JPH0231589Y2 - - Google Patents

Info

Publication number
JPH0231589Y2
JPH0231589Y2 JP14471486U JP14471486U JPH0231589Y2 JP H0231589 Y2 JPH0231589 Y2 JP H0231589Y2 JP 14471486 U JP14471486 U JP 14471486U JP 14471486 U JP14471486 U JP 14471486U JP H0231589 Y2 JPH0231589 Y2 JP H0231589Y2
Authority
JP
Japan
Prior art keywords
pressure
piston
valve
air
cylinder chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14471486U
Other languages
Japanese (ja)
Other versions
JPS6351166U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14471486U priority Critical patent/JPH0231589Y2/ja
Publication of JPS6351166U publication Critical patent/JPS6351166U/ja
Application granted granted Critical
Publication of JPH0231589Y2 publication Critical patent/JPH0231589Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Reciprocating Pumps (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、エア圧送源から供給されたエアを昇
圧して空圧装置等に供給する昇圧エア供給装置に
関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a pressurized air supply device that boosts the pressure of air supplied from an air pressure source and supplies it to a pneumatic device or the like.

従来の技術及び考案が解決しようとする問題点 このような昇圧エア供給装置は、シリンダ内を
中央部の隔壁により2つのシリンダ室に区画して
その各シリンダ室に夫々ピストンを嵌装し、前記
隔壁に形成した透孔にピストンロツドを気密に挿
通してそのピストンロツドの両端を夫々前記各ピ
ストンに連結し、前記各シリンダ室の前記ピスト
ンの内側の各空間を夫々逆止弁を介してエア圧送
源と吐出口とに接続し、前記各シリンダ室の前記
ピストンの外側の各空間を方向切換弁を介して前
記エア圧送源に接続し、その方向切換弁の切換え
操作により、前記シリンダ室の前記ピストンの外
側に両空間にエアを交互に供給してそのピストン
を一定ストロークずつ交互方向に移動させること
により、前記シリンダ室の前記ピストンの内側の
両空間内のエアを交互に昇圧して前記吐出口から
吐出するようになつているが、吐出口から吐出す
る昇圧エアの圧力を所定値に制限するのに、昇圧
エア供給装置とエア圧送源との間に減圧弁を介設
して昇圧エア供給装置に供給するエア圧を減圧す
るようにすると、シリンダのピストンの内側の空
間、すなわち昇圧室にも減圧されたエアが供給さ
れることとなり、昇圧効率及び出力流量が低下
し、エネルギー損失が大となる。このため、この
ような減圧弁の替わりに、二次圧が所定の値に達
するとシリンダ室のピストンの外側の空間へのエ
アの供給を遮断して二次圧を所定値以下に制限す
るパイロツト式調圧弁を介設し、昇圧室には圧送
源から供給されるエアを減圧せずにそのまま供給
する方式も用いられているが、この方式では、方
向切換弁によつてピストンの移動方向が切換わつ
て昇圧室の圧力が低下しても、逆止弁が閉じて出
口圧力は高い状態に保たれるため、パイロツト式
調圧弁の開口度が小さく、ピストンの移動方向が
切換わつた直後においては、昇圧側のシリンダ室
のピストンの外側の空間に供給されるエアの流量
が少ないため、ピストンの移動速度が遅く、昇圧
室の圧力が昇圧するのに時間が掛り、昇圧効率の
低下が避けられなかつた。
Problems to be Solved by the Prior Art and Ideas Such a pressurized air supply device divides the inside of the cylinder into two cylinder chambers by a partition wall in the center, and a piston is fitted into each cylinder chamber, respectively. A piston rod is airtightly inserted into a through hole formed in the partition wall, and both ends of the piston rod are connected to each of the pistons, and each space inside the piston in each cylinder chamber is connected to an air pressure source through a check valve. and a discharge port, and each space outside the piston in each cylinder chamber is connected to the air pressure supply source via a directional switching valve, and by switching the directional switching valve, the piston in the cylinder chamber By alternately supplying air to both spaces outside of the cylinder chamber and moving the pistons in alternate directions by constant strokes, the pressure of the air in both spaces inside the piston of the cylinder chamber is alternately increased to increase the pressure of the air inside the piston of the cylinder chamber. However, in order to limit the pressure of the pressurized air discharged from the discharge port to a predetermined value, a pressure reducing valve is inserted between the pressurized air supply device and the air pressure source to supply pressurized air. If the air pressure supplied to the device is reduced, the reduced pressure air will also be supplied to the space inside the piston of the cylinder, that is, the pressurization chamber, reducing the pressurization efficiency and output flow rate, resulting in large energy losses. becomes. For this reason, instead of such a pressure reducing valve, a pilot valve is used that, when the secondary pressure reaches a predetermined value, cuts off the air supply to the space outside the piston in the cylinder chamber to limit the secondary pressure to a predetermined value or less. A method is also used in which a type pressure regulating valve is installed to directly supply the air supplied from the pressure source to the pressurizing chamber without reducing the pressure. Even if the pressure in the pressurizing chamber decreases due to switching, the check valve closes and the outlet pressure remains high, so the opening degree of the pilot pressure regulating valve is small, and the pressure increases immediately after the piston movement direction is switched. Since the flow rate of air supplied to the space outside the piston in the cylinder chamber on the boosting side is small, the movement speed of the piston is slow, and it takes time for the pressure in the boosting chamber to increase, which prevents a decrease in boosting efficiency. I couldn't help it.

問題点を解決するための手段 本考案は上記問題点を解決するための手段とし
て、吐出口からのエアの吐出圧が所定の圧力に達
するとシリンダ室の両ピストンの外側の空間への
エアの供給を遮断して吐出圧を所定圧力以下に制
限するパイロツト式開閉弁のパイロツト圧の導入
口に、各シリンダ室のピストンの内側の両空間の
うちいずれか圧力の高い方の圧力を選択して出力
するゲート弁の出口圧力が作用するように接続し
た構成とした。
Means for Solving the Problems The present invention, as a means for solving the above-mentioned problems, has a system in which when the discharge pressure of air from the discharge port reaches a predetermined pressure, the air is discharged into the space outside both pistons in the cylinder chamber. Select the higher pressure of both spaces inside the piston of each cylinder chamber for the pilot pressure inlet of the pilot type on-off valve that cuts off the supply and limits the discharge pressure to a predetermined pressure or less. The configuration was such that the output pressure from the outlet of the gate valve acts on the connection.

考案の作用及び効果 本考案の昇圧エア供給装置は上記構成になり、
方向切換弁の切換えによりピストンの移動方向が
切換わつた直後には昇圧側であつたシリンダ室の
ピストンの外側の空間が大気に開放されてピスト
ンが移動することから、昇圧側であつたシリンダ
室のピストンの内側の空間の圧力が急速に低下
し、これにより、ピストンの移動方向が切換わる
とゲート弁の出口圧力が直ちに低下してパイロツ
ト式開閉弁の開度が急速に増大するのであつて、
このため、昇圧側に切換えられたシリンダ室のピ
ストンの外側の空間にはエア圧送源からのエアが
急速に流入してピストンが急速度で移動を開始
し、そのピストンの内側の空間の圧力が迅速に昇
圧されるのであり、昇圧効率が向上する効果があ
る。
Function and effect of the invention The pressurized air supply device of the invention has the above configuration,
Immediately after the direction of movement of the piston is switched by switching the directional control valve, the space outside the piston in the cylinder chamber that was on the pressure increasing side is opened to the atmosphere and the piston moves, so the cylinder chamber that was on the pressure increasing side The pressure in the space inside the piston rapidly decreases, and as a result, when the direction of movement of the piston is switched, the outlet pressure of the gate valve immediately decreases and the opening of the pilot-operated on-off valve rapidly increases. ,
Therefore, air from the air pressure supply source rapidly flows into the space outside the piston in the cylinder chamber switched to the pressure increasing side, and the piston begins to move rapidly, causing the pressure in the space inside the piston to increase. The pressure is increased quickly, and the boost efficiency is improved.

実施例 以下、本考案の一実施例を添付図面に基づいて
説明する。
Embodiment Hereinafter, an embodiment of the present invention will be described based on the accompanying drawings.

