胞懸濁液量voを算出するに件設定手段
、26は抵抗測定回路20の測定値R,チャンバ2の電
極間間隔d及び算出された比抵抗ρから細胞懸濁液量V
を検出する細胞懸濁液量検出手段、28は条件設定手段
24で算出された細胞!!!!!濁液ff1Voを表示
する表示手段である。
2 is a chamber, 8 is a DC voltage power supply, 10-1 to 10-n
are capacitors connected in parallel that are charged by the power source 8 and discharged into the chamber 2 and have different capacities. 20 is a resistance measuring circuit that measures the resistance value of the chamber 2 by passing an alternating current through the chamber 2, and 22 is a specific resistance that calculates the specific resistance ρ of the cell suspension from the measured value r of the resistance measuring circuit and the chamber constant. Calculation means 24 indicates the time constant τ of the inter-electrode interval 61 of the chamber 2, and the capacitance values C□~ of the capacitors 10-1 to 10-n.
Optimal capacitor 10- from Cn and calculated specific resistance ρ
1 is selected and the cell suspension volume vo is calculated by setting means; V
28 is the cell calculated by the condition setting means 24! ! ! ! ! This is a display means for displaying the cloudy liquid ff1Vo.

(作用) 遺伝子導入を行なう場合を例にして説明する。(effect) This will be explained using an example of gene introduction.

チャンバ2の電極間隔dと電極面積Aで決まるチャンバ
定数k (cm−1)=d/Aは予めわかっており、比
抵抗算出手段22に設定しておく。条件設定手段24に
はチャンバ2の電極間隔d、所望のパルス時定数τ(m
s)、コンデンサ10−1〜10−nの容量C工〜Cn
を設定しておく。
The chamber constant k (cm-1)=d/A determined by the electrode spacing d and the electrode area A of the chamber 2 is known in advance and is set in the resistivity calculation means 22. The condition setting means 24 includes the electrode spacing d of the chamber 2 and the desired pulse time constant τ(m
s), capacitance C~Cn of capacitors 10-1~10-n
Set.

まず、細胞と遺伝子を懸濁させた細胞懸濁液の所定量を
チャンバ2に入れて、チャンバ2の電極を全て細胞懸濁
液で満たす。抵抗測定回路20からチャンバ2へ交流電
流が流され、その電流値と交流電源の電圧とからチャン
バ2の抵抗r (KΩ)が測定される。比抵抗算出手段
22は測定された抵抗rとチャンバ定数にとから比抵抗
ρ(KΩ・cm)をρ= r / kによって算出する
First, a predetermined amount of a cell suspension in which cells and genes are suspended is placed in the chamber 2, and all electrodes in the chamber 2 are filled with the cell suspension. An alternating current is passed from the resistance measuring circuit 20 to the chamber 2, and the resistance r (KΩ) of the chamber 2 is measured from the current value and the voltage of the alternating current power supply. The resistivity calculation means 22 calculates the resistivity ρ (KΩ·cm) from the measured resistance r and the chamber constant by ρ=r/k.

条件設定手段24はコンデンサ10−1〜10−nの各
容量C工〜Cnに対して1時定数を設定された時定数τ
とするのに必要な細胞懸濁液の量Vを算出する。それら
の算出されたVのうちチャンバ2の容量よりも小さく、
かつ、チャンバ2の容量に最も近い値をvOとして選定
し、そのvoを算出するのに使用された容量Ciのコン
デンサ10−iを最適値として選定する。選定されたv
Oは表示手段28に表示される。
The condition setting means 24 sets a time constant τ of 1 for each capacitance C to Cn of the capacitors 10-1 to 10-n.
Calculate the amount V of cell suspension required to achieve this. Of those calculated V, it is smaller than the capacity of chamber 2,
Then, the value closest to the capacitance of the chamber 2 is selected as vO, and the capacitor 10-i of the capacitance Ci used to calculate the vO is selected as the optimum value. selected v
O is displayed on the display means 28.

コンデンサ10−iが接続され、また、チャンバ2には
自動又は手動により細胞懸濁液が量v。
A capacitor 10-i is connected, and a volume v of the cell suspension is automatically or manually added to the chamber 2.

だけ注入される。only injected.

チャンバ2に細胞懸濁液が注入されると、抵抗測定回路
20によって交流電流が流されてその時のチャンバ2の
抵抗Rが測定される。懸濁液量検出手段26にもチャン
バ2の電極間間隔dを設定しておく。1IIII濁液量
検出手段26は電極間間隔d、比抵抗ρ及び測定された
抵抗値Rとからチャンバ2に注入された細胞懸濁液量V
を ■=ρed”/R によって検出する。この検出されたVと算出値voとの
比較によりチャンバ2に所定量の細胞懸濁液が注入され
たか否かを判断することができる。
When the cell suspension is injected into the chamber 2, an alternating current is applied by the resistance measuring circuit 20, and the resistance R of the chamber 2 at that time is measured. The inter-electrode spacing d of the chamber 2 is also set in the suspension amount detection means 26. 1III The suspension amount detection means 26 determines the amount of cell suspension injected into the chamber 2 from the inter-electrode spacing d, the specific resistance ρ, and the measured resistance value R.
is detected by ■=ρed''/R. By comparing the detected V and the calculated value vo, it can be determined whether a predetermined amount of the cell suspension has been injected into the chamber 2.

所定量voの細胞懸濁液が注入されると1選定されたコ
ンデンサ10−1に電g8から充電され、その充電電荷
がチャンバ2に放電されることにより所望の時定数τを
もつパルス電界を細胞に印加することができる。
When a predetermined amount vo of cell suspension is injected, one selected capacitor 10-1 is charged with an electric current g8, and the charged electric charge is discharged into the chamber 2, thereby creating a pulsed electric field with a desired time constant τ. can be applied to the cells.

時定数τを条件設定手段に設定すればその時定数τに応
じてコンデンサ10−iが選定され、チャンバ2に注入
される細胞懸濁液量voが算出されるので、時定数τを
連続的に変化させて設定することができる。
If the time constant τ is set in the condition setting means, the capacitor 10-i is selected according to the time constant τ, and the amount vo of cell suspension injected into the chamber 2 is calculated. It can be changed and set.

(実施例) 第2図は一実施例を表わす。(Example) FIG. 2 represents one embodiment.

チャンバ2は平行平板の対向電極4,6を備えており、
電極4,6は垂直方向に立っている。電極4,6間に細
胞懸濁液を注入することができ、注入量は任意の量とす
ることができる。電極6は接地され、電極4は切替えス
イッチ15aに接続されている。切替えスイッチ15a
の一方の接点にはコンデンサを選択するスイッチ12−
1〜12−nが接続されている。スイッチ12−1〜1
2−nにはそれぞれコンデンサ10−1〜1〇−nの一
方の電極が接続され、コンデンサ10−1〜10−nの
他方の電極は接地されている。コンデンサの容量は01
〜Cnである。
The chamber 2 is equipped with parallel plate facing electrodes 4 and 6,
Electrodes 4, 6 stand vertically. A cell suspension can be injected between the electrodes 4 and 6, and the injection amount can be arbitrary. Electrode 6 is grounded, and electrode 4 is connected to changeover switch 15a. Changeover switch 15a
One contact of the switch 12- for selecting the capacitor is connected to the switch 12-.
1 to 12-n are connected. Switch 12-1~1
One electrode of capacitors 10-1 to 10-n is connected to each of capacitors 2-n, and the other electrode of capacitors 10-1 to 10-n is grounded. Capacity of capacitor is 01
~Cn.

コンデンサ10−1〜10−nを充電するために、スイ
ッチ12−1〜12−nとコンデンサ10−1〜10−
nの回路にはスイッチ14と抵抗9を介して直流電圧電
源8の十電極が接続され、電源8の一電極は接地されて
いる。
In order to charge the capacitors 10-1 to 10-n, the switches 12-1 to 12-n and the capacitors 10-1 to 10-n
Ten electrodes of a DC voltage power source 8 are connected to the n circuit via a switch 14 and a resistor 9, and one electrode of the power source 8 is grounded.

