JPH023428B2 - - Google Patents

Info

Publication number
JPH023428B2
JPH023428B2 JP16346681A JP16346681A JPH023428B2 JP H023428 B2 JPH023428 B2 JP H023428B2 JP 16346681 A JP16346681 A JP 16346681A JP 16346681 A JP16346681 A JP 16346681A JP H023428 B2 JPH023428 B2 JP H023428B2
Authority
JP
Japan
Prior art keywords
polyester
film
particles
polyethylene terephthalate
slipperiness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16346681A
Other languages
Japanese (ja)
Other versions
JPS5865744A (en
Inventor
Juzo Shimizu
Satoru Kamaya
Masaru Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP16346681A priority Critical patent/JPS5865744A/en
Publication of JPS5865744A publication Critical patent/JPS5865744A/en
Publication of JPH023428B2 publication Critical patent/JPH023428B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はコンデンサヌフむルム甚ポリ゚チレン
テレフタレヌトに関するものである。 さらに詳しくは電気特性、滑り性が改良された
コンデンサヌフむルム甚ポリ゚チレンテレフタレ
ヌトに関するものである。 ポリ゚ステル、特にポリ゚チレンテレフタレヌ
ト二軞延䌞フむルムは優れた物理的、化孊的性質
および電気的性質を瀺し、写真甚、金属蒞着甚、
包装雑貚甚、電気絶瞁甚、誘導䜓甚、磁気テヌプ
甚、粘着テヌプ甚ずしお倚甚されおいるこずはよ
く知られおいる。 これら各皮甚途のうちコンデンサヌの誘導䜓ず
しお䜿甚されるコンデンサヌフむルムは近幎電子
機噚の超小型化がおしすすめられおいる䞭で5ÎŒ
以䞋の極薄物、さらには2Ό以䞋の超極薄物コン
デンサヌフむルムの芁求が匷くな぀お来おいる。 しかし、電子機噚の小型化ずそれにずもなうフ
むルムの極薄化は、フむルムの電気特性およびフ
むルム取扱い時の䜜業性に皮々の問題を匕き起こ
しおいる。 たずえば、コンデンサヌポリ゚ステルフむルム
は他のプラスチツクコンデンサヌフむルムず同様
に電極箔ず重ね合わせお巻き蟌む箔巻きコンデン
サヌタむプのものず、電極が蒞着しおある金属積
局フむルムを巻き蟌む蒞着コンデンサヌタむプの
ものずある。いずれもロヌル巻き、玠子巻きなど
の補造加工工皋が必芁であるが、該工皋における
䜜業性の問題点はフむルムの滑り䞍良に起因しお
おり、この問題を解消するためにはフむルムの滑
り性が良奜なこずが必須である。 䞀方、コンデンサヌフむルムの電気特性ずしお
は垞枩から150℃の実質的に電気機噚が䞊昇する
枩床範囲で䜓積固有抵抗、絶瞁砎壊電圧が高く保
持されおいるこずが必芁である。 埓来からポリ゚チレンテレフタレヌトの電気特
性を改良する方法ずしお特公昭35―5395号公報、
特公昭41―4600号公報など各皮化合物を添加す
る方法が䞀般に知られおいる。しかしこれらの方
法で埗たフむルムはある皋床電気特性が改良され
るものの、滑り性が著しく䜎䞋するため、ロヌル
巻き加工、玠子巻き加工が困難になる欠点があ
る。 䞀方、フむルムの加工性を向䞊させるにはフむ
ルム衚面に凹凞を䞎えフむルム同志のブロツキン
グを防止する必芁があり、このためにたずえば炭
酞カルシりム、硫酞バリりム、炭酞リチりム、酞
化チタン、カオリン、タルク、酞化ケむ玠などの
粒子をポリ゚ステル䞭に添加するなどの方法が知
られおいる。 しかしながら、単に前蚘のような粒子をポリ゚
ステル䞭に添加したフむルムは電気特性、特に絶
瞁砎壊電圧が著しく䜎䞋するため、コンデンサヌ
フむルムずしおの実甚性は小さい。 たた、ポリ゚チレンテレフタレヌトの電気特性
ず滑り性の改良を目的ずしお特開昭55―21157号
公報が知られおいる。これはCa化合物の存圚䞋
でポリ゚ステルの゚ステル亀換反応を行ない、
Ca化合物に察しお〜倍モルの化合物を添
加し、か぀特定の䞍掻性粒子を添加しおなるポリ
゚ステルフむルムである。しかしこのフむルム
は、䞍掻性粒子を添加しない堎合ポリ゚ステル䞭
にCa化合物に起因するフむルムの滑り性に寄䞎
する粒子の発生が少なく、たた滑り性を改良する
ため䞍掻性粒子を添加しおいくず十分な電気特性
が埗られにくい欠点がある。 したが぀お、ポリ゚チレンテレフタレヌトフむ
ルムをコンデンサヌ甚途に適甚できるようにする
ためには電気特性ず滑り性を同時に満足させなけ
ればならない。そのためには電気特性を良奜ずな
し、か぀滑り性を発珟する方法を芋い出すこずが
極めお重芁ずなるのである。 本発明者らは絶瞁砎壊電圧などの電気特性ず滑
り性を兌備したコンデンサヌ甚ポリ゚チレンテレ
フタレヌトフむルムに぀いお怜蚎し、本発明に到
達したのである。 すなわち、本発明はCa、Mg、Mn元玠を有す
る少なくずも䞀皮の化合物ず元玠を有する少な
くずも䞀皮の化合物を䞋蚘割合で含有した溶液ヘ
むズが〜15であるポリ゚チレンテレフタレヌ
トに、平均粒子埄が0.5〜4Όのケむ玠含有䞍掻性
無機粒子を配合せしめお溶液ヘむズを20以䞋ず
したコンデンサヌフむルム甚ポリ゚チレンテレフ
タレヌトである。 1.1≊≊1.4 ポリ゚チレンテレフタレヌト䞭のCa、
Mg、Mn元玠のモル数 ポリ゚チレンテレフタレヌト䞭の元玠のモ
ル数 本発明の䞻成分は、テレフタル酞を䞻ずするゞ
カルボン酞たたはそのアルキル゚ステル、特に䜎
玚アルキル゚ステルであるが、その䞀郚を10モル
以䞋の範囲でフタル酞、む゜フタル酞、―ナ
トリりムスルホむ゜フタル酞、ナフタリンゞカル
ボン酞、アゞピン酞、セバシン酞およびこれらの
゚ステル圢成性誘導䜓で眮き換えるこずができ
る。 たた、グリコヌルぱチレングリコヌルを䞻ず
するが゚チレングリコヌル以倖の他のゞオキシ化
合物、たずえばプロピレングリコヌル、トリメチ
レングリコヌル、ネオペンチルグリコヌル、
―シクロヘキサンゞメタノヌル、ビスプノヌ
ル、ポリオキシ゚チレングリコヌルなども䜿甚
するこずができる。 たた、トリメリツト酞、ピロメリツト酞、グリ
セリンなどの倚官胜化合物を生成するポリ゚ステ
ルが補膜できる範囲で添加しおも良い。 かかるポリ゚チレンテレフタレヌトを補造する
にあたり、重瞮合に䜿甚される代衚的な觊媒は
Ti、Ge、Sbなどの金属化合物を挙げるこずがで
きる。 本発明で䜿甚するCa、Mg、Mn元玠を含む化
合物の具䜓䟋ずしおは、酢酞カルシりム、塩化マ
グネシりム、酢酞マグネシりム、塩化マンガン、
酢酞マンガンなどを挙げるこずができるが、ポリ
゚ステルを補造する際の゚ステル亀換觊媒ずしお
䜿甚するこずが奜たしい。 たた、本発明における元玠を含む化合物ず
は、リン酞、亜リン酞、リン酞のモノ、ゞあるい
はトリ゚ステルメチルアシツドホスプヌト、
トリプニルホスプヌト、トリメチルホスプ
ヌト、゚チルアシツドホスプヌトなどあるい
はホスホン酞、ホスホネヌトプニルホスホネ
ヌト、ゞメチルホスホネヌトなどなどの化合物
を挙げるこずができる。 これら化合物はポリ゚ステル䞭に添加した
Ca、Mg、Mn元玠を含む化合物のポリ゚ステル
䞭の残存量に察しお、䞋蚘の匏を満足するように
含有せしめる必芁があり、奜たしくは1.1≊
≊1.3である。 1.1≊≊1.4 ポリ゚チレンテレフタレヌト䞭のCa、
Mg、Mn元玠のモル数 ポリ゚チレンテレフタレヌト䞭の元玠のモ
ル数 が1.1未満では重瞮合速床が䜎䞋しお高
重合床のポリ゚ステルを埗るこずが困難になるほ
か、ポリ゚ステルの軟化点が䜎䞋したり、フむル
ム補膜速床が䜎䞋するなどの欠点を有する。 䞀方、が1.4を越えるず埗られたポリ゚
ステルフむルムの電気特性などの改善が達成でき
ない。 たた、䞊蚘本発明の基質ずなるポリ゚ステルの
溶液ヘむズは〜15で奜たしくは〜10であ
る。 本発明でいう溶液ヘむズずはポリ゚ステル1.0
をプノヌルテトラクロル゚タン重
量比の混合溶媒20c.c.に溶解したのち、ヘむズメヌ
タヌにおいお20mm石英ガラスセルでヘむズ濁
床を枬定した倀であり、この溶液ヘむズはポリ
゚ステル䞭に添加する金属化合物および化合物
あるいはポリ゚ステルオリゎマずの反応によ぀お
生成する化合物、すなわち粒子内郚粒子ずい
うの量を刀定する倀ずしお䜿甚しおいる。ここ
で、溶液ヘむズの倀が倧きいほど内郚粒子がポリ
゚ステル䞭に倚量に生成しおいる。たた、逆に小
さいほどポリ゚ステル䞭の内郚粒子が少ない傟向
にある。 この溶液ヘむズが未満であるずポリ゚ステ
ル䞭の内郚粒子が少なく、埌述するように他の無
機化合物粒子を添加した堎合でもフむルムの滑り
性ず電気特性をずもに満足するこずはできない。 䞀方、15を越えるずポリ゚ステル䞭の内郚粒
子が倚量であるため、フむルムの滑り性はやや良
奜になるが、やはり電気特性ずのバランスがずれ
ない。 たた、䞊蚘溶液ヘむズは前述したず盞関
があり、が倧きいほど溶液ヘむズの倀は倧
きく、が小さいほど溶液ヘむズの倀も小さ
くなる。 本発明は、前述した基質ずなるポリ゚ステルに
平均粒子埄0.5〜4Όのケむ玠を含む䞍掻性無機粒
子を少なくずも䞀皮配合するこずを必須ずし、か
぀埗られる本発明のポリ゚ステルの溶液ヘむズは
20を越えない範囲ずする必芁がある。 たた、ケむ玠を含む䞍掻性無機粒子による溶液
ヘむズの䞊昇分は埗られたフむルムの砎壊電圧の
点で10が奜たしく、さらに奜たしくはにず
どめおおくこずが望たしい。 平均粒子埄0.5〜4Όの粒子ずはポリ゚ステル補
造反応を阻害しないものであり、具䜓的にはケむ
酞アルミナ、酞化ケむ玠、カオリン、タルクなど
の含ケむ玠化合物を挙げるこずができる。 なお、必芁に応じお他の䞍掻性無機粒子、たず
えば炭酞カルシりム、炭酞リチりム、硫酞バリり
ム、酞化チタン、酞化アルミニりム、酞化マグネ
シりムを䜵甚しおもよい。 平均粒埄0.5〜4Όの含ケむ玠䞍掻性無機粒子は、
䞀般にポリ゚ステル反応系で生成する内郚粒子に
比べ電気特性を䜎䞋させるこずが少なくフむルム
の滑り性を向䞊せしめる効果を有する反面、粒子
がポリマ䞭で凝集しやすく、局郚的に電気特性を
悪化させる欠点があり、これはコンデンサヌの信
頌性を損う重倧な問題である。 該欠点はCa、Mg、Mnおよび化合物の存圚
䞋で、か぀埗られるポリマ䞭でのが1.1を
越えた堎合に極めお優れた分散性が埗られるこず
を芋い出し解決するに至぀た。 なお、該粒子は必芁に応じ粉砕、分玚され、平
均粒子埄0.5〜4Όの粒子ずしお䜿甚される。平均
粒子埄が0.5Ό未満では埗られるフむルムの衚面が
平滑すぎお、本発明が目的ずしおいる滑り性付䞎
に圹立たない。 䞀方、平均粒子埄が4Όを越えるずそれらの粗
倧粒子が絶瞁砎壊の発生点になるため、絶瞁砎壊
電圧特性が著しく䜎䞋しおくる。 たた、該粒子を添加しお埗られる本発明のポリ
゚ステルの溶液ヘむズは20を越えない範囲であ
るが、その溶液ヘむズを埗るための該粒子の添加
量ずしおは0.01〜0.5重量が奜たしい。 䞀方、20を越えるず滑り性は良奜になるが、
フむルムの電気特性、特に絶瞁砎壊電圧の䜎䞋を
生ずるため奜たしくない。 本発明によ぀お埗られるフむルムの滑り性は
Ca、Mg、Mn化合物および化合物ずポリ゚ス
テルオリゎマによ぀おポリ゚ステル䞭に生成する
内郚粒子埗られるポリ゚ステルの溶液ヘむズが
パラメヌタヌになるず該ポリ゚ステルに添加す
る粒子の存圚によ぀お圢成されるフむルム衚面の
凹凞によ぀お決定される。 しかし、内郚粒子のみによるポリ゚ステルから
フむルムを埗る堎合は、フむルム衚面の凹凞が少
ないために滑りにくく、特にフむルム厚み5Ό以
䞋の極薄物ではその傟向が著しい。滑り性を改善
するため内郚粒子量を増倧しおいくず内郚粒子の
粗倧化が起こり、フむルムの滑り性は良奜になる
が、䞀方、粗倧粒子に起因しお絶瞁砎壊電圧特性
の䜎䞋をたねく。たた、粒子を添加しおいない溶
液ヘむズが未満、あるいは15を越える基質
のポリ゚ステルに平均粒埄0.5〜4Όの粒子を含有
した溶液ヘむズが20以䞋である本発明のポリ゚
ステルからフむルムを぀くる堎合には滑り性ず電
気特性、特に絶瞁砎壊電圧特性がバランスしない
のである。 本発明においお甚いられる化合物および粒子
の添加時期ぱステル化あるいぱステル亀換反
応が実質的に終了した時点から重瞮合反応初期の
任意の間に添加しおよい。 さらに添加する粒子に぀いおは重合終了埌、あ
るいはポリ゚ステル成圢前に添加しおもよい。た
た、粒子を高濃床で含むポリ゚ステルを予め補造
し、これず粒子を含たない、あるいは少量含み、
か぀Ca、Mg、Mn化合物を含むポリ゚ステル䞭
の残存量が䞋蚘匏を満足するように化合物を添
加し、 1.1≊≊1.4 ポリ゚チレンテレフタレヌト䞭のCa、
Mg、Mn元玠のモル数 ポリ゚チレンテレフタレヌト䞭の元玠のモ
ル数 か぀埗られたポリ゚ステルの溶液ヘむズが〜15
の該ポリ゚ステルをフむルム成圢前に適圓に混
合する方法も奜たしく甚いられる。 以䞋、本発明を実斜䟋によりさらに説明する
が、本発明は以䞋の実斜䟋に限定されるものでは
ない。 なお、諞物性の枬定は次の方法によ぀た。  平均粒子埄 平均粒子埄は粒子の電子顕埮鏡写真によ぀お
枬定した党粒子30000〜50000コの50重量
の点にあたる粒子の等䟡球盎埄により求めた。
等䟡球盎埄ずは粒子ず同じ容積を有する球の盎
埄である。  ポリマの固有粘床 ―クロロプノヌルを溶媒ずし25℃で枬定
した。  æ‘©æ“Šä¿‚æ•° 東掋テスタヌ補スリツプテスタヌを甚い、
MSTM――1894B法に埓぀お枬定した。 なお、フむルムの滑り性の目安ずしお静摩擊
係数を甚いた。  絶瞁砎壊電圧 亀流耐圧詊隓噚を甚い、JIS――2318に準
じお枬定した。  フむルムヘむズ ASTM――1003―52法に準じ、フむルム
ヘむズを枬定した。  ポリマ䞭の金属分析 ポリマ䞭のCa、Mg、Mnの定量は原子吞光
法によ぀お枬定し、は比色法によ぀お枬定し
た。 実斜䟋  ゞメチルテレフタレヌト100重量郚、゚チレン
グリコヌル70重量郚および゚ステル亀換觊媒ずし
お酢酞Ca0.09重量郚、重合觊媒ずしお䞉酞化アン
チモン0.03重量郚を加え、140〜220℃の間で理論
量のメタノヌルを留出させ、゚ステル亀換反応を
終了した。続いお系内にゞメチルプニルホスホ
ネヌト0.1重量郚、亜リン酞0.03重量郚および平
均粒子埄2.4ΌのSiO25重量の゚チレングリコヌ
ルスラリヌを0.05重量郚添加した。次いで系内を
埐々に枛圧ずし、mmHg以䞋の枛圧䞋285℃の枩
床にしお゚チレングリコヌルを留去し、時間で
反応を終了した。埗られたポリ゚チレンテレフタ
レヌトの極限粘床は0.607、軟化点は261.0℃、た
た溶液ヘむズは13.5であ぀た。 該ポリマのチツプを90mmφ゚クストルダヌを甚
い溶融抌出ししお未延䌞シヌトを埗た埌、垞法に
埓぀お瞊延䌞倍率3.2倍、暪延䌞倍率3.0倍で二軞
延䌞した埌、175℃で熱凊理しお厚さ5Όのフむル
ムを埗た。 該フむルムの静摩擊係数は0.52、絶瞁砎壊電圧
は531VΌ、フむルムヘむズは14.5であり、
滑り性、電気的性質ずも優れおいる。 䞀方、平均粒子埄2.4ΌのSiO2を添加しないで、
䞊蚘同様に゚ステル亀換反応および重瞮合反応を
行な぀た。埗られたポリ゚チレンテレフタレヌト
の溶液ヘむズは10.2、およびポリ゚チレンテレ
フタレヌト䞭の金属分析を行な぀たずころ、Ca
が230ppm、が147ppm怜出され、を蚈算
したずころ1.21であ぀た。 実斜䟋 〜 衚に瀺す劂く皮々条件に倉曎した以倖は実斜
䟋ず党く同様に行な぀た。埗られたフむルムは
衚に瀺すように、いずれも滑り性、電気的性質
共に極めお良奜であ぀た。 比范実斜䟋 〜 衚に瀺す劂く皮々の条件に倉曎した以倖は実
斜䟋ず党く同様にしお行な぀た。結果を衚に
瀺した。いずれの条件においおもフむルムの滑り
性、電気的性質は実斜䟋〜、衚の結果に比
范し劣぀おいた。 以䞊の結果から本発明によ぀お補造されるポリ
゚ステルは優れた滑り性および電気特性、特に絶
瞁砎壊電圧特性を兌ね備えたコンデンサヌ甚フむ
ルムが埗られるこずがわかる。
The present invention relates to polyethylene terephthalate for use in condenser films. More specifically, the present invention relates to polyethylene terephthalate for use in capacitor films, which has improved electrical properties and slipperiness. Polyester, especially polyethylene terephthalate biaxially oriented film, exhibits excellent physical, chemical and electrical properties and is useful for photography, metal deposition,
It is well known that it is widely used for packaging miscellaneous goods, electrical insulation, dielectrics, magnetic tapes, and adhesive tapes. Among these various uses, capacitor films used as capacitor dielectrics have become smaller than 5Ό in recent years due to the trend toward ultra-miniaturization of electronic devices.
There is a growing demand for the following ultra-thin capacitor films, and even for ultra-thin capacitor films of 2Ό or less. However, the miniaturization of electronic devices and the resulting ultra-thin films have caused various problems in the electrical properties of the films and the workability when handling the films. For example, capacitor polyester films come in two types: foil-wrapped capacitor types, in which electrode foil is rolled up and rolled up like other plastic capacitor films, and vapor-deposited capacitor types, in which a metal laminated film on which electrodes are vapor-deposited is wound. Both require manufacturing processes such as roll winding and element winding, but the problem with workability in these processes is due to poor film slippage, and in order to solve this problem, the slipperiness of the film has to be improved. Being good is essential. On the other hand, the electrical properties of a capacitor film require that its volume resistivity and dielectric breakdown voltage remain high in the temperature range from room temperature to 150°C, which is essentially the temperature range in which electrical equipment rises. As a conventional method for improving the electrical properties of polyethylene terephthalate, Japanese Patent Publication No. 35-5395,
Methods of adding various P compounds are generally known, such as in Japanese Patent Publication No. 41-4600. However, although the electrical properties of the films obtained by these methods are improved to some extent, their slipperiness is markedly reduced, making it difficult to process them into rolls or devices. On the other hand, in order to improve the processability of the film, it is necessary to create irregularities on the film surface to prevent blocking between the films. A method is known in which particles such as the following are added to polyester. However, a film in which such particles as described above are simply added to polyester has a marked decrease in electrical properties, particularly dielectric breakdown voltage, and is therefore of little practical use as a capacitor film. Furthermore, JP-A-55-21157 is known for the purpose of improving the electrical properties and slipperiness of polyethylene terephthalate. This involves transesterification of polyester in the presence of Ca compounds,
This is a polyester film in which a P compound is added in an amount of 1 to 2 times the mole of a Ca compound, and specific inert particles are added. However, when this film is not added with inert particles, there is little generation of particles that contribute to the film's slipperiness due to Ca compounds in the polyester, and it is sufficient to add inert particles to improve slipperiness. The disadvantage is that it is difficult to obtain suitable electrical characteristics. Therefore, in order for a polyethylene terephthalate film to be applicable to capacitor applications, it must satisfy both electrical properties and slipperiness. To this end, it is extremely important to find a method to improve electrical properties and exhibit slipperiness. The present inventors have studied polyethylene terephthalate films for capacitors that have both electrical properties such as dielectric breakdown voltage and slip properties, and have arrived at the present invention. That is, the present invention uses polyethylene terephthalate having a solution haze of 3 to 15% containing at least one compound containing Ca, Mg, and Mn elements and at least one compound containing P element in the following proportions and an average particle size of 0.5. This is polyethylene terephthalate for use in condenser films with a solution haze of 20% or less by blending silicon-containing inert inorganic particles of ~4 ÎŒm. 1.1≩M/P≩1.4 (M: Ca in polyethylene terephthalate,
(Number of moles of Mg and Mn elements P: Number of moles of p element in polyethylene terephthalate) The main component of the present invention is a dicarboxylic acid, mainly terephthalic acid, or an alkyl ester thereof, particularly a lower alkyl ester, but some of the can be replaced by phthalic acid, isophthalic acid, 5-sodium sulfoisophthalic acid, naphthalene dicarboxylic acid, adipic acid, sebacic acid and ester-forming derivatives thereof in an amount of up to 10 mol%. Glycol is mainly ethylene glycol, but other dioxy compounds other than ethylene glycol, such as propylene glycol, trimethylene glycol, neopentyl glycol,
4-Cyclohexane dimethanol, bisphenol A, polyoxyethylene glycol, etc. can also be used. Further, polyesters that produce polyfunctional compounds such as trimellitic acid, pyromellitic acid, and glycerin may be added as long as they can form a film. Typical catalysts used for polycondensation in producing polyethylene terephthalate are:
Examples include metal compounds such as Ti, Ge, and Sb. Specific examples of compounds containing Ca, Mg, and Mn elements used in the present invention include calcium acetate, magnesium chloride, magnesium acetate, manganese chloride,
Examples include manganese acetate, but it is preferable to use it as a transesterification catalyst when producing polyester. In addition, the compound containing P element in the present invention refers to phosphoric acid, phosphorous acid, mono-, di- or triester of phosphoric acid (methyl acid phosphate,
Examples include compounds such as triphenyl phosphate, trimethyl phosphate, ethyl acid phosphate, etc.), phosphonic acids, and phosphonates (phenyl phosphonate, dimethyl phosphonate, etc.). These P compounds were added to polyester.
The remaining amount of the compound containing Ca, Mg, and Mn elements in the polyester must be contained so as to satisfy the following formula, preferably 1.1≩M/
P≩1.3. 1.1≩M/P≩1.4 (M: Ca in polyethylene terephthalate,
Mg, Mn element mole number P: mole number of p element in polyethylene terephthalate) If M/P is less than 1.1, the polycondensation rate will decrease and it will be difficult to obtain a polyester with a high degree of polymerization, and the polyester will soften. It has drawbacks such as a decrease in the score and a decrease in the film forming speed. On the other hand, when M/P exceeds 1.4, it is impossible to improve the electrical properties of the obtained polyester film. Further, the solution haze of the polyester serving as the substrate of the present invention is 3 to 15%, preferably 5 to 10%. Solution haze as used in the present invention is polyester 1.0
This is the value obtained by measuring the haze (turbidity) in a 20 mm quartz glass cell using a haze meter after dissolving 20 c.c. of a mixed solvent of phenol/tetrachloroethane in a weight ratio of 6/4. It is used as a value for determining the amount of compounds, that is, particles (referred to as internal particles), produced by the reaction with the metal compound and P compound added therein, or the polyester oligomer. Here, the larger the solution haze value, the more internal particles are generated in the polyester. Conversely, the smaller the particle size, the fewer internal particles there are in the polyester. When the solution haze is less than 3%, there are few internal particles in the polyester, and even when other inorganic compound particles are added as described below, both the slipperiness and electrical properties of the film cannot be satisfied. On the other hand, if it exceeds 15%, the amount of internal particles in the polyester will be large, and although the slipperiness of the film will be somewhat better, it will still not be well balanced with the electrical properties. Further, the solution haze has a correlation with the above-mentioned M/P, and the larger the M/P, the larger the solution haze value, and the smaller the M/P, the smaller the solution haze value. The present invention requires that at least one kind of inert inorganic particles containing silicon with an average particle size of 0.5 to 4 ÎŒm is blended into the polyester that serves as the substrate, and the solution haze of the polyester of the present invention obtained is
It is necessary to keep it within a range not exceeding 20%. Further, the increase in solution haze due to inert inorganic particles containing silicon is preferably kept at 10%, more preferably at 5%, from the viewpoint of the breakdown voltage of the obtained film. Particles having an average particle diameter of 0.5 to 4 Όm do not inhibit the polyester production reaction, and specific examples include silicon-containing compounds such as alumina silicate, silicon oxide, kaolin, and talc. Note that other inert inorganic particles such as calcium carbonate, lithium carbonate, barium sulfate, titanium oxide, aluminum oxide, and magnesium oxide may be used in combination as necessary. Silicon-containing inert inorganic particles with an average particle size of 0.5 to 4Ό are
In general, compared to internal particles produced in a polyester reaction system, the electrical properties are less likely to be degraded and the film has the effect of improving the slipperiness of the film. This is a serious problem that impairs the reliability of capacitors. This drawback was solved by finding that extremely excellent dispersibility can be obtained in the presence of Ca, Mg, Mn and P compounds and when M/P in the resulting polymer exceeds 1.1. The particles are crushed and classified if necessary, and used as particles having an average particle size of 0.5 to 4 Όm. If the average particle diameter is less than 0.5 Όm, the surface of the resulting film will be too smooth and will not be useful in imparting slipperiness, which is the objective of the present invention. On the other hand, when the average particle diameter exceeds 4 Ό, these coarse particles become the point of occurrence of dielectric breakdown, resulting in a significant decrease in dielectric breakdown voltage characteristics. Further, the solution haze of the polyester of the present invention obtained by adding the particles does not exceed 20%, but the amount of the particles added to obtain the solution haze is preferably 0.01 to 0.5% by weight. On the other hand, when it exceeds 20%, the slipperiness becomes good, but
This is undesirable because it lowers the electrical properties of the film, especially the dielectric breakdown voltage. The slipperiness of the film obtained by the present invention is
A film formed by the presence of internal particles generated in polyester by Ca, Mg, Mn compounds and P compounds and polyester oligomer (solution haze of the resulting polyester is a parameter) and particles added to the polyester. Determined by surface roughness. However, when a film is obtained from polyester consisting only of internal particles, it is difficult to slip because the film surface has few irregularities, and this tendency is particularly noticeable in extremely thin films with a thickness of 5 Όm or less. If the amount of internal particles is increased in order to improve slipperiness, the internal particles will become coarser, and the slipperiness of the film will improve, but on the other hand, the coarse particles will lead to a decrease in dielectric breakdown voltage characteristics. In addition, a film can be made from the polyester of the present invention, which has a solution haze of less than 3% without particles added, or a solution haze of 20% or less containing particles with an average particle size of 0.5 to 4Ό to a polyester substrate having a solution haze of less than 3% or more than 15%. When manufacturing, there is an imbalance between slipperiness and electrical properties, especially dielectric breakdown voltage properties. The P compound and particles used in the present invention may be added at any time from the time when the esterification or transesterification reaction is substantially completed to the beginning of the polycondensation reaction. Further particles may be added after the polymerization is completed or before polyester molding. In addition, polyester containing a high concentration of particles is manufactured in advance, and this is combined with a polyester that does not contain particles or contains a small amount of particles.
And the P compound is added so that the residual amount in the polyester containing Ca, Mg, and Mn compounds satisfies the following formula, 1.1≩M/P≩1.4 (M: Ca in polyethylene terephthalate,
The number of moles of Mg and Mn elements P: the number of moles of p element in polyethylene terephthalate) and the solution haze of the obtained polyester is 3 to 15
A method in which % of the polyester is appropriately mixed before film forming is also preferably used. EXAMPLES Hereinafter, the present invention will be further explained with reference to examples, but the present invention is not limited to the following examples. The various physical properties were measured using the following methods. a) Average particle size The average particle size is 50% by weight of the total particles (30,000 to 50,000 particles) measured by electron micrograph of the particles.
It was determined by the equivalent spherical diameter of the particle corresponding to the point.
The equivalent spherical diameter is the diameter of a sphere with the same volume as the particle. b) Intrinsic viscosity of polymer Measured at 25°C using O-chlorophenol as a solvent. c) Coefficient of friction Using a slip tester manufactured by Toyo Tester,
Measured according to MSTM-D-1894B method. Note that the coefficient of static friction was used as a measure of the slipperiness of the film. d) Dielectric breakdown voltage Measured according to JIS-C-2318 using an AC withstand voltage tester. e) Film haze Film haze was measured according to ASTM-D-1003-52 method. f) Analysis of metals in polymer Ca, Mg, and Mn in the polymer were determined by atomic absorption spectrometry, and P was determined by colorimetry. Example 1 100 parts by weight of dimethyl terephthalate, 70 parts by weight of ethylene glycol, 0.09 parts by weight of Ca acetate as a transesterification catalyst, and 0.03 parts by weight of antimony trioxide as a polymerization catalyst were added, and a theoretical amount of methanol was added at a temperature between 140 and 220°C. The transesterification reaction was completed by distillation. Subsequently, 0.1 part by weight of dimethylphenylphosphonate, 0.03 part by weight of phosphorous acid, and 0.05 part by weight of an ethylene glycol slurry containing 5% by weight of SiO 2 having an average particle size of 2.4 ÎŒm were added to the system. Next, the pressure in the system was gradually reduced to a temperature of 285° C. under a reduced pressure of 1 mmHg or less to distill off ethylene glycol, and the reaction was completed in 4 hours. The obtained polyethylene terephthalate had an intrinsic viscosity of 0.607, a softening point of 261.0°C, and a solution haze of 13.5%. The chips of the polymer were melt-extruded using a 90 mmφ extruder to obtain an unstretched sheet, and then biaxially stretched at a longitudinal stretch ratio of 3.2 times and a transverse stretch ratio of 3.0 times according to a conventional method, and then heat treated at 175°C. A film with a thickness of 5 ÎŒm was obtained. The film has a static friction coefficient of 0.52, a dielectric breakdown voltage of 531V/ÎŒ, and a film haze of 14.5%.
It has excellent slip properties and electrical properties. On the other hand, without adding SiO 2 with an average particle size of 2.4Ό,
Transesterification and polycondensation reactions were carried out in the same manner as above. The solution haze of the obtained polyethylene terephthalate was 10.2%, and metal analysis in the polyethylene terephthalate revealed that Ca
was detected at 230 ppm and 147 ppm, and the M/P was calculated to be 1.21. Examples 2 to 4 The same procedure as in Example 1 was carried out except that various conditions were changed as shown in Table 1. As shown in Table 1, the obtained films had extremely good slipperiness and electrical properties. Comparative Examples 1 to 8 Comparative Examples 1 to 8 were carried out in exactly the same manner as in Example 1, except that various conditions were changed as shown in Table 2. The results are shown in Table 2. Under any conditions, the film's slipperiness and electrical properties were inferior to those of Examples 1 to 4 and the results shown in Table 1. From the above results, it is clear that the polyester produced according to the present invention can provide a film for capacitors that has excellent slip properties and electrical properties, especially dielectric breakdown voltage properties.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  Ca、Mg、Mn元玠を有する少なくずも䞀皮
の化合物ず元玠を有する少なくずも䞀皮の化合
物を䞋蚘割合で含有した溶液ヘむズが〜15で
あるポリ゚チレンテレフタレヌトに、平均粒子埄
が0.5〜4Όのケむ玠含有䞍掻性無機粒子を配合せ
しめお溶液ヘむズを20以䞋ずしたコンデンサヌ
フむルム甚ポリ゚チレンテレフタレヌト。 1.1≊≊1.4 ポリ゚チレンテレフタレヌト䞭のCa、
Mg、Mn元玠のモル数 ポリ゚チレンテレフタレヌト䞭の元玠のモ
ル数
[Scope of Claims] 1 Polyethylene terephthalate having a solution haze of 3 to 15% containing at least one compound containing Ca, Mg, and Mn elements and at least one compound containing P element in the following proportions, with an average particle size Polyethylene terephthalate for condenser films with a solution haze of 20% or less by blending silicon-containing inert inorganic particles with a particle diameter of 0.5 to 4ÎŒ. 1.1≩M/P≩1.4 (M: Ca in polyethylene terephthalate,
Number of moles of Mg and Mn elements P: Number of moles of p element in polyethylene terephthalate)
JP16346681A 1981-10-15 1981-10-15 Polyethylene terephthalate for condenser film Granted JPS5865744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16346681A JPS5865744A (en) 1981-10-15 1981-10-15 Polyethylene terephthalate for condenser film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16346681A JPS5865744A (en) 1981-10-15 1981-10-15 Polyethylene terephthalate for condenser film

Publications (2)

Publication Number Publication Date
JPS5865744A JPS5865744A (en) 1983-04-19
JPH023428B2 true JPH023428B2 (en) 1990-01-23

Family

ID=15774404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16346681A Granted JPS5865744A (en) 1981-10-15 1981-10-15 Polyethylene terephthalate for condenser film

Country Status (1)

Country Link
JP (1) JPS5865744A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770420B2 (en) * 1987-06-18 1995-07-31 ダむアホむルヘキスト株匏䌚瀟 Biaxially stretched polyester film for capacitors
JPH0776261B2 (en) * 1986-11-07 1995-08-16 東レ株匏䌚瀟 Method for producing polyester containing silica-alumina particles
JPS63227634A (en) * 1987-03-18 1988-09-21 Toray Ind Inc Film for heat-sensitive stencil printing base paper
JP2727650B2 (en) * 1989-05-12 1998-03-11 東レ株匏䌚瀟 Polyester composition for insulating film
JPH03181550A (en) * 1989-12-11 1991-08-07 Toray Ind Inc Polyester composition for insulation film

Also Published As

Publication number Publication date
JPS5865744A (en) 1983-04-19

Similar Documents

Publication Publication Date Title
US5023291A (en) Polyester composition
JPH023428B2 (en)
JP3278943B2 (en) Polyester and film
JP3693457B2 (en) Film for condenser
US5256471A (en) Composite polyester film
JP2590515B2 (en) Polyester composition and biaxially stretched polyester film comprising the same
JP3261737B2 (en) Polyester composition and polyester film
JP2015081271A (en) Flame retardant polyester film
JP2004002515A (en) Polyester resin, biaxially oriented film and insulating film for capacitor composed thereof
JP2001089582A (en) Polyester film for condenser
JP4101390B2 (en) Capacitor film
JPH0239855B2 (en)
JP3693456B2 (en) Film for condenser
JPH1192637A (en) Polyester composition and film therefrom
JP3452401B2 (en) Polyester film for food packaging
JP2001076536A (en) Electric insulation film
JPS6149763B2 (en)
JP2701540B2 (en) Composite polyester film
JP2001076961A (en) Biaxially orientated polyester film for capacitor
KR100271923B1 (en) Biaxially orientated polyester film for condenser
JPH0770420B2 (en) Biaxially stretched polyester film for capacitors
JPH0848008A (en) Laminated film and condenser using the same
JPH06313031A (en) Production of polyester
JPH10163064A (en) Polyester film for capacitor
JP2002275287A (en) Polyester film