第1図において、1は中央部が隔壁2により仕
切られてその両側に夫々シリンダ室3a,3bが
画成されたシリンダであり、各シリンダ室3a,
3bに夫々嵌装されたピストン4a,4bが、隔
壁2の中央部の透孔5に摺動自由にかつ気密に挿
通したピストンロツド6の両端に夫々結合されて
互いに連結されており、隔壁2と各ピストン4
a,4bとの間の空間が夫々昇圧室7a,7bと
なつており、隔壁2のピストンロツド6の上下両
側には、夫々、両昇圧室7aと7bを連通する連
通路8,9が形成され、上側の連通路8の中央寄
りがシリンダ1の外面に開口した流入孔10に連
通しているとともに連通路8の両開口寄りには流
入孔10側への逆流を阻止する逆止弁11,11
が夫々介設され、また、下側の連通路9がその中
央部でシリンダ1の外面に開口した吐出孔12に
連通しているとともに連通路9の両開口寄りには
吐出孔12側からの逆流を阻止する逆止弁13,
13が夫々介設されており、シリンダ1の前記流
入孔10がエア圧送源14に接続されており、こ
のエア圧送源14にはパイロツト式の開閉弁15
がシリンダ1と並列に接続されており、この開閉
弁15は、エア圧送源14に接続された流入口1
6と吐出口17の間に設けられた弁口18を開閉
する弁体20の弁杆の上端が、パイロツト室に張
設され調圧ねじ19との間に装着されたばね22
の弾力により下方へ付勢されたダイヤフラム21
に係合されて、弁体20がばね22の弾力により
開弁方向へ付勢されており、パイロツト圧の導入
口23から導入されたパイロツト室内の圧力が所
定値に近ずくとダイヤフラム21がばね22の弾
力に抗して上動することにより弁体20による弁
口18の開度が小さくなり、ついには閉弁するも
のであつて、この開閉弁15の吐出口17が空圧
操作形の5ポート2位置の方向切換弁25を介し
て、シリンダ1の各シリンダ室3a,3bのピス
トン4a,4bの外側の空間に連通した供給口2
6a,26bに夫々接続されており、シリンダ1
の隔壁2の各ピストン4a,4bとの夫々の対応
面には前記連通路9の下方に、ピストン4a,4
bが夫々当接することにより切換信号を送出する
検出器31a,31bが夫々取付けられ、左側の
検出器31aからの切換信号によつて前記方向切
換弁25が図示の位置に切換えられ、また、右側
の検出器31bからの切換信号によつて方向切換
弁25が図示と反対の位置に切換えられるように
なつている。
In FIG. 1, reference numeral 1 denotes a cylinder whose central part is partitioned by a partition wall 2 and cylinder chambers 3a, 3b are defined on both sides of the cylinder, respectively.
Pistons 4a and 4b fitted in the partition wall 2 are connected to both ends of a piston rod 6 which is slidably and airtightly inserted into the through hole 5 in the center of the partition wall 2, and is connected to the partition wall 2. each piston 4
The spaces between the two pressurizing chambers 7a and 4b are pressurizing chambers 7a and 7b, respectively, and communicating passages 8 and 9 are formed on both upper and lower sides of the piston rod 6 of the partition wall 2, respectively, to communicate the pressurizing chambers 7a and 7b. The center of the upper communication passage 8 communicates with an inflow hole 10 opened on the outer surface of the cylinder 1, and check valves 11 are provided near both openings of the communication passage 8 to prevent backflow toward the inflow hole 10. 11
The lower communication passage 9 communicates with the discharge hole 12 opened on the outer surface of the cylinder 1 at the center thereof, and the communication passage 9 is connected to the discharge hole 12 from the discharge hole 12 side near both openings. a check valve 13 that prevents backflow;
The inflow hole 10 of the cylinder 1 is connected to an air pressure supply source 14, and the air pressure supply source 14 is equipped with a pilot type on-off valve 15.
is connected in parallel with the cylinder 1, and this on-off valve 15 is connected to the inlet 1 connected to the air pressure supply source 14.
The upper end of the valve rod of the valve body 20 that opens and closes the valve port 18 provided between the valve port 18 and the discharge port 17 is connected to a spring 22 that is stretched in the pilot chamber and installed between the pressure adjustment screw 19
The diaphragm 21 is urged downward by the elasticity of
The valve element 20 is urged in the valve opening direction by the elasticity of the spring 22, and when the pressure in the pilot chamber introduced from the pilot pressure inlet 23 approaches a predetermined value, the diaphragm 21 is pressed against the spring 22. By moving upward against the elasticity of the valve body 22, the degree of opening of the valve port 18 by the valve body 20 becomes smaller, and the valve finally closes. A supply port 2 communicating with the space outside the pistons 4a, 4b of each cylinder chamber 3a, 3b of the cylinder 1 via a directional switching valve 25 with 5 ports and 2 positions.
6a and 26b, respectively, and the cylinder 1
The pistons 4a, 4b are located below the communication path 9 on the respective surfaces of the partition wall 2 that correspond to the respective pistons 4a, 4b.
Detectors 31a and 31b are respectively attached, which send out a switching signal when the detectors 31a and 31b come into contact with each other. The directional control valve 25 is configured to be switched to a position opposite to that shown in the figure in response to a switching signal from the detector 31b.

そして、シリンダ1の隔壁2の前記連通路8の
上方には、この連通路8及びその下方の連通路9
と同様に、両昇圧室7aと7bに開口した通孔2
7が形成され、この通孔27の中央部にはゲート
弁30が介設されており、このゲート弁30は、
弁室32内に通孔27との各連通口を開閉する弁
球33が移動自在に嵌装されているとともに弁室
32に連通してシリンダ1の外面に開口した出力
孔28を有したものであつて、両昇圧室7a,7
bの間に圧力差があると高い方の圧力により弁球
33が圧力の低い方の連通口へ移動してこれを塞
ぐことにより、常に高い方の圧力が出力孔28に
出力されるようになつており、この出力孔28が
前記開閉弁15のパイロツト圧の導入口23に接
続されている。
Above the communication passage 8 of the partition wall 2 of the cylinder 1, there is a communication passage 8 and a communication passage 9 below the communication passage 8.
Similarly, the through hole 2 opened to both pressurizing chambers 7a and 7b
7 is formed, and a gate valve 30 is interposed in the center of this through hole 27.
A valve ball 33 that opens and closes each communication port with the through hole 27 is movably fitted in the valve chamber 32, and has an output hole 28 that communicates with the valve chamber 32 and opens on the outer surface of the cylinder 1. Both pressurizing chambers 7a, 7
If there is a pressure difference between the two ports, the higher pressure causes the valve ball 33 to move to the lower pressure communication port and block it, so that the higher pressure is always output to the output hole 28. This output hole 28 is connected to the pilot pressure inlet 23 of the on-off valve 15.

次に、本実施例の作用を説明する。 Next, the operation of this embodiment will be explained.

図において、方向切換弁25が図示の位置にあ
るときは、左側のシリンダ室3aのピストン4a
の外側の空間が大気に開放されるとともに右側の
シリンダ室3bのピストン4bの外側の空間が開
閉弁15の吐出口17に連通された状態となり、
開閉弁15のパイロツト室内の圧力が低い間はそ
の弁口18が開かれており、右側のシリンダ室3
bのピストン4bの外側の空間にエア圧送源14
からのエアが流入することから、その空間内のエ
アの圧力と左側の昇圧室7a内にエア圧送源14
から供給されるエアの圧力とにより両ピストン4
a,4bが右側の昇圧室7b内のエア圧力に打ち
勝つて左方へ移動し、右側の昇圧室7bから左側
の昇圧室6aへのエアの流通が両逆止弁11,1
3によつて阻止されることから、右側の昇圧室7
b内の圧力がピストン4a,4bの移動に伴つて
次第に昇圧されるのであつて、このとき、左側の
昇圧室7a内の圧力はエア圧送源14の圧送圧力
と同圧に保たれていることから、ゲート弁30の
出力孔28には高圧側である右側の昇圧室7bの
圧力が出力され、これにより、開閉弁15のパイ
ロツト室内の圧力が右側の昇圧室7bと同圧を保
ちつつ増大し、パイロツト室内の圧力が調圧ねじ
19により予め設定された圧力に近づくと開閉弁
15の弁口15の開度が小さくなり、右側のシリ
ンダ室3bのピストン4bの外側の空間へのエア
の供給量が絞られることから両ピストン4a,4
bの移動速度が低下し、これによつて、右側の昇
圧室7b内の圧力が設定圧力以上に昇圧するのが
阻止されてその設定圧力に保たれるのであり、シ
リンダ1の吐出口12からエアの吐出に伴つてピ
ストン4a,4bが左方へ移動して、右側のピス
トン4bが検出器31bに当接すると、この検出
器31bが切換信号を送出することにより方向切
換弁25が図示と反対の位置に切換わり、これに
より、それまで開閉弁15の吐出口17に接続さ
れていたシリンダ室3bの供給口26bが大気に
開放されるとともに左側のシリンダ室3aの供給
口26aが開閉弁15の吐出口17に接続され、
今度は両ピストン4a,4bが右方へ移動するこ
とによつて左側の昇圧室7a内のエアが昇圧され
るのであるが、方向切換弁25が切換わると同時
に右側のシリンダ室3bのピストン4bの右側の
空間の圧力が大気に開放されて両ピストン4a,
4bが右方へ急速に移動し、方向切換弁25が切
換わつた直後に右側の昇圧室7b内の圧力が左側
の昇圧室7a内の圧力と略平衡する圧力まで速や
かに低下するのであつて、これにより、ゲート弁
30の出口圧力も低下し、開閉弁15のパイロツ
ト室内の圧力が方向切換弁25の切換えと同時に
大きく低下することにより、弁体20がばね22
の弾力により押し下げられて弁口18が方向切換
弁25の切換えの直後に大きく開かれるのであ
り、これによつて、左側のシリンダ室3aのピス
トン4aの左側の空間には方向切換弁25が切換
わつたのち開閉弁15からエアが急速に供給さ
れ、両ピストン4a,4bが急速度で右方へ移動
することによつて、左側の昇圧室7a内の圧力が
短時間のうちに所定の圧力にまで昇圧されるので
あつて、そののち、シリンダ1の吐出口12から
のエアの吐出に伴つてピストン4a,4bが右方
へ移動し、左側のピストン4aが検出器31aに
当接すると、この検出器31aの送出する切換信
号によつて方向切換弁25が再び図示の位置に切
換わり、両ピストン4a,4bが左方へ移動し始
め、以後上記動作が繰り返されて吐出口12から
常に所定圧力の昇圧エアが吐出するのであり、本
実施例においては、方向切換弁25の切換えによ
つてピストン4a,4bの移動方向が反転したと
きに、ゲート弁30の作用によつて開閉弁15の
パイロツト室内の圧力が瞬間的に低下して弁口1
8が大きく開かれ、反転した後のピストン4a,
4bの移動速度が大きいため、昇圧室7a,7b
の昇圧効率が極めて高い。
In the figure, when the directional control valve 25 is in the illustrated position, the piston 4a of the left cylinder chamber 3a is
The space outside the piston 4b of the right cylinder chamber 3b is opened to the atmosphere, and the space outside the piston 4b of the right cylinder chamber 3b is communicated with the discharge port 17 of the on-off valve 15.
While the pressure in the pilot chamber of the on-off valve 15 is low, its valve port 18 is open, and the right cylinder chamber 3
An air pressure supply source 14 is provided in the space outside the piston 4b of
Since air flows in from the air pressure source 14, the pressure of the air in that space and the pressure increase chamber 7a on the left side are increased.
Both pistons 4
a, 4b overcome the air pressure in the right pressurizing chamber 7b and move to the left, and the flow of air from the right pressurizing chamber 7b to the left pressurizing chamber 6a is prevented by both check valves 11, 1.
3, the pressurization chamber 7 on the right side
The pressure in b is gradually increased as the pistons 4a and 4b move, and at this time, the pressure in the left pressure increasing chamber 7a is maintained at the same pressure as the pumping pressure of the air pumping source 14. Therefore, the pressure in the right pressurizing chamber 7b, which is the high pressure side, is output to the output hole 28 of the gate valve 30, and as a result, the pressure in the pilot chamber of the on-off valve 15 increases while maintaining the same pressure as the right pressurizing chamber 7b. However, when the pressure in the pilot chamber approaches the pressure preset by the pressure adjustment screw 19, the opening degree of the valve port 15 of the on-off valve 15 becomes smaller, and the air flows into the space outside the piston 4b of the right cylinder chamber 3b. Since the supply amount is restricted, both pistons 4a, 4
b's moving speed decreases, thereby preventing the pressure in the right pressurizing chamber 7b from rising above the set pressure and keeping it at the set pressure. When the pistons 4a and 4b move to the left as air is discharged, and the right piston 4b comes into contact with the detector 31b, the detector 31b sends out a switching signal, causing the directional switching valve 25 to move as shown in the figure. As a result, the supply port 26b of the cylinder chamber 3b, which had been connected to the discharge port 17 of the on-off valve 15, is opened to the atmosphere, and the supply port 26a of the left cylinder chamber 3a is switched to the on-off valve. connected to the discharge port 17 of 15,
This time, by moving both pistons 4a and 4b to the right, the pressure of the air in the left pressurizing chamber 7a is increased, but at the same time as the directional control valve 25 is switched, the piston 4b in the right cylinder chamber 3b is increased. The pressure in the space on the right side of is released to the atmosphere, and both pistons 4a,
4b rapidly moves to the right, and immediately after the directional control valve 25 is switched, the pressure in the right pressurizing chamber 7b quickly decreases to a pressure that is approximately in equilibrium with the pressure in the left pressurizing chamber 7a. As a result, the outlet pressure of the gate valve 30 also decreases, and the pressure in the pilot chamber of the on-off valve 15 decreases significantly at the same time as the directional control valve 25 is switched, so that the valve body 20 is moved by the spring 22.
Immediately after the directional switching valve 25 is switched, the valve port 18 is pushed down by the elastic force of After that, air is rapidly supplied from the on-off valve 15, and both pistons 4a and 4b rapidly move to the right, so that the pressure in the left pressurization chamber 7a reaches a predetermined pressure in a short time. After that, as air is discharged from the discharge port 12 of the cylinder 1, the pistons 4a and 4b move to the right, and when the left piston 4a contacts the detector 31a, The directional control valve 25 is again switched to the illustrated position by the switching signal sent by the detector 31a, and both pistons 4a and 4b begin to move to the left.The above operation is repeated and the discharge port 12 is constantly Pressurized air of a predetermined pressure is discharged, and in this embodiment, when the direction of movement of the pistons 4a, 4b is reversed by switching the direction switching valve 25, the opening/closing valve 15 is opened by the action of the gate valve 30. The pressure in the pilot chamber momentarily drops and valve port 1
8 is wide open and the piston 4a after being reversed,
Since the moving speed of 4b is high, pressurization chambers 7a and 7b
The boosting efficiency is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例の構成を示す断面図
である。 1……シリンダ、2……隔壁、3a,3b……
シリンダ室、4a,4b……ピストン、5……透
孔、6……ピストンロツド、11,13……逆止
弁、12……吐出口、14……エア圧送源、15
……パイロツト式の開閉弁、23……導入口、2
5……方向切換弁、30……ゲート弁。
FIG. 1 is a sectional view showing the structure of an embodiment of the present invention. 1... Cylinder, 2... Partition wall, 3a, 3b...
Cylinder chamber, 4a, 4b...Piston, 5...Through hole, 6...Piston rod, 11, 13...Check valve, 12...Discharge port, 14...Air pressure supply source, 15
... Pilot type on-off valve, 23 ... Inlet, 2
5... Directional switching valve, 30... Gate valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] シリンダ内を中央部の隔壁により2つのシリン
ダ室に区画して該各シリンダ室に夫々ピストンを
嵌装し、前記隔壁に形成した透孔にピストンロツ
ドを気密に挿通して該ピストンロツドの両端を
夫々前記各ピストンに連結し、前記各シリンダ室
の前記ピストンの内側の各空間を夫々逆止弁を介
してエア圧送源と吐出口とに接続し、前記各シリ
ンダ室の前記ピストンの外側の各空間を方向切換
弁を介して前記エア圧送源に接続し、該方向切換
弁の切換え操作により、前記シリンダ室の前記ピ
ストンの外側に両空間にエアを交互に供給して該
ピストンを一定ストロークずつ交互方向に移動さ
せることにより、前記シリンダ室の前記ピストン
の内側の両空間内のエアを交互に昇圧して前記吐
出口から吐出するようにした昇圧エア供給装置に
おいて、前記吐出口からのエアの吐出圧が所定の
圧力に達すると前記シリンダ室の前記両ピストン
の外側の空間へのエアの供給を遮断して前記吐出
圧を所定圧力以下に制限するパイロツト式開閉弁
のパイロツト圧の導入口に、前記各シリンダ室の
前記ピストンの内側の両空間のうちのいずれか圧
力の高い方の圧力を選択して出力するゲート弁の
出口圧力が作用するように接続したことを特徴と
する昇圧エア供給装置。
The interior of the cylinder is divided into two cylinder chambers by a partition wall in the center, a piston is fitted into each cylinder chamber, and a piston rod is hermetically inserted into a through hole formed in the partition wall, and both ends of the piston rod are inserted into the two cylinder chambers. connected to each piston, each space inside the piston in each cylinder chamber is connected to an air pressure supply source and a discharge port via a check valve, and each space outside the piston in each cylinder chamber is connected to an air pressure source and a discharge port through a check valve. It is connected to the air pressure supply source through a directional switching valve, and by switching the directional switching valve, air is alternately supplied to both spaces outside the piston in the cylinder chamber to move the piston in alternating directions by constant strokes. In the pressurized air supply device, the air in both spaces inside the piston of the cylinder chamber is alternately pressurized and discharged from the discharge port by moving the piston to When the pressure reaches a predetermined pressure, the air supply to the space outside the pistons in the cylinder chamber is cut off to limit the discharge pressure to a predetermined pressure or less. A pressurized air supply device characterized in that the pressurized air supply device is connected so as to be affected by the outlet pressure of a gate valve that selects and outputs the higher pressure of both spaces inside the piston in each cylinder chamber.
JP14471486U 1986-09-19 1986-09-19 Expired JPH0231589Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14471486U JPH0231589Y2 (en) 1986-09-19 1986-09-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14471486U JPH0231589Y2 (en) 1986-09-19 1986-09-19

Publications (2)

Publication Number Publication Date
JPS6351166U JPS6351166U (en) 1988-04-06
JPH0231589Y2 true JPH0231589Y2 (en) 1990-08-27

Family

ID=31055574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14471486U Expired JPH0231589Y2 (en) 1986-09-19 1986-09-19

Country Status (1)

Country Link
JP (1) JPH0231589Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084260A (en) * 2016-11-22 2018-05-31 Smc株式会社 Booster

Also Published As

Publication number Publication date
JPS6351166U (en) 1988-04-06

Similar Documents

Publication Publication Date Title
KR930007766B1 (en) Valve manifold stacking base
US4741247A (en) Pneumatic actuator apparatus
US4050477A (en) Valve
US4279271A (en) Pressure regulator and flow control valve with pre-exhaust
US4161308A (en) Switching valve assembly for fluid motor-driven injector pump
US3614965A (en) Five-port bistable pneumatic valve unit
JPH0231589Y2 (en)
US4102609A (en) Valve control system for air powered vacuum pump
US4608910A (en) Compressed fluid saving device
JP2001282363A (en) Pressure reducing valve
JPH0788911B2 (en) Valve base with integrated flow controller
SE7614481L (en) CONTROL VALVE
JPH0341123Y2 (en)
JPH0434283Y2 (en)
JPS6114647Y2 (en)
JPH0326308Y2 (en)
JPH0447432Y2 (en)
JPS63243502A (en) Air booster
RU2216031C2 (en) Liquid flow governor
JPH02173369A (en) Capacity control device for gas compressor
JPS59170503A (en) Speed controller for hydraulic driven equipment
JP2591498Y2 (en) Pressure fluid driven pump
JP2547407Y2 (en) Diaphragm type pump with speed control mechanism
JPH0396669A (en) Airhydro-output pressure control pump
SU1062650A1 (en) Device for governing liquid flow