切替えスイッチ15aの他方の接点には抵抗測定回路2
0が接続されている。抵抗測定回路20では切替えスイ
ッチ15aの接点に抵抗32を介して交流電源34が接
続されている。抵抗32の両端には電位差を測定するた
めに差動増幅器36が接続され、差動増幅器36の出力
は整流回路38で整流され、A/D変換器40でデジタ
ル信号に変換されてマイクロコンピュータ30に取り込
まれる。
A resistance measuring circuit 2 is connected to the other contact of the changeover switch 15a.
0 is connected. In the resistance measuring circuit 20, an AC power source 34 is connected to a contact point of the changeover switch 15a via a resistor 32. A differential amplifier 36 is connected to both ends of the resistor 32 to measure the potential difference, and the output of the differential amplifier 36 is rectified by a rectifier circuit 38 and converted into a digital signal by an A/D converter 40, which is then sent to the microcomputer 30. be taken in.

コンデンサ10−1〜10−nを選択するスイッチ12
−1〜12−n、スイッチ14及び切替えスイッチ15
aはマイクロコンピュータ30によりオン・オフ又は切
替えが制御される。
Switch 12 for selecting capacitors 10-1 to 10-n
-1 to 12-n, switch 14 and changeover switch 15
On/off or switching of a is controlled by the microcomputer 30.

42は本装置の動作を操作するとともに、チャンバ定数
k、電極間間隔81時定数τ、コンデンサの容fC工〜
Cnを設定するために使用されるキーボードであり、2
8は表示手段としてのCRTである。
42 operates the operation of this device, and also controls the chamber constant k, the inter-electrode spacing 81, the time constant τ, and the capacitor capacity fC~
A keyboard used to set Cn, 2
8 is a CRT as a display means.

第1図における比抵抗算出手段22、条件設定手段24
及び細胞懸濁液量検出手段26はマイクロコンピュータ
30によって実現される。
Specific resistance calculation means 22 and condition setting means 24 in FIG.
and the cell suspension amount detection means 26 are realized by a microcomputer 30.

次に、本実施例の動作を第3図のフローチャートを参照
して説明する。
Next, the operation of this embodiment will be explained with reference to the flowchart of FIG.

まず、操作者はチャンバ2に細胞懸濁液の所定量を注入
する。細胞懸濁液を注入したことが入力されると(ステ
ップS1)、スイッチ14.15が第2図の状態から、
切替えスイッチ15aが抵抗測定回路20側に切り替え
られる。これ)こより。
First, the operator injects a predetermined amount of cell suspension into chamber 2. When it is input that the cell suspension has been injected (step S1), the switches 14 and 15 change from the state shown in FIG.
The changeover switch 15a is switched to the resistance measurement circuit 20 side. This) Koyori.

交流電源34から抵抗32を経てチャンバ2に交流電流
が流れ、このとき抵抗32で発生する電圧が差動増幅器
36により検出され、整流回路38で整流され、A/D
変換器40でデジタル信号に変換されてマイクロコンピ
ュータ30に取り込まれ、チャンバ2の抵抗r (KΩ
)が算出される(ステップS2)。そして、チャンバ定
数kが取り込まれ、比抵抗ρが ρ= r / k として算出される(ステップS3.S4)。
An alternating current flows from the alternating current power source 34 to the chamber 2 via the resistor 32, and the voltage generated at the resistor 32 at this time is detected by the differential amplifier 36, rectified by the rectifier circuit 38, and then connected to the A/D
It is converted into a digital signal by the converter 40 and taken into the microcomputer 30, and the resistance r (KΩ
) is calculated (step S2). Then, the chamber constant k is taken in, and the specific resistance ρ is calculated as ρ=r/k (steps S3 and S4).

次に、設定された電極間間隔d (cm)、時定数t(
ms)及びコンデンサ10−1−10− nの容量C工
〜Cnが取り込まれ(ステップS5)、その時定数τに
なるように、コンデンサ1o−1〜10−nの容量C工
〜Cnに対する細胞懸濁液量v (mQ)が算出される
。この計算は次の式によって行なわれる。
Next, set the inter-electrode spacing d (cm) and the time constant t (
ms) and the capacitances C~Cn of the capacitors 10-1-10-n are taken in (step S5), and the cell suspension for the capacitors C~Cn of the capacitors 1o-1~10-n is taken in so that the time constant τ is obtained. The volume of turbid liquid v (mQ) is calculated. This calculation is performed using the following formula.

■=ρd 2Ci/τ 算出された細胞懸濁液量Vのうちチャンバ2の容量より
も小さく、かつチャンバ2の容量に最も近いものが最適
な細胞懸濁液量voとなり、そのときの容量Ciととも
に選定され、コンデンサ選択用スイッチ12−1〜12
−nのうちその容量Ciをもつコンデンサ10−iのス
イッチ12−1がオンとされ(ステップS6)、細胞懸
濁液量voはCRT28に表示される(ステップS7)
■=ρd 2Ci/τ Of the calculated cell suspension volume V, the one that is smaller than the volume of chamber 2 and closest to the volume of chamber 2 becomes the optimal cell suspension volume vo, and the volume at that time Ci The capacitor selection switches 12-1 to 12
-n, the switch 12-1 of the capacitor 10-i having the capacitance Ci is turned on (step S6), and the cell suspension volume vo is displayed on the CRT 28 (step S7).
.

比抵抗ρを測定するために注入した細胞懸濁液を取り出
した後、操作者は表示された細胞懸濁液量vOになるよ
うにチャンバ2に細胞懸濁液を注入する。このとき細胞
懸濁液はチャンバ2内で均一な高さとなるように注入す
る。
After taking out the cell suspension injected to measure the specific resistance ρ, the operator injects the cell suspension into the chamber 2 to the displayed cell suspension volume vO. At this time, the cell suspension is injected into the chamber 2 so that it has a uniform height.

細胞懸濁液が注入されたことが入力されると、マイクロ
コンピュータ30はその時の抵抗測定回路20の出力か
らチャンバ2の抵抗値Rを算出し、次式 %式% によって実際に注入された細胞懸濁液量Vとその時の時
定数τを算出し、CRT28に表示する(ステップS8
)。マイクロコンピュータ30は注入された細胞懸濁液
量Vと時定数τから算出された細胞懸濁液量vOとを比
較し、Vがvoと一致すると判断される範囲内に入った
ことを確認すると(ステップS9)、スイッチ14をオ
ンにして選定されたコンデンサ10−iを電11iX8
により所定の初期電圧まで充電させる(ステップ510
)。
When it is input that the cell suspension has been injected, the microcomputer 30 calculates the resistance value R of the chamber 2 from the output of the resistance measurement circuit 20 at that time, and calculates the resistance value R of the chamber 2 using the following formula: The suspension volume V and the time constant τ are calculated and displayed on the CRT 28 (step S8
). The microcomputer 30 compares the injected cell suspension volume V with the cell suspension volume vO calculated from the time constant τ, and confirms that V is within a range that is determined to match vo. (Step S9), the switch 14 is turned on and the selected capacitor 10-i is connected to the capacitor 11iX8.
is charged to a predetermined initial voltage (step 510).
).

所定の初期電圧はマイクロコンピュータ30に予め入力
されているものとする。
It is assumed that the predetermined initial voltage has been input into the microcomputer 30 in advance.

その後、マイクロコンピュータ3oはスイッチ14をオ
フにし、スイッチ15aをコンデンサ側に切り替えてチ
ャンバ2にコンデンサ10−1の電荷を放電させる(ス
テップ511)。これにより、チャンバ2の細胞懸濁液
に所定の初期電圧で、設定された時定数τのパルス電界
を与える。
Thereafter, the microcomputer 3o turns off the switch 14, switches the switch 15a to the capacitor side, and discharges the charge of the capacitor 10-1 into the chamber 2 (step 511). As a result, a pulsed electric field with a set time constant τ is applied to the cell suspension in the chamber 2 at a predetermined initial voltage.

実施例は本発明を遺伝子導入装置に適用した例を示して
いるが、例えば第2図の装置にさらに交流電源装置を設
け、チャンバ2に交流電界と直流電界を切り替えて印加
するようにすれば、細胞融合装置として利用することが
できるようになる。
Although the embodiment shows an example in which the present invention is applied to a gene introduction device, for example, if an AC power supply device is further provided in the device shown in FIG. , it can now be used as a cell fusion device.

(発明の効果) 本発明では複数のコンデンサのうちの最適なものに対し
、チャンバに注入する細胞懸濁液量を算出し、実際に注
入される細胞懸濁液量が算出された量になるように、抵
抗測定回路による抵抗値測定から監視し、その後にコン
デンサを経てチャンバの細胞懸濁液に直流電圧パルスを
印加するようにしたので、所望の時定数の直流電圧パル
スを印加することができ、実験の再現性がよくなる。
(Effects of the Invention) In the present invention, the amount of cell suspension to be injected into the chamber is calculated for the optimal one of a plurality of capacitors, and the amount of cell suspension actually injected becomes the calculated amount. As shown in the figure, the resistance was monitored by measuring the resistance value using a resistance measurement circuit, and then a DC voltage pulse was applied to the cell suspension in the chamber via a capacitor, so it was possible to apply a DC voltage pulse with a desired time constant. This improves the reproducibility of experiments.

チャンバに注入する細胞懸濁液量は連続的に変えること
ができ、チャンバの容量以内であれば自由に変化させる
ことができるので、時定数を連続的に変化させることが
でき、きめの細かい実験を行なうことができる。
The amount of cell suspension injected into the chamber can be changed continuously, and can be freely changed within the chamber capacity, so the time constant can be changed continuously, allowing for fine-grained experiments. can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を示すブロック図、第2図は一実施例を
示す回路図、第3図は一実施例の動作を示すフローチャ
ート図、第4図は従来の遺伝子導入装置を示す回路図で
ある。 2・・・・・・チャンバ、4,6・・・・・・電極、8
・・・・・・直流電圧電源、10−1〜10−n・・・
・・・コンデンサ、20・・・・・・抵抗測定回路、2
2・・・・・・比抵抗算出手段、24・・・・・・条件
設定手段、26・・・・・・細胞懸濁液量検出手段、2
8・・・・・・表示手段。 第 図 第41.A
Fig. 1 is a block diagram showing the present invention, Fig. 2 is a circuit diagram showing one embodiment, Fig. 3 is a flow chart showing the operation of one embodiment, and Fig. 4 is a circuit diagram showing a conventional gene transfer device. It is. 2... Chamber, 4, 6... Electrode, 8
...DC voltage power supply, 10-1 to 10-n...
... Capacitor, 20 ... Resistance measurement circuit, 2
2... Specific resistance calculation means, 24... Condition setting means, 26... Cell suspension amount detection means, 2
8...Display means. Figure 41. A

Claims (1)

【特許請求の範囲】[Claims] (1)対向電極間に細胞懸濁液を収容して電界を印加す
るチャンバと、直流電圧電源と、前記電源により充電さ
れ、前記チャンバに放電する並列接続された互いに容量
の異なる複数個のコンデンサと、前記チャンバに交流電
流を流して前記チャンバの抵抗値を測定する抵抗測定回
路と、この抵抗測定回路の測定値とチャンバ定数とから
細胞懸濁液の比抵抗を算出する比抵抗算出手段と、前記
チャンバの電極間間隔、時定数、前記コンデンサの容量
値及び算出された比抵抗から最適コンデンサを選定し、
細胞懸濁液量を算出する条件設定手段と、前記抵抗測定
回路の測定値、前記チャンバの電極間間隔及び算出され
た比抵抗から細胞懸濁液量を検出する細胞懸濁液量検出
手段と、前記条件設定手段で算出された細胞懸濁液量を
表示する表示手段とを備えた時定数制御型細胞電気刺激
装置。
(1) A chamber that accommodates a cell suspension between opposing electrodes and applies an electric field, a DC voltage power source, and a plurality of parallel-connected capacitors with different capacities that are charged by the power source and discharged into the chamber. a resistance measuring circuit for measuring the resistance value of the chamber by passing an alternating current through the chamber; and a resistivity calculating means for calculating the specific resistance of the cell suspension from the measured value of the resistance measuring circuit and a chamber constant. , selecting an optimal capacitor from the inter-electrode spacing of the chamber, the time constant, the capacitance value of the capacitor, and the calculated resistivity;
a condition setting means for calculating the amount of cell suspension; and a cell suspension amount detecting means for detecting the amount of cell suspension from the measured value of the resistance measuring circuit, the interval between the electrodes of the chamber, and the calculated specific resistance. and display means for displaying the amount of cell suspension calculated by the condition setting means.
JP63184057A 1988-07-22 1988-07-22 Time constant controlled cell electrical stimulator Expired - Fee Related JP2621384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63184057A JP2621384B2 (en) 1988-07-22 1988-07-22 Time constant controlled cell electrical stimulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63184057A JP2621384B2 (en) 1988-07-22 1988-07-22 Time constant controlled cell electrical stimulator

Publications (2)

Publication Number Publication Date
JPH0235071A true JPH0235071A (en) 1990-02-05
JP2621384B2 JP2621384B2 (en) 1997-06-18

Family

ID=16146619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63184057A Expired - Fee Related JP2621384B2 (en) 1988-07-22 1988-07-22 Time constant controlled cell electrical stimulator

Country Status (1)

Country Link
JP (1) JP2621384B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100458662B1 (en) * 2002-03-13 2004-12-03 문영훈 Embryonic cell fusion machine have voltage regulator and environment memory circuit.
JP2008260008A (en) * 2007-03-19 2008-10-30 Tosoh Corp Fine-particle operation apparatus and fine-particle operation method using it
JP2010512151A (en) * 2006-12-06 2010-04-22 バイオ−ラッド ラボラトリーズ,インコーポレイティド Multi-channel electroporation system
US7732175B2 (en) 2004-06-14 2010-06-08 Lonza Cologne Ag Method and circuit arrangement for treating biomaterial
US8173416B2 (en) 2001-04-23 2012-05-08 Lonza Cologne Gmbh Circuit arrangement for injecting nucleic acids and other biologically active molecules into the nucleus of higher eucaryotic cells using electrical current
CN110437999A (en) * 2019-07-15 2019-11-12 广州蛟龙细胞医药科技有限公司 A kind of electroporation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8173416B2 (en) 2001-04-23 2012-05-08 Lonza Cologne Gmbh Circuit arrangement for injecting nucleic acids and other biologically active molecules into the nucleus of higher eucaryotic cells using electrical current
KR100458662B1 (en) * 2002-03-13 2004-12-03 문영훈 Embryonic cell fusion machine have voltage regulator and environment memory circuit.
US7732175B2 (en) 2004-06-14 2010-06-08 Lonza Cologne Ag Method and circuit arrangement for treating biomaterial
US8058042B2 (en) 2004-06-14 2011-11-15 Lonza Cologne Gmbh Method and circuit arrangement for treating biomaterial
JP2010512151A (en) * 2006-12-06 2010-04-22 バイオ−ラッド ラボラトリーズ,インコーポレイティド Multi-channel electroporation system
JP2008260008A (en) * 2007-03-19 2008-10-30 Tosoh Corp Fine-particle operation apparatus and fine-particle operation method using it
CN110437999A (en) * 2019-07-15 2019-11-12 广州蛟龙细胞医药科技有限公司 A kind of electroporation

Also Published As

Publication number Publication date
JP2621384B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
US6137269A (en) Method and apparatus for electronically evaluating the internal temperature of an electrochemical cell or battery
JP3162030B2 (en) Battery capacity measuring method and battery capacity measuring device using voltage response signal of pulse current
CA2100436A1 (en) Methods and circuits for measuring the conductivity of solutions
EP0644432A2 (en) Capacitance measuring device
JPH01160568A (en) Fibrilation removing device and method
US6232786B1 (en) Apparatus and method for measuring conductivity
JPH0235071A (en) Time constant controlling type cell electrostimulator
JPS6252241B2 (en)
JPH071289B2 (en) Method and apparatus for measuring conductivity without influence of polarization
JP3583540B2 (en) Method and apparatus for measuring equivalent series resistance of capacitive element
US3887868A (en) Measuring device for determining the concentration and the mean particle size of particles suspended in an electrolytically conductive liquid
JP2621395B2 (en) Variable resistance cell electrical stimulator
CN112186830A (en) Method for improving performance of lithium battery at low temperature
JPS62123367A (en) Measurement of charging and discharging currents of capacitive element
DE19833454A1 (en) Method for reducing drift behavior in resistive high-temperature gas sensors and device for carrying out the method
RU2073248C1 (en) Method for determining resistances of underelectrode and interelectrode spaces and inductive reactances of phases of multielectrode ore smelting furnace
JPS60205345A (en) Ph meter with self-diagnosing function
JPH01172765A (en) Apparatus for measuring leak current of capacitive substance
JPH0677038B2 (en) Conductivity measurement method
JPH0213846A (en) Capillary type electrophoresis apparatus
JPH0250788B2 (en)
SU756489A1 (en) Method and for quality control of wire insulation coating
SU977126A1 (en) Apparatus for measuring amplitude values of welding current impulses
JPH0640080B2 (en) Method and device for measuring conductivity with electrode dirt detection function
MXPA99003087A (en) Conductivity measuring apparatus and method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees