JPH0234754A - Method for working beta titanium alloy - Google Patents

Method for working beta titanium alloy

Info

Publication number
JPH0234754A
JPH0234754A JP18315688A JP18315688A JPH0234754A JP H0234754 A JPH0234754 A JP H0234754A JP 18315688 A JP18315688 A JP 18315688A JP 18315688 A JP18315688 A JP 18315688A JP H0234754 A JPH0234754 A JP H0234754A
Authority
JP
Japan
Prior art keywords
cold working
cold
titanium alloy
working
intermediate annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18315688A
Other languages
Japanese (ja)
Other versions
JP2578174B2 (en
Inventor
Hideto Oyama
英人 大山
Yoshio Ashida
芦田 喜郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63183156A priority Critical patent/JP2578174B2/en
Publication of JPH0234754A publication Critical patent/JPH0234754A/en
Application granted granted Critical
Publication of JP2578174B2 publication Critical patent/JP2578174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To prevent the occurrence of surface roughness in a formed product obtd. with cold working by interposing a process annealing stage between cold working stages prior to the final solution heat treatment at the time of working a beta titanium alloy. CONSTITUTION:At the time of manufacturing a cold forming stock 5 by subjecting a beta titanium alloy 1 to hot rolling 2, cold rolling 3, and solution heat treatment 4, the above cold working 3 is divided into two stages and a process annealing stage 3-2 is interposed between the above two stages, and the cold working 3-1 in the former stage and the cold working 3-3 in the latter stage are carried out under the conditions represented by inequality I, by which the grain size of beta-phase in a cold forming stock 5 after the final solution heat treatment 4 can be refined and, as a result, a formed product 7 composed of the good-quality beta titanium alloy causing no occurrence of surface roughness to the product 7 formed by subjecting this stock 5 to cold working (forming) 6 can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、最終製品に肌荒れ等を発生することのない冷
間成形用のβ型チタン合金素材を得るための加工方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a processing method for obtaining a β-type titanium alloy material for cold forming without causing roughness or the like in the final product.

[従来の技術] β型チタン合金は、純チタンと同様に連続的な熱間圧延
あるいは冷間圧延により、低コストでコイル状に加工す
ることができる。またこの合金は冷間加工性にも優れた
ものであるから、汎用のTi−6AI−4V合金(α+
β型合金)に代わる冷間成形用素材として利用しようと
する試みもなされている。
[Prior Art] Like pure titanium, β-type titanium alloy can be processed into a coil shape at low cost by continuous hot rolling or cold rolling. In addition, this alloy has excellent cold workability, so it can be used as a general-purpose Ti-6AI-4V alloy (α+
Attempts have also been made to use it as a cold-forming material in place of β-type alloys.

第5図は、β型チタン合金材料1から製品7を得るまで
の加工工程を示す概略説明図であり、β型チタン合金材
料1は熱間加工2の後、冷間加工3され、更に最終溶体
化処理4されて冷間成形用の素材5となる。実操業にお
いては、これらの工程は適宜重複して実施されたり繰返
されるので、工程はもっと複雑である。この冷間成形用
素材5を冷間加工(成形)6してそれぞれの製品7を得
る。
FIG. 5 is a schematic explanatory diagram showing the processing steps from β-type titanium alloy material 1 to obtaining product 7. β-type titanium alloy material 1 is subjected to hot working 2, cold working 3, and then final It is subjected to solution treatment 4 and becomes a raw material 5 for cold forming. In actual operation, these steps are performed overlappingly or repeatedly as appropriate, so the steps are more complex. This cold forming material 5 is subjected to cold working (molding) 6 to obtain each product 7.

ところで冷間成形用素材5を得るに当っては、図示する
如く最終工程で溶体化処理4を行ない、該素材5が経て
きた加工履歴、特に冷間加工3の際生成した冷間加工組
織の再結晶化が行なわれる。この場合、最終溶体化処理
4後の冷間成形用素材5における結晶状態は、冷間成形
6して得られる製品7の肌荒れ状態に大きく影響するの
で、冷間成形用素材5が経てきた加工条件、特に冷間加
工3の条件を把握しておくことは、肌荒れのない良好な
製品7を得るために大切なことである。
By the way, in obtaining the material 5 for cold forming, solution treatment 4 is performed in the final step as shown in the figure, and the processing history of the material 5, especially the cold working structure generated during cold working 3, is evaluated. Recrystallization takes place. In this case, the crystalline state of the cold-forming material 5 after the final solution treatment 4 greatly affects the roughness of the product 7 obtained by cold-forming 6. It is important to understand the conditions, especially the conditions of cold working 3, in order to obtain a good product 7 without rough skin.

