JPH0213846A - Capillary type electrophoresis apparatus - Google Patents

Capillary type electrophoresis apparatus

Info

Publication number
JPH0213846A
JPH0213846A JP63164137A JP16413788A JPH0213846A JP H0213846 A JPH0213846 A JP H0213846A JP 63164137 A JP63164137 A JP 63164137A JP 16413788 A JP16413788 A JP 16413788A JP H0213846 A JPH0213846 A JP H0213846A
Authority
JP
Japan
Prior art keywords
capillary
liquid
voltage
electrophoresis
microcurrent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63164137A
Other languages
Japanese (ja)
Inventor
Shoichi Kobayashi
章一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63164137A priority Critical patent/JPH0213846A/en
Publication of JPH0213846A publication Critical patent/JPH0213846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To achieve a higher analysis efficiency by judging the presence of air bubbles within a capillary for migration from a potential change caused when a smaller fine current and a larger fine current are switched to be applied between a leading liquid electrode cell and a terminal liquid electrode cell. CONSTITUTION:After a terminal liquid electrode cell 2 is fed with a terminal liquid while a leading liquid electrode cell 4 and a capillary tube 5 for migration is fed with a leading liquid and then, a specified smaller fine current and larger fine current are made to flow between both the cells 2 and 4 continuously for a fixed time respectively. When no bubble exists in the capillary tube 5, a differentiated value of a voltage between both the cells 2 and 4 has peaks P1 and P2 appearing only when the currents are varied. Hence, after the checking of the appearance thereof, a sample liquid is injected into a sample injecting section 3. Then, a constant high voltage current is supplied between the cells 2 and 4 and a potential gradient is detected with a detector 6. When the peaks P1 and P2 are not normal, an electrolytic liquid is supplied again.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は細管式電気泳動装置に関する。さらに詳しく
は、迅速分析に好適な細管式電気泳動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a capillary electrophoresis device. More specifically, the present invention relates to a capillary electrophoresis device suitable for rapid analysis.

(ロ)従来の技術 細管式電気泳動装置としては、第4図に示すごとく、リ
ーディング液を貯留する電極液槽(A)と、ターミナル
液を貯留する電極液槽(B)と、これらの電極槽間を連
通する泳動用毛細管(F)と、上記電極槽間に所定の電
圧を印加しうる高圧定電流電源装置(E’)とから主と
して構成されたものが知られている。上記泳動用毛細管
(P)のターミナル液電極槽(B)との接続部には、試
料室(D)が設けられており、ここにはさらに試料注入
孔(C)が接続されている。
(B) Conventional technology As shown in Figure 4, a capillary electrophoresis device consists of an electrode liquid tank (A) that stores a leading liquid, an electrode liquid tank (B) that stores a terminal liquid, and these electrodes. A device is known that mainly consists of an electrophoresis capillary (F) that communicates between the electrode tanks, and a high voltage constant current power supply (E') that can apply a predetermined voltage between the electrode tanks. A sample chamber (D) is provided at the connection portion of the electrophoresis capillary tube (P) with the terminal liquid electrode tank (B), and a sample injection hole (C) is further connected to this chamber.

上記装置を用いて電気泳動をする場合、試料注入孔(C
)より右側の毛細管とリーディング液電極槽(A)をリ
ーディング液で満たし、一方、試料注入孔(C)より左
側の毛細管とターミナル液電極槽(B)を満たした後、
試料液をマイクロシリンジ等を用いて試料注入孔からリ
ーディング液とターミナル液との間に注入し、その後、
試料注入し通電して泳動を開始する。
When performing electrophoresis using the above device, the sample injection hole (C
) Fill the capillary tube and the leading liquid electrode tank (A) on the right side with the leading liquid, and fill the capillary tube and the terminal liquid electrode tank (B) on the left side of the sample injection hole (C) with the leading liquid.
Inject the sample liquid between the leading liquid and the terminal liquid from the sample injection hole using a microsyringe, etc., and then
Inject the sample and apply electricity to start migration.

(ハ)発明が解決しようとする課題 しかしながら、上記のごとき装置において、泳動用毛細
管にリーディング液またはターミナル液のの電極液を送
液する際に、気泡が混入しこれがこの毛細管内に残存し
た場合、そのまま分析を開始すると、絶縁物である気泡
のところで通電に伴うジュール熱が発生し、これによっ
て気泡が大きくなり泳動を妨げることとなる。このよう
なことが生じれば、再び毛細管への電極液の送液・充填
および試料注入から繰り返さなければならず、ことにオ
ートサンプラ併用時には貴重なサンプルを無駄にすると
共に、能率が悪くなるという問題がある。
(c) Problems to be Solved by the Invention However, in the above-mentioned apparatus, if air bubbles are mixed in and remain in the capillary when the electrode liquid of the leading liquid or the terminal liquid is sent to the electrophoresis capillary. If the analysis is started as it is, Joule heat will be generated in the bubbles, which are insulators, due to the electricity supply, and this will cause the bubbles to grow larger and hinder migration. If this happens, it is necessary to repeat the process of feeding and filling the capillary with the electrode solution and injecting the sample, which wastes valuable samples and reduces efficiency, especially when used in conjunction with an autosampler. There's a problem.

この発明はかかる状況に鑑みなされたものであり、貴重
なサンプルを無駄に使用しない機構を具備しに細管式電
気泳動装置を提供しようとするものである。
The present invention has been made in view of this situation, and it is an object of the present invention to provide a capillary electrophoresis device equipped with a mechanism that does not waste valuable samples.

(ニ)課題を解決するための手段 かくしてこの発明によれば、リーディング液電極槽と、
ターミナル液電極槽と、これらの電極槽間を連通する泳
動用細管と、該泳動用細管上のターミナル液電極槽近傍
に設けられる検出器と、上記電極槽間に所定の電圧を印
加しうる高圧定電流源とを備えてなる細管式電気泳動装
置であって、1)上記電極槽間に、低微小電流と高微小
電流を切換えて各々一定時間通電しうる微小電流設定手
段、およびi)上記通電における電位変動を連続的に検
出しかつその検出出力を微分し、これらの電位変動とそ
の微分により得られる微分電圧波形とに基づいて上記泳
動用細管内の気泡の有無を判断しうる演算部を具備した
ことを特徴とする細管式電気泳動装置が提供される。
(d) Means for Solving the Problems According to the present invention, a leading liquid electrode tank,
A terminal liquid electrode tank, an electrophoresis capillary that communicates between these electrode tanks, a detector provided near the terminal liquid electrode tank on the migration capillary, and a high voltage capable of applying a predetermined voltage between the electrode tanks. A capillary electrophoresis apparatus comprising: 1) a microcurrent setting means that can switch between a low microcurrent and a high microcurrent and supply each of them for a certain period of time between the electrode tanks, and i) the above-mentioned an arithmetic unit capable of continuously detecting potential fluctuations during energization, differentiating the detected output, and determining the presence or absence of air bubbles in the electrophoresis capillary based on these potential fluctuations and a differential voltage waveform obtained by the differentiation; Provided is a capillary electrophoresis device comprising:

この発明の装置において、微小電流設定手段および演算
部は、いわゆる泳動用細管内気泡検知機構を構成するも
のである。
In the apparatus of the present invention, the minute current setting means and the calculation section constitute what is called a bubble detection mechanism in a capillary for electrophoresis.

上記微小電流設定手段により設定される低微小電流また
は高微小電流とは、いずれも実質的に泳動に影響を与え
ない大きさの電流を意味し、敗μA〜数10μAから選
択される。低微小電流と高微小電流の選択は、後述する
電位変動のモニタにおいてその変動を把握しやすい値が
選ばれる。例えば高微小電流を低微小電流の2倍にする
等が挙げられる。
The low microcurrent or high microcurrent set by the microcurrent setting means means a current of a magnitude that does not substantially affect migration, and is selected from a range of 1 μA to several tens of μA. The low minute current and the high minute current are selected at values that make it easy to understand potential fluctuations when monitoring potential fluctuations, which will be described later. For example, the high minute current may be made twice as high as the low minute current.

上記微小電流設定手段により、低微小電流と高微小電流
の通電は一定時間ずつ切換えて連続して行われる。この
切換の順序は低微小電流→高微小電流の順とすることが
好ましいが逆であってもよい。
By the microcurrent setting means, the low microcurrent and the high microcurrent are sequentially switched for a certain period of time. The order of this switching is preferably from low microcurrent to high microcurrent, but may be reversed.

この発明において、上記微小電流設定手段および演算部
とで構成されるいわゆる細管内気泡検知機構は、CPU
等を用いて自動制御しうる構成とすることが好ましい。
In this invention, the so-called capillary bubble detection mechanism constituted by the minute current setting means and the calculation section is configured by a CPU.
It is preferable to adopt a configuration that can be automatically controlled using, etc.

この場合において、上記演算部で、気泡が存在する旨の
判断がなされたときは、i演算部から電極液送液部に信
号出力して電極液の送液・充填を再度行い、一方上記演
算部で気泡該存在しない旨の判断がなされたときは、該
演算部により試料注入等分析の次ステツプを表示または
オートサンプラ等に作動信号を出力しうるよう構成され
ることがさらに好ましい。
In this case, when the calculation section determines that bubbles are present, the i calculation section outputs a signal to the electrode liquid feeding section to feed and fill the electrode liquid again; It is further preferable that when the calculation section determines that no bubbles are present, the calculation section can display the next step of analysis such as sample injection or output an activation signal to an autosampler or the like.

(ホ)作用 この発明によれば、リーディング液電極槽からリーディ
ング液が細管内に送液され、かつターミナル液電極槽か
ら細管内にターミナル液が送液されて細管内が電極液で
充填されたとき、この細管内にまず、所定の低微小電流
と高微小電流が所定時間切換えにより連続して通電され
る。この切換通電に伴う電位変動がモニタされると共に
この電位変動の微分電圧波形が算出され、これらの電位
変動と微分電圧波形に基づいて上記泳動用細管内の気泡
の有無が判断される。
(E) Effect According to this invention, the leading liquid is fed from the leading liquid electrode tank into the capillary, and the terminal liquid is fed from the terminal liquid electrode tank into the capillary, so that the inside of the capillary is filled with the electrode solution. At this time, first, a predetermined low microcurrent and a high microcurrent are sequentially passed through the thin tube by switching for a predetermined period of time. The potential fluctuations associated with this switching energization are monitored, and the differential voltage waveform of this potential fluctuation is calculated, and the presence or absence of bubbles in the electrophoresis capillary is determined based on these potential fluctuations and the differential voltage waveform.

以下実施例によりこの発明の詳細な説明するが、これに
よりこの発明は限定されるものではない。
The present invention will be described in detail below with reference to Examples, but the present invention is not limited thereby.

(へ)実施例 第1図はこの発明の一例の細管式電気泳動装置の構成説
明図である。該図においてこの細管式電気泳動装置(1
)は、ターミナル液電極槽(2)から該槽内に設けられ
た試料注入部(3)を経てリーディンダ液電極槽(4)
まで連通する泳動用毛細管(5)と、この泳動用毛細管
上のリーディング液電極槽(4)近傍に設けられるii
電位勾配検出器6)と、上記電極1(2X4)間に所定
の電圧を印加しうる高圧定電流源(7)と、泳動用毛細
管内気泡検知手段(8)とから主として構成されている
(F) Embodiment FIG. 1 is an explanatory diagram of the configuration of a capillary electrophoresis apparatus as an example of the present invention. In the figure, this capillary electrophoresis device (1
) from the terminal liquid electrode tank (2) to the leader liquid electrode tank (4) via the sample injection part (3) provided in the tank.
an electrophoresis capillary (5) communicating with the electrophoresis capillary, and a leading liquid electrode tank (ii) provided near the leading liquid electrode tank (4) on the electrophoresis capillary
It mainly consists of a potential gradient detector 6), a high voltage constant current source (7) capable of applying a predetermined voltage between the electrodes 1 (2×4), and a bubble detection means (8) in the capillary tube for electrophoresis.

上記リーディング液電極槽(2)にはリーディング液供
給流路(a)が接続されており、ターミナル液電極槽(
4)にはターミナル液供給流路(b)が接続されている
。これらの”供給流路(a) (b)上にはそれぞれ送
液ポンプ(cXd)が設けられている。
A leading liquid supply channel (a) is connected to the leading liquid electrode tank (2), and a terminal liquid electrode tank (
4) is connected to the terminal liquid supply channel (b). Liquid feeding pumps (cXd) are provided on these supply channels (a) and (b), respectively.

上記電位勾配検出器(6)は、電位勾配信号およびその
微分信号のいずれもを出力できるように構成されている
The potential gradient detector (6) is configured to output both a potential gradient signal and its differential signal.

上記泳動用毛細管内気泡検知手段(8)は、高圧定電流
源(7)から所定の低微小電流と高微小電流とを取り出
して、上記電極f!(2X4)間に・これらの微小電流
を切換えて各々一定時間連続して通電する微小電流設定
手段と、この低・高2種の微小電流の切換通電に伴う電
位勾配を連続的に検出しうる電圧モニタ手段と、このモ
ニタされる電圧(以下モニタ電圧という)の微分値を出
力する手段と、上記モニタ電圧およびその微分出力値と
に基づいて泳動用毛細管内の気泡の有無を判断しかつこ
の結果に基づいて電極液送液ポンプ(c)(d)を駆動
しうる制御部(81)とから構成されている。上記制御
部(81)は入力部、出力部、CPtJとこれに接続さ
れる記憶部、演算部および比較部とからなるマイクロコ
ンピュータで構成されている。上記記憶部はデータ記憶
部(RAM)とプログラム記憶部(ROM)とからなっ
ている。データ記憶部には、後述する各位がそれぞれ記
憶される。プログラム記憶部には後述するフローチャー
トのごとき動作の手順が記憶される。
The electrophoresis capillary bubble detection means (8) extracts a predetermined low microcurrent and high microcurrent from the high voltage constant current source (7), and extracts a predetermined low microcurrent and high microcurrent from the electrode f! Between (2×4): a micro-current setting means that switches between these micro-currents and applies them continuously for a certain period of time, and a potential gradient that accompanies the switching of these two types of micro-currents, low and high, can be continuously detected. a voltage monitor means, a means for outputting a differential value of the monitored voltage (hereinafter referred to as monitor voltage), and a means for determining the presence or absence of air bubbles in the electrophoresis capillary based on the monitor voltage and its differential output value; It is composed of a control section (81) that can drive the electrode liquid feeding pumps (c) and (d) based on the results. The control section (81) is composed of a microcomputer including an input section, an output section, a CPtJ, a storage section connected thereto, a calculation section, and a comparison section. The storage section includes a data storage section (RAM) and a program storage section (ROM). The data storage section stores each item described below. The program storage section stores operational procedures such as a flowchart described later.

上記微小電流設定手段は、高圧定電流源(7)に電気的
に接続される微小電流設定用の抵抗可変回路と、この抵
抗可変回路に電気的に接続されて抵抗値を所定のインタ
ーバルで変更しうる抵抗可変手段とから構成されている
。上記抵抗可変手段は、制御部(81)のCPUと接続
されており、予め設定される低微小電流値(i、)およ
び高微小電流値(i、)に対応する電流を、それぞれ予
め設定された時間抵抗可変回路が出力するように制御さ
れる。
The minute current setting means includes a variable resistance circuit for minute current setting that is electrically connected to the high voltage constant current source (7), and a variable resistance circuit that is electrically connected to the variable resistance circuit to change the resistance value at predetermined intervals. and resistance variable means. The resistance variable means is connected to the CPU of the control unit (81), and controls currents corresponding to preset low minute current values (i,) and high minute current values (i,), respectively. The time resistance variable circuit is controlled to output.

この装置では上記低微小電流値として5μA、高微小電
流値として10μAが選択されている。また上記微小電
流設定手段は、泳動用毛細管への電極液送液終了に伴う
信号出力により作動開始されるようCPUに設定されて
いる。なお上記以外に、各微小電流設定用の各抵抗回路
と、これらの抵抗回路に電気的に接続される各切換手段
と、これらの切換手段を所定の順序でかつ所定のインタ
ーバルで切換作動しうるタイマ手段とから構成されるも
の等が挙げられる。
In this device, 5 μA is selected as the low minute current value, and 10 μA is selected as the high minute current value. Further, the minute current setting means is set in the CPU so as to be started in response to a signal output upon completion of feeding the electrode solution to the electrophoresis capillary tube. In addition to the above, each resistance circuit for setting a minute current, each switching means electrically connected to these resistance circuits, and these switching means can be switched in a predetermined order and at a predetermined interval. An example of this is a device consisting of a timer means.

この発明の装置に具備される演算部は、前記モニタ電圧
から得られる電位変、動とその微分電圧値により得られ
る電圧微分波形(以下微分パターンという)とに基づい
て上記泳動用細管内の気泡の有無を判断しうる様構成さ
れている。すなわち気泡は絶縁体であり、電流値を変え
て通電した際このような絶縁体が存在すれば、上gi!
1を流値変動に対応しない不規則な電位変動が生ずるこ
ととなり、このことが細管内の気泡検知作用のベースと
なる。
The calculation unit included in the apparatus of the present invention calculates the amount of air bubbles in the electrophoresis capillary based on the voltage differential waveform (hereinafter referred to as differential pattern) obtained from the potential change and movement obtained from the monitor voltage and the differential voltage value thereof. The system is structured in such a way that it can be determined whether the In other words, bubbles are insulators, and if such an insulator exists when electricity is applied by changing the current value, the upper gi!
1. This results in irregular potential fluctuations that do not correspond to flow value fluctuations, and this becomes the basis for bubble detection in the capillary.

上記演算部にいて電位変動に基づく気泡何無の判断は、
低微小電流に基づく電圧と高微小電流に基づ(電圧との
比が、低微小電流値と高微小電流値との比に対応してい
るかどうかが基準とされる。
Judgment of bubbles or non-bubbles based on potential fluctuations is made in the calculation section mentioned above.
The criterion is whether the ratio between the voltage based on the low microcurrent and the voltage based on the high microcurrent corresponds to the ratio between the low microcurrent value and the high microcurrent value.

また上記演算部において微分パターンに基づく気泡有無
の判断については、上記連続検出される電位変動を微分
したとき、微小電流通電開始時および低・高切換時とで
それぞれ得られる微分電圧ピーク以外で、絶対値が閾値
以上である波高ピークの存在をもって判断基準とされる
In addition, regarding the determination of the presence or absence of bubbles based on the differential pattern in the calculation section, when the continuously detected potential fluctuation is differentiated, other than the differential voltage peaks obtained at the start of microcurrent energization and at the time of low/high switching, The presence of a wave height peak whose absolute value is greater than or equal to a threshold value is used as a judgment criterion.

゛ここで具体例を挙げてこの原理について説明する。電
極液の毛細管への送液終了後、電圧を印加し定電流条件
下で微小電流を2段階(例えば5μAとlOμA)に切
換える。このとき電極間電圧をモニタすることにより、
第2図に模式的に示すような電圧、電圧の一次微分(d
V/di)が得られる。
゛Here, this principle will be explained using a specific example. After the electrode solution has been sent to the capillary tube, a voltage is applied and the minute current is switched to two levels (for example, 5 μA and 10 μA) under constant current conditions. By monitoring the interelectrode voltage at this time,
The voltage as shown schematically in Figure 2, the first derivative of the voltage (d
V/di) is obtained.

気泡がなく正常な場合は、L:Vt=]:2程度になる
はずであるが、気泡がある場合にはこの比率が大きくず
れる。また気泡がない場合にはdV/dtには電流を変
化させた部分に(p+、 pt)のみにピークが現れ、
他は変動は非常に小さい、しかし気泡がある場合には電
圧が変動するためp++ py以外の部分でも大きくふ
れる(例えば同図イ)。従って ■V、 : V、の比を許容範囲を有して設定し、この
範囲に入るかどうかで気泡有無についての情報が得られ
、また ■dV/dtがp++ I)を以外で閾値を越えたかど
うかを見ることにより気泡有無についての情報かえられ
ることとなる。
If there are no bubbles and there is no bubble, the ratio should be about L:Vt=]:2, but if there are bubbles, this ratio will deviate greatly. In addition, when there are no bubbles, a peak appears in dV/dt only at (p+, pt) where the current is changed,
In other cases, the fluctuations are very small, but if there is a bubble, the voltage fluctuates, causing large fluctuations in areas other than p++ py (for example, as shown in Figure A). Therefore, the ratio of V: V is set within a permissible range, and information on the presence or absence of bubbles can be obtained based on whether or not it falls within this range. By checking whether the bubbles are present or not, information regarding the presence or absence of bubbles can be changed.

上記閾値(d)は上記微分電圧ピークの例えば1%程度
に設定さン−ることが好ましい。
It is preferable that the threshold value (d) is set to, for example, about 1% of the differential voltage peak.

この装置(1)の制御部における気泡検知の動作は、電
極液を送液した後に低微小電流(i、)を所定時間通電
しL際、この通電に伴う印加電圧に基づいて検出器(6
)から得られる電位勾配信号について、所定の微小時間
間隔(例えば100m5ec)でサンプリングし、その
都度の電圧値(V、)を読み込み(この読み込み(モニ
タ)は例えばV/F変換してパルスでカウントする等が
挙げられる。)かつ記憶する。しかしながら電圧印加直
後はオーバーシュート等で電圧が乱れるので所定時間(
例えば5秒間)は判断しない。ここでは5秒〜15秒の
10秒間でモニタを行うこととする。次にこの微小時間
毎にモニタされる電圧値(vI)を加算すると共に、モ
ニタ電圧値(V)について常にその前回のモニタ値(V
□)との差(△V:これは微分電圧値となる)を順次求
め、この△Vを予め記憶された閾値(d)と比較する。
The bubble detection operation in the control unit of this device (1) involves applying a low minute current (i,) for a predetermined period of time after feeding the electrode solution to the detector (6) based on the applied voltage associated with this energization.
) is sampled at a predetermined minute time interval (for example, 100m5ec), and the voltage value (V, ) is read each time (this reading (monitoring) is performed by converting V/F and counting pulses, for example). ) and memorize it. However, immediately after the voltage is applied, the voltage is disturbed due to overshoot etc., so for a certain period of time (
For example, 5 seconds). Here, it is assumed that monitoring is performed for 10 seconds, from 5 seconds to 15 seconds. Next, the monitored voltage value (vI) is added every minute time, and the monitored voltage value (V) is always added to the previous monitored value (VI).
□) (△V: This becomes a differential voltage value) is sequentially obtained, and this △V is compared with a pre-stored threshold value (d).

△Vが閾値(d)を越えない場合は気泡の存在がなく、
15秒間が経過するまでは上記動作を繰返す。なお、こ
の繰返しにおいてモニタ電圧の積分値(Σv1)が得ら
れる。一方△Vが閾値(d)を越えた場合、気泡が存在
すると判断され、電極液の送液ステップにもどる。  
・ 上記△Vが閾値(d)を越えない場合でかつ15秒間が
経過したとき、高微小電流(i、)に切換えて通電され
る。この通電状態下でも上記と同様にして電圧微分値(
△Vt)およびモニタ電位の積分値(ΣVt)が算出さ
れ記憶される。この得られる電圧微分値(△v、)が閾
値(d)を越える場合は、気泡存在と判定され、電極液
の送液ステップにもどる。この高微小電流の通電が15
秒間を経過すると、通電は終了され、記憶されているΣ
■、とΣV。
If △V does not exceed the threshold (d), there is no bubble;
Repeat the above operation until 15 seconds have elapsed. Note that, in this repetition, an integral value (Σv1) of the monitor voltage is obtained. On the other hand, if ΔV exceeds the threshold value (d), it is determined that bubbles are present, and the process returns to the step of feeding the electrode liquid.
- When the above △V does not exceed the threshold value (d) and 15 seconds have elapsed, the current is switched to the high minute current (i,) and energized. Even under this energized state, the voltage differential value (
ΔVt) and the integral value (ΣVt) of the monitor potential are calculated and stored. If the obtained voltage differential value (Δv,) exceeds the threshold value (d), it is determined that bubbles are present, and the process returns to the step of feeding the electrode liquid. This high minute current is 15
After seconds have elapsed, energization is terminated and the memorized Σ
■, and ΣV.

との大きさが比較される。このときΣV、がΣV、の所
定倍(この場合は2倍)で得られていると、気泡は存在
しないことと判定され、分析にすすめることとなるが、
所定倍以下であれば、気泡が存在すると判定され再び電
極液の送液ステップにもどる。
The size is compared with. At this time, if ΣV is obtained as a predetermined multiple (in this case, twice) of ΣV, it is determined that no bubbles exist and the analysis is proceeded.
If it is less than a predetermined time, it is determined that bubbles are present, and the process returns to the step of feeding the electrode liquid.

なお、この発明の装置の制御部における具体的な動作に
ついてのフローチャートを第3図に示す。
Incidentally, a flowchart of specific operations in the control section of the apparatus of the present invention is shown in FIG.

この図において、i +は低微小電流値、i、は高微小
電流値、vlは低微小電流通電時のモニタ電圧、vtは
高微小電流通電時のモニタ電圧、tlは低微小電流通電
時間、t、は高微小電流通電時間、Fは△vIもしくは
△V、が閾値を越えたこと、またはΣvIがΣ■、の2
倍よりも小さいことを示すフラグ、ΣV。
In this figure, i + is a low microcurrent value, i is a high microcurrent value, vl is the monitor voltage when low microcurrent is energized, vt is the monitor voltage when high microcurrent is energized, tl is the low microcurrent energization time, t is the high minute current energization time, F is the fact that △vI or △V exceeds the threshold, or ΣvI is the second of Σ■,
A flag indicating that it is less than double, ΣV.

は低微小電流の通電における電極間印加電圧積分値、Σ
vtは高微小電流の通電における電極間印加電圧積分値
をそれぞれ示す。
is the integral value of the voltage applied between the electrodes when passing a low microcurrent, Σ
vt indicates the integral value of the voltage applied between the electrodes when a high minute current is applied.

r 5 <t+<15? Jなるステップは、電圧印加
直後はオーパーンニート等で電圧が乱れるのて、5秒間
は判断せず5秒〜15秒の10秒間で判断することを示
す。
r 5 <t+<15? The step J indicates that immediately after voltage application, the voltage is disturbed due to open neat, etc., so the judgment is not made for 5 seconds, but is made for 10 seconds from 5 seconds to 15 seconds.

「印加されている電圧を読み込む→V」なるステップは
、電圧の読み込みはV/F変換後、カウンタにより周波
数を測定し、CPUに読み込むことを示す。
The step "Read the applied voltage→V" indicates that the voltage is read after V/F conversion, the frequency is measured by a counter, and the frequency is read into the CPU.

以上の操作により、電極液送液後で試料分析前において
泳動用毛細管内での気泡の存在の有無が判断され、気泡
があると判断されたときは自動的に送液が繰返えされ、
気泡が存在しない状態で分析にすすめることとなる。
Through the above operations, the presence or absence of air bubbles in the electrophoresis capillary tube is determined after the electrode solution is fed and before sample analysis, and when it is determined that there are bubbles, the liquid feeding is automatically repeated.
The analysis will be carried out in the absence of bubbles.

(ト)発明の効果 この発明によれば、分析用の高圧定電流印加前に細管内
に既に存在する気泡により分析が妨げらることがなく、
貴重な試料をむだにしない細管式電気泳動装置を提供す
ることができる。
(g) Effects of the Invention According to this invention, analysis is not hindered by air bubbles already present in the capillary before application of high-voltage constant current for analysis.
A capillary electrophoresis device that does not waste valuable samples can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の細管式電気泳動装置の一例の構成説
明図、第2図は2段階で微小電流を通電したときの電位
勾配・時間曲線およびその微分曲線を示す模式図、第3
図は第1図の装置の制御部における具体的な動作につい
てのフローチャート図、第4図は従来例の構成説明図で
ある。 (2)・・・・・・ターミナル液電極槽、(3)・・・
・・・試料注入部、 (4)・・・・・・リーディング液電極槽、(5)・・
・・・・泳動用毛細管、 (6)・・・・・・電位勾配検出器、(7)・・・・・
・高圧定電流源、(8)・・・・・・泳動用毛細管内気
泡検知手段、(81)・・・・・・制御部。 第 1 図 第 2 図 第4 閃 手続補正書 昭和63年7月ニア日 1、事件の表示 昭和63年特許願第164137号 2、発明の名称 m管式電気泳動装置 3、補正をする者 代表者 西へ條  實 4、代理人 〒530 住 所  大阪市北区西天満5丁目1−3クォーター・
ワンビル5、補正命令の日付 自発 補正の内容 1、明1iit第13頁第11〜12行の「すると・・
・・・・もどる。」の後に「なお、この上記以外に司位
勾配検出器からの信号を用いるかわりに、全匈に印加さ
れた高電圧の一部を分割し、この電圧を用いて上記と同
様の処理を行なう構成のものがあげられる。」を挿入す
る。
FIG. 1 is an explanatory diagram of the configuration of an example of the capillary electrophoresis device of the present invention, FIG. 2 is a schematic diagram showing the potential gradient/time curve and its differential curve when a microcurrent is applied in two stages, and FIG.
This figure is a flowchart of specific operations in the control section of the apparatus shown in FIG. 1, and FIG. 4 is an explanatory diagram of the configuration of a conventional example. (2)...Terminal liquid electrode tank, (3)...
...sample injection part, (4) ...leading liquid electrode tank, (5) ...
... Capillary tube for electrophoresis, (6) ... Potential gradient detector, (7) ...
- High-voltage constant current source, (8)...Mechanism for detecting air bubbles in the capillary tube for electrophoresis, (81)...Control unit. Figure 1 Figure 2 Figure 4 Written procedure amendment near July 1, 1988 1, Indication of the case, 1988 Patent Application No. 164137 2, Name of the invention m-tube electrophoresis device 3, Representative of the person making the amendment Person: Minoru Nishihejo 4, Agent: 530 Address: 1-3 Quarter, 5-chome Nishitenma, Kita-ku, Osaka
One Bill 5, Date of Amendment Order Contents of Voluntary Amendment 1, Meiji 1iit, Page 13, Lines 11-12, ``Then...
...Back. '' followed by ``In addition to the above, instead of using the signal from the position gradient detector, divide a part of the high voltage applied to the entire hog and use this voltage to perform the same process as above. Insert "There are some compositions."

Claims (1)

【特許請求の範囲】 1、リーディング液電極槽と、ターミナル液電極槽と、
これらの電極槽間を連通する泳動用細管と、該泳動用細
管上のリーディング液電極槽近傍に設けられる検出器と
、上記電極槽間に所定の電圧を印加しうる高圧定電流源
とを備えてなる細管式電気泳動装置であって、 i)上記電極槽間に、低微小電流と高微小電流を切換え
て各々一定時間通電しうる微小電流設定手段、および ii)上記通電における電位変動を連続的に検出しかつ
その検出出力を微分し、これらの電位変動とその微分に
より得られる微分電圧波形とに基づいて上記泳動用細管
内の気泡の有無を判断しうる演算部を具備したことを特
徴とする細管式電気泳動装置。
[Claims] 1. A leading liquid electrode tank, a terminal liquid electrode tank,
It is equipped with an electrophoresis capillary that communicates between these electrode tanks, a detector provided near the leading liquid electrode tank on the electrophoresis capillary, and a high-voltage constant current source that can apply a predetermined voltage between the electrode tanks. A capillary electrophoresis device comprising: i) microcurrent setting means that can switch between a low microcurrent and a high microcurrent and supply each of them for a certain period of time between the electrode tanks, and ii) continuously change the potential during the energization. The electrophoresis capillary is characterized by being equipped with an arithmetic unit capable of detecting the electrophoresis capillary, differentiating the detected output, and determining the presence or absence of bubbles in the electrophoresis capillary based on these potential fluctuations and a differential voltage waveform obtained by the differentiation. Capillary electrophoresis device.
JP63164137A 1988-06-30 1988-06-30 Capillary type electrophoresis apparatus Pending JPH0213846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63164137A JPH0213846A (en) 1988-06-30 1988-06-30 Capillary type electrophoresis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63164137A JPH0213846A (en) 1988-06-30 1988-06-30 Capillary type electrophoresis apparatus

Publications (1)

Publication Number Publication Date
JPH0213846A true JPH0213846A (en) 1990-01-18

Family

ID=15787451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63164137A Pending JPH0213846A (en) 1988-06-30 1988-06-30 Capillary type electrophoresis apparatus

Country Status (1)

Country Link
JP (1) JPH0213846A (en)

Similar Documents

Publication Publication Date Title
Armstrong et al. [5] Access resistance and space clamp problems associated with whole-cell patch clamping
DE19515079A1 (en) Potentiostat circuit for electrochemical cells
JPS6437536A (en) Addressing of liquid crystal cell and liquid crystal apparatus
SE9300283D0 (en) PROCEDURE AND DEVICE FOR ELECTRODOOD MONITORING BY ELECTRICAL HEART STIMULATORS
DE69532699T2 (en) High voltage control for transfection
KR880013652A (en) Arc welding power supply system for consumable electrode and its control method
US4358423A (en) Method and apparatus for monitoring and controlling the charging operation of an elongated measuring chamber
EP0125116A3 (en) Method and instrument for measuring moisture
Bezanilla et al. Sodium and potassium conductance changes during a membrane action potential
EP0620420B1 (en) Method and device for measuring the flow of an electrolytic fluid
IL158513A (en) Circuit arrangement for injecting nucleic acids and other biologically active molecules into the nucleus of higher eukaryotic cells using electrical current
US3476291A (en) Method and apparatus for dispensing measured quantities of liquids
US4302299A (en) Titration control method
KR840005628A (en) Load drive circuit with load current sensing
Chen et al. An improved double vaseline gap voltage clamp to study electroporated skeletal muscle fibers
JPH0213846A (en) Capillary type electrophoresis apparatus
US6344133B1 (en) Process for operating an electrochemical measuring cell
US5289132A (en) Voltage characteristic comparator for discriminating solutions
JP2621384B2 (en) Time constant controlled cell electrical stimulator
US5310466A (en) Electrolytic metal recovery system
GB2237387A (en) Coulometric titration system
Tasaki et al. Membrane Conductance and Current-Voltage Relation in the Squid Axon Under ‘Voltage-Clamp’
JPH03195485A (en) Electropolation device
D'Emanuele et al. Feedback controlled drug delivery using an electro-diffusion pump
JPH0436637Y2 (en)