そのため最終溶体化処理による再結晶化を行なうに当り
、最終溶体化処理前の加工条件に応じて結晶粒径を制御
する方法も提案されている。この方法に関しては本出願
人は先に特願昭62−159410号として出願済みで
ある。
Therefore, when performing recrystallization by final solution treatment, a method has also been proposed in which the crystal grain size is controlled according to processing conditions before final solution treatment. Regarding this method, the present applicant has previously filed an application in Japanese Patent Application No. 159410/1982.

[発明が解決しようとする課題] 前述の様にβ型チタン合金は冷間加工性に優れていると
は言うものの、これは冷間加工時に割れが発生し難いと
いうだけであフて、冷間加工時の変形抵抗はかなり大き
く且つ加工硬化も著しい。
[Problems to be solved by the invention] As mentioned above, β-type titanium alloys have excellent cold workability, but this is simply because they are less prone to cracking during cold working. The deformation resistance during machining is quite large and the work hardening is also significant.

そこで所定の板厚まで圧延するためには、冷間加工の途
中で中間焼鈍を行ない、変形によって生ずる内部応力を
低下させる必要がある、この場合中間焼鈍を冷間加工途
中のどこで行うかということは、製品の品質を保証する
上で重要な要件になるものと考えられるが、実際には中
間焼鈍の時期的設定基準は明確にされていない。
Therefore, in order to roll the plate to a predetermined thickness, it is necessary to perform intermediate annealing during cold working to reduce the internal stress caused by deformation.In this case, where during cold working should intermediate annealing be performed? is considered to be an important requirement in guaranteeing product quality, but in reality, the criteria for setting the timing of intermediate annealing have not been clarified.

本発明はこの様な事情に着目してなされたものであって
、その課題は、肌荒れのない製品を得るための冷間成形
用の素材を提供するために、β型チタン合金の加工方法
、特に冷間加工工程中における中間焼鈍の時期的設定基
準を明確にしようとするものである。
The present invention has been made in view of these circumstances, and the object is to develop a method for processing β-type titanium alloy, in order to provide a material for cold forming to obtain a product without rough skin. In particular, it aims to clarify the criteria for setting the timing of intermediate annealing during the cold working process.

[課題を解決するための手段] 上記課題を解決することのできた本発明とは、β型チタ
ン合金の最終溶体化処理前の冷間加工工程中に中間焼鈍
工程を介入させることにより冷間加工を中間焼鈍前後の
2段階に分け、各冷間加工を下記(1)式を満足する様
に行うことを要旨とするものである。
[Means for Solving the Problems] The present invention, which has solved the above problems, is a method of cold working by intervening an intermediate annealing process in the cold working process before the final solution treatment of β-type titanium alloy. The gist is to divide the cold working into two stages, before and after intermediate annealing, and to perform each cold working so as to satisfy the following formula (1).

0.8  P、+p2 ≧0.002・D O+ 0.
4  −(1)[ただし Pl :中間焼鈍前の冷間加工率 P2 =中間焼鈍後の冷間加工率 Do :中間焼鈍前の冷間加工を施す前のβ相平均粒径
(単位μm)] [作用及び実施例] 第5図の説明でも述べた様に最終溶体化処理4前の冷間
加工3途中では、変形による内部応力を緩和するための
手段として中間焼鈍3−2を行っており、従来はこの中
間焼鈍3−2後の冷間加工3−3における加工率が、最
終溶体化処理4後の冷開成形用素材5におけるβ相の粒
径に大きく影響するものと考えられていた。しかし本発
明者等の研究の結果、冷間成形用素材5を製造する際、
最終溶体化処理4前における冷間加工3前の粒径(以後
初期粒径と記す)と冷間加工3途中における中間焼鈍3
−2前後の冷間加工3−1゜3−2の加工率を種々に変
えて冷間成形用の素材5を得、該素材を冷間加工6(曲
げ成形)した時の肌荒れ状態は、β相の初期粒径および
中間焼鈍3−2前後における冷間加工3−1.3−2の
加工率に影響されることが分かった。そしてさらに検討
した結果、中間焼鈍前後の冷間加工3−1゜3−2の加
工率を前記(1)式を満足する様に行なえば、冷開成形
6後の製品に肌荒れ等を発生することのない冷間成形用
素材5が得られるという知見を得た。
0.8 P, +p2 ≧0.002・D O+ 0.
4-(1) [where Pl: cold working ratio before intermediate annealing P2 = cold working ratio after intermediate annealing Do: β phase average grain size before performing cold working before intermediate annealing (unit: μm)] [Operations and Examples] As described in the explanation of FIG. 5, intermediate annealing 3-2 is performed in the middle of cold working 3 before final solution treatment 4 as a means to relieve internal stress due to deformation. Conventionally, it has been thought that the processing rate in cold working 3-3 after intermediate annealing 3-2 greatly influences the grain size of the β phase in the cold-open forming material 5 after final solution treatment 4. Ta. However, as a result of research by the present inventors, when manufacturing the cold forming material 5,
Grain size before cold working 3 before final solution treatment 4 (hereinafter referred to as initial grain size) and intermediate annealing 3 during cold working 3
Cold working 3-1 and 3-2 before and after cold working 3-1 and 3-2 were performed to obtain a raw material 5 for cold forming, and when this material was subjected to cold working 6 (bending forming), the rough surface condition was as follows: It was found that it is influenced by the initial grain size of the β phase and the processing rate of cold working 3-1.3-2 before and after intermediate annealing 3-2. As a result of further investigation, it was found that if the processing rates of cold working 3-1 and 3-2 before and after intermediate annealing were carried out so as to satisfy the above formula (1), roughness etc. would occur in the product after cold-open forming 6. It has been found that a material 5 for cold forming without any problems can be obtained.

次に(1)式を得るに至った経過について述べる。Next, we will discuss the process that led us to obtain equation (1).

β相平均初期粒径が150μm、100μmまたは50
μmであるTi−15V−3Cr−3Sn−3A1チタ
ン合金板(板厚1.4mm )を、中間焼鈍前の冷間加
工率が夫々0.2 、0.4 、0.6となる様に冷間
圧延した後、800℃で10分間中間焼鈍を施し、脱ス
ケール後、加工率0.05〜0.8の範囲で中間焼鈍後
の冷間圧延を行い、次いで最終溶体化処理を施した。最
終溶体化処理は、板厚をすべて1.1mmとして8t)
0℃で3分間保持し、空冷することにより行った。その
後酸洗した後、板厚を1mmに調整してからV字曲げを
行った(曲げ半径:1)1曲げ角度:105°1曲げ試
験片:25mm幅×50IIIIIl長)。曲げ試験後
曲げ部の肌荒れ発生状況を目視観察し、各初期平均粒径
における肌荒れ発生状況と中間焼鈍前後の冷間加工率と
の関係を調べた。その結果を第1図〜第3図に示す。
β phase average initial particle size is 150μm, 100μm or 50μm
A Ti-15V-3Cr-3Sn-3A1 titanium alloy plate (thickness 1.4 mm) with a thickness of After rolling, intermediate annealing was performed at 800° C. for 10 minutes, and after descaling, cold rolling after intermediate annealing was performed at a processing rate of 0.05 to 0.8, and then final solution treatment was performed. The final solution treatment was 8 tons with all plate thicknesses being 1.1 mm)
This was carried out by holding at 0°C for 3 minutes and cooling in air. After pickling, the plate thickness was adjusted to 1 mm and V-shaped bending was performed (bending radius: 1) 1 bending angle: 105° 1 bending test piece: 25 mm width x 50 mm length). After the bending test, the occurrence of rough skin at the bent portion was visually observed, and the relationship between the occurrence of rough skin at each initial average grain size and the cold working rate before and after intermediate annealing was investigated. The results are shown in FIGS. 1 to 3.

第1図〜第3図より明らかな様に肌荒れを生じる領域と
生じない領域は1次直線(鎖線)で区画され、各直線の
傾きは−0,8であって、肌荒れが生じない領域は P2≧P2−0.8 PI         ・・・(
2)(Pl :中間焼鈍前の冷間加工率 P2 :中間焼鈍後の冷間加工率 P2’:P2切片) で表わすことができる。
As is clear from Figures 1 to 3, areas where skin roughness occurs and areas where skin roughness does not occur are divided by linear straight lines (dashed lines), and the slope of each straight line is -0,8, and areas where skin roughness does not occur are P2≧P2-0.8 PI...(
2) (Pl: cold working ratio P2 before intermediate annealing: cold working ratio P2' after intermediate annealing: P2 intercept).

次に第1図〜第3図において21−0とした時の22の
値(P2切片の値)即ちP2′を求め、p21とβ相初
期平均粒径D0との関係を求めたところ、第4図に示す
通りとなった。第4図からP2’=0.002  ・D
0+0.4       ・・・(3)(ただしDoの
単位はμm) なる関係式が求められ、これを(2)式に代入するP2
 ≧0.002  ・ Do  +0.4 −0.8 
 p。
Next, in Figures 1 to 3, the value of 22 (the value of the P2 intercept) when 21-0, that is, P2', was determined, and the relationship between p21 and the initial average grain size D0 of the β phase was determined. The results are as shown in Figure 4. From Figure 4, P2'=0.002 ・D
0+0.4...(3) (However, the unit of Do is μm) The following relational expression is obtained, and this is substituted into equation (2).P2
≧0.002 ・Do +0.4 -0.8
p.

0.8  P、+P2 ≧0.002  Do  +0
.4   ・・・(1)となり(1)式が求められる。
0.8 P, +P2 ≧0.002 Do +0
.. 4...(1) and formula (1) can be obtained.

したがって(1)式を溝足するように中間焼鈍前後の加
工率P、、P、と初期平均粒径D0を調整して得たβ型
チタン合金よりなる冷開成形用素材を冷開成形すると肌
荒れのない良好な製品を得ることができる。
Therefore, when cold-forming a cold-forming material made of a β-type titanium alloy obtained by adjusting the processing rate P before and after intermediate annealing and the initial average grain size D0 so as to add equation (1), A good product without rough skin can be obtained.

[発明の効果コ 本発明は以上の様に構成されているので、この方法によ
って得た冷間成形用素材を冷開成形して得た製品は肌荒
れのない良好な品質のものとなる。
[Effects of the Invention] Since the present invention is constructed as described above, the product obtained by cold-open molding the cold-forming material obtained by this method has a good quality without rough skin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は平均初期粒径50,100゜150μmに
お、ける中間焼鈍前の加工率P1と中間焼鈍後の加工率
P2の関係を示すグラフ、第4図は初期粒径と第1〜3
図におけるP2切断との関係を示すグラフ、第5図はβ
型チタン合金を素材とする加工法を例示する概略工程図
である。 第1図 初期粒伜約50 tt mのもの 中間焼鈍前の冷間加工率 cPl) 第2図 中間焼鈍前の冷間フ朋工率 〔P1〕 第4図 初期粒径 (Do/I1m) 第3図 中間焼鈍前の冷間加工率 〔P1〕 第5図
Figures 1 to 3 are graphs showing the relationship between the working rate P1 before intermediate annealing and the working rate P2 after intermediate annealing at an average initial grain size of 50,100°150 μm, and Figure 4 is a graph showing the relationship between the initial grain size and the working rate P2 after intermediate annealing. ~3
A graph showing the relationship with P2 cutting in Figure 5.
FIG. 3 is a schematic process diagram illustrating a processing method using molded titanium alloy as a material. Fig. 1 Cold working rate before intermediate annealing cPl for initial grain size of about 50 tt m) Fig. 2 Cold working rate before intermediate annealing [P1] Fig. 4 Initial grain size (Do/I1m) Figure 3 Cold working rate before intermediate annealing [P1] Figure 5

Claims (1)

【特許請求の範囲】 β型チタン合金の最終溶体化処理前の冷間加工工程中に
中間焼鈍工程を介入させることにより冷間加工を中間焼
鈍前後の2段階に分け、各冷間加工を下記(1)式を満
足する様に行うことを特徴とするβ型チタン合金の加工
方法。 0.8P_1+P_2≧0.002・D_0+0.4・
・・(1) [ただし P_1:中間焼鈍前の冷間加工率 P_2:中間焼鈍後の冷間加工率 D_0:中間焼鈍前の冷間加工を施す前のβ相平均粒径
(単位μm)]
[Claims] By intervening an intermediate annealing process in the cold working process before the final solution treatment of β-type titanium alloy, the cold working is divided into two stages, before and after the intermediate annealing, and each cold working is performed as follows. A method for processing a β-type titanium alloy, characterized in that the processing is performed so as to satisfy the formula (1). 0.8P_1+P_2≧0.002・D_0+0.4・
...(1) [However, P_1: Cold working ratio before intermediate annealing P_2: Cold working ratio after intermediate annealing D_0: β phase average grain size before cold working before intermediate annealing (unit: μm)]
JP63183156A 1988-07-21 1988-07-21 Processing method of β-type titanium alloy Expired - Fee Related JP2578174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63183156A JP2578174B2 (en) 1988-07-21 1988-07-21 Processing method of β-type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63183156A JP2578174B2 (en) 1988-07-21 1988-07-21 Processing method of β-type titanium alloy

Publications (2)

Publication Number Publication Date
JPH0234754A true JPH0234754A (en) 1990-02-05
JP2578174B2 JP2578174B2 (en) 1997-02-05

Family

ID=16130779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63183156A Expired - Fee Related JP2578174B2 (en) 1988-07-21 1988-07-21 Processing method of β-type titanium alloy

Country Status (1)

Country Link
JP (1) JP2578174B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203390A (en) * 2013-03-22 2013-07-17 西安思维金属材料有限公司 Processing method for beta titanium alloy wires used for glass frames
CN115161571A (en) * 2022-07-25 2022-10-11 内蒙古工业大学 Preparation method of beta type titanium alloy ultrafine crystal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393848A (en) * 1986-10-07 1988-04-25 Nkk Corp Manufacture of cold-rolled sheet of beta-type titanium alloy excellent in high strength with high ductility

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393848A (en) * 1986-10-07 1988-04-25 Nkk Corp Manufacture of cold-rolled sheet of beta-type titanium alloy excellent in high strength with high ductility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203390A (en) * 2013-03-22 2013-07-17 西安思维金属材料有限公司 Processing method for beta titanium alloy wires used for glass frames
CN115161571A (en) * 2022-07-25 2022-10-11 内蒙古工业大学 Preparation method of beta type titanium alloy ultrafine crystal

Also Published As

Publication number Publication date
JP2578174B2 (en) 1997-02-05

Similar Documents

Publication Publication Date Title
US11643713B2 (en) Copper-nickel-tin alloy with high toughness
US5264055A (en) Method involving modified hot working for the production of a titanium alloy part
JP2984778B2 (en) Forging method of high purity titanium material
US3046166A (en) Treatment of brass
JPS619561A (en) Manufacture of al alloy plate having superior hot formability
JPH06501743A (en) Manufacturing method for high-strength steel components
KR100219931B1 (en) High strength steel sway bars and method of making
US4295901A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
JPH06240425A (en) Preparation of improved aluminum alloy board
JPH0234754A (en) Method for working beta titanium alloy
US4486242A (en) Method for producing superplastic aluminum alloys
JPH06293946A (en) Production of fine crystal grain super alloy member
JP3118342B2 (en) Method of heating titanium and titanium alloy rolled material
GB2248849A (en) Process for working a beta type titanium alloy
US4490188A (en) Method of imparting a fine grain structure to 2000 & 7000 series aluminum alloys
KR20050024735A (en) A method for increasing the ductility of magnesium alloy through texture control
JPH06272004A (en) Method for working titanium alloy
JPS63206457A (en) Working and heat treatment of alpha+beta type titanium alloy
JPH08193254A (en) Method for working titanium alloy
JPH04154945A (en) Manufacture of beta type titanium alloy strip
JPH06136498A (en) Mirror finishing treatment for beta-type titanium alloy
JPH0347955A (en) Method for working shape memory beta brass-type copper alloy
JPS63105954A (en) Hot-working method for near beta-type titanium alloy
JPH0649609A (en) Working heat treating method for beta type titanium alloy
JPH08176766A (en) Production of ni-ti based alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees