JPH02312286A - Manufacture of photoelectric transducer - Google Patents

Manufacture of photoelectric transducer

Info

Publication number
JPH02312286A
JPH02312286A JP1134410A JP13441089A JPH02312286A JP H02312286 A JPH02312286 A JP H02312286A JP 1134410 A JP1134410 A JP 1134410A JP 13441089 A JP13441089 A JP 13441089A JP H02312286 A JPH02312286 A JP H02312286A
Authority
JP
Japan
Prior art keywords
thin film
type silicon
board
reaction tank
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1134410A
Other languages
Japanese (ja)
Inventor
Toshio Hama
敏夫 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1134410A priority Critical patent/JPH02312286A/en
Publication of JPH02312286A publication Critical patent/JPH02312286A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a photoelectric conversion element excellent in junction property by a method wherein dopants are restrained from mutually diffusing when semiconductor fine powdered bodies of different conductivity types are successively deposited and formed into crystal thin films. CONSTITUTION:A board 3 is placed on a base support table 2 inside a reaction tank, and raw material gas and additive gas are introduced through a raw material gas introduction tube 4 and an additive gas introduction tube 5 respectively. The gases concerned are blown off into the reaction tank 1 from a torch 6 to deposit P-type silicon powdered bodies on the board 3, laser rays are introduced from a first layer oscillator 8 into the reaction tank 1 to be incident on the board 3 through a reflective mirror 10 to form a P-type silicon crystal thin film on the surface of the board 3. Then, the same as above, the raw material gas and the additive gas are introduced into the reaction tank 1, N-type silicon fine powdered bodies are deposited on the board 3, laser rays are introduced into the reaction tank 1 from a second laser oscillator 11 to be incident onto the board 3 through the intermediary of a reflective mirror 13 to anneal the N-type silicon powdered bodies for the crystallization of a thin film. Therefore, the dopant of phosphorus of the N-type silicon thin film never diffuses deeply into the P-type silicon thin film. By this setup, an excellent junction property can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、異なる導電形の結晶半導体薄膜を積層してな
る光電変換素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a photoelectric conversion element formed by laminating crystalline semiconductor thin films of different conductivity types.

〔従来の技術〕[Conventional technology]

光電変換素子に用いられる半導体薄膜には、プラズマC
VD法により容易に形成できる非晶質シリコン薄膜が用
いられていた。非晶質シリコン薄膜は、真空排気された
反応室中でヒータを内蔵した基板装着用支持台と対向電
極との間に高周波電界を印加して、モノシランを主体と
する原料ガスを分解してプラズマ状とし、ヒータによっ
て200〜300℃に加熱された基板上に成膜する。し
かし、上記の装置での非晶質シリコン微粉体の形成速度
は1秒当たり高々1o人に過ぎず、容易にスルーブツト
を揚げることができない、また、反応室の基礎真空度も
10−’Torr程度が要求されるため、真空排気系統
を備える必要もあり、装置の設備費も高くなるため、非
晶質太陽電池の製造コストの低下が余り期待できないと
いう欠点があった。そのうえ、非晶質シリコン薄膜を用
いた太陽電池は、単結晶あるいは多結晶シリコン薄膜を
用いた太陽電池に比して変換効率が低いという欠点をも
っている。
Plasma C is used for semiconductor thin films used in photoelectric conversion elements.
An amorphous silicon thin film that can be easily formed by the VD method has been used. Amorphous silicon thin films are produced by applying a high-frequency electric field between a substrate mounting support with a built-in heater and a counter electrode in an evacuated reaction chamber to decompose the raw material gas, which mainly consists of monosilane, and generate plasma. The film is formed on a substrate heated to 200 to 300° C. by a heater. However, the formation rate of amorphous silicon fine powder in the above-mentioned apparatus is only 1 micron per second, making it impossible to easily fry the throughput, and the basic vacuum level of the reaction chamber is about 10-'Torr. Because of this requirement, it is necessary to provide a vacuum exhaust system, and the equipment cost of the device increases, so there is a drawback that it is difficult to expect much reduction in the manufacturing cost of amorphous solar cells. Moreover, solar cells using amorphous silicon thin films have a drawback of lower conversion efficiency than solar cells using single-crystalline or polycrystalline silicon thin films.

一方、単結晶シリコンの材料費を低くするために薄い結
晶を形成する方法としてリボン結晶、フィルム結晶など
の開発が行われているが大面積化は龍しく、多結晶シリ
コン薄膜も低い製造コストでは得られない。
On the other hand, ribbon crystals, film crystals, etc. are being developed as methods for forming thin crystals in order to lower the material cost of single-crystal silicon. I can't get it.

これに対し、シリコン微粉体を生成してこれを基板面上
に堆積する方法では、11rm/分の高速堆積が可能で
あり、大面積化も容易であるという利点をもつ、しかし
、堆積した微粉体の層は1000℃近くの熱を加えなけ
れば結晶薄膜化せず、製造プロセスが容易でないという
欠点があった。この欠点を除くため、本出願人の特許出
願にかかる特願昭63−57555号明細書には、基板
上に堆積した非晶質半導体微粒子の層にレーザ光を照射
して結晶化薄膜を形成する方法が、また特願昭63−7
2949号明細書には微粉体を基板上に堆積させつつレ
ーザ光を照射して結晶化薄膜を形成する方法が記載され
ている。
On the other hand, the method of generating silicon fine powder and depositing it on the substrate surface has the advantage that high-speed deposition of 11 rm/min is possible and it is easy to increase the area. The body layer had the disadvantage that it could not be made into a thin crystalline film unless it was heated to a temperature close to 1000°C, and the manufacturing process was not easy. In order to eliminate this drawback, in Japanese Patent Application No. 63-57555 filed by the present applicant, a layer of amorphous semiconductor particles deposited on a substrate is irradiated with laser light to form a crystallized thin film. The method of
No. 2949 describes a method of depositing fine powder on a substrate and irradiating it with laser light to form a crystallized thin film.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、特願昭63.−57555号明細書に記
載されているように、ドーパントを切り換えてp形、n
形徽粉体層を順次堆積後、レーザ光を照射して結晶化を
行うと、接合面でのドーパントの相互拡散が起こるため
、良好なpn接合が得られないという欠点が明らかとな
った。また、特願昭63−72949号明細書に述べら
れている方法は、均質な結晶化薄膜を得る点では優れて
いるが、接合界面でのドーパントの相互拡散が必然的に
生ずるため、得られた光電変換素子の特性は良好なもの
が得られなかった。
However, the patent application of 1983. -57555, by switching the dopants to p-type and n-type.
It has become clear that when shaped powder layers are sequentially deposited and then crystallized by irradiation with laser light, interdiffusion of dopants occurs at the bonding surface, making it impossible to obtain a good pn junction. Furthermore, although the method described in Japanese Patent Application No. 63-72949 is excellent in obtaining a homogeneous crystallized thin film, it is not possible to obtain a homogeneous crystallized thin film because interdiffusion of dopants inevitably occurs at the bonding interface. However, good characteristics of the photoelectric conversion element could not be obtained.

本発明の目的は、異なる導電形の半導体微粉体を順次堆
積、結晶薄膜化する際に、ドーパントの相互拡散を抑止
し、良好な接合特性を得ることのできる光電変換素子の
製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a photoelectric conversion element that can suppress mutual diffusion of dopants and obtain good bonding properties when semiconductor fine powders of different conductivity types are sequentially deposited to form a crystal thin film. There is a particular thing.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するこめに、本発明の方法は、基板上
に第−導電形の半導体微粉体の堆積およびレーザ光の照
射により第−導電形の結晶化薄膜を形成し、次いでその
薄膜の上に第二導電形の半導体微粉体を所定の膜厚に堆
積後、レーザ光を照射して第二導電形の結晶化薄膜を形
成し、その際表面からの熱拡散距離を制御するものとす
る。
In order to achieve the above object, the method of the present invention involves forming a crystallized thin film of the first conductivity type on a substrate by depositing semiconductor fine powder of the first conductivity type and irradiating the laser beam, and then forming a crystallized thin film of the first conductivity type. After depositing semiconductor fine powder of the second conductivity type to a predetermined film thickness, a laser beam is irradiated to form a crystallized thin film of the second conductivity type, and at this time, the thermal diffusion distance from the surface is controlled. do.

〔作用〕[Effect]

第−導電形の結晶化薄膜を形成後、第二導電形の半導体
微粉体を堆積し、レーザ光を表面からの熱拡散距離を制
御して照射し、堆積微粉体を結晶薄膜化すれば、第−導
電形の薄膜と第二導電形の薄膜の界面におけるドーパン
トの相互拡散は著しく低減され、良好な特性の光電変換
素子に必要な接合を形成することができる。
After forming a crystallized thin film of the first conductivity type, deposit a semiconductor fine powder of the second conductivity type, and irradiate the deposited fine powder with a laser beam while controlling the thermal diffusion distance from the surface to turn the deposited fine powder into a crystalline thin film. Interdiffusion of dopants at the interface between the thin film of the first conductivity type and the thin film of the second conductivity type is significantly reduced, and a junction necessary for a photoelectric conversion element with good characteristics can be formed.

〔実施例〕〔Example〕

第1図は本発明の一実施例に用いる半導体薄膜生成装置
を示す、この装置を用いて次のように光電変換素子を製
造した1反応槽1内の透明な基板支持台上にlQcmX
IQcmの石英ガラス基板3を載置し、原料ガス導入管
4から原料ガスとして5ideガスを605CCM、付
加ガス導入管5から付加ガスとしてclKガスを400
5CCM、Bg)Itガスを63CCM、 H!ガスを
5005CCM導入し、トーチ6から反応槽内へ吹き出
し、基板3上に向かうシリコン微粉体流7を生成し、堆
積速度1.5 n1分で100Qの厚さにp形シリコン
微粉体を堆積した。このとき、反応槽1の外部に設置さ
れた、比較的低出力のCO,レーザあるいはN+1YA
Gレーザを用いる第一のレーザ発振器8から射出された
エネルギ密度1パルス当たり0.2〜0.5J/−のレ
ーザ光を窓9を通して反応槽1の内部に導入し、Xミラ
ー、Yミラーとして構成された反射ミラー10を介して
基板3のトーチ6と反対側の面から入射してp形のシリ
コン結晶薄膜を基板面上に形成した。このとき、余剰微
粉体は排ガス処理装置14で処理される。
FIG. 1 shows a semiconductor thin film production apparatus used in one embodiment of the present invention. A photoelectric conversion element was manufactured using this apparatus as follows.
A quartz glass substrate 3 of IQcm is mounted, 605 CCM of 5ide gas is supplied as a raw material gas from the raw material gas introduction pipe 4, and 405 CCM of clK gas is supplied as an additional gas from the additional gas introduction pipe 5.
5CCM, Bg) It gas to 63CCM, H! 5005 CCM of gas was introduced and blown out from the torch 6 into the reaction tank to generate a silicon fine powder flow 7 directed onto the substrate 3, and p-type silicon fine powder was deposited to a thickness of 100Q at a deposition rate of 1.5 n1 min. . At this time, a relatively low-power CO, laser, or N+1YA laser installed outside the reaction tank 1 is used.
Laser light with an energy density of 0.2 to 0.5 J/- per pulse is emitted from a first laser oscillator 8 using a G laser and is introduced into the reaction tank 1 through a window 9 to serve as an X mirror and a Y mirror. A p-type silicon crystal thin film was formed on the substrate surface by entering the substrate 3 from the surface opposite to the torch 6 through the structured reflecting mirror 10. At this time, the excess fine powder is treated by the exhaust gas treatment device 14.

次にB、H,ガスの代わりにPH,ガスを65CCM導
入する以外は同様の原料ガス、付加ガスを導入し、n形
のシリコン微粉体を堆積速度1.6n/分で2−の厚さ
に堆積した。この後、反応槽1の外部に設置された、例
えばルビーレーザ、 Arレーザ、Crレーザ等が用い
られる第二のレーザ発振器11から射出されたパルス幅
50nsec、エネルギ密度10’ W/−のレーザ光
を窓12を通して反応槽1の内部に導入し、回転可能な
反射ミラー13によりn形のシリコン微粉体の堆積面と
同じ面側から照射して微粉体をアニールし、薄膜結晶化
を行った。このときのn形シリコン微粉体の表面温度は
1000℃以上、熱拡散距離は2μであり、n形シリコ
ン![のドーパントのりんはp形シリコン薄膜内に深く
拡散することなく、良好なpn接合を形成できた。n形
シリコン薄膜のレーザアニールは、レーザ光の吸収係数
とアニールされる膜厚との関係から、波長0.5μ前後
のレーザ光を用いるのが有効であった。
Next, the same raw material gases and additional gases were introduced except that 65 CCM of PH gas was introduced instead of B, H, and gases, and n-type silicon fine powder was deposited at a deposition rate of 1.6 n/min to a thickness of 2-. was deposited on. After that, a laser beam with a pulse width of 50 nsec and an energy density of 10' W/- is emitted from a second laser oscillator 11 installed outside the reaction tank 1 and using, for example, a ruby laser, an Ar laser, a Cr laser, etc. was introduced into the reaction tank 1 through the window 12, and irradiated from the same side as the deposition surface of the n-type silicon fine powder using the rotatable reflection mirror 13 to anneal the fine powder and crystallize a thin film. At this time, the surface temperature of the n-type silicon fine powder was over 1000°C, the thermal diffusion distance was 2μ, and the n-type silicon fine powder! The phosphorous dopant in [ was able to form a good pn junction without being diffused deeply into the p-type silicon thin film. For laser annealing of n-type silicon thin films, it has been effective to use laser light with a wavelength of about 0.5 μm from the relationship between the absorption coefficient of the laser light and the thickness of the film to be annealed.

なお、原料ガスとしてSIH#の代わりに5iCZ 4
、ドーパントガスとしてPHs、BxHiの代わりにp
Cl、。
In addition, 5iCZ 4 was used instead of SIH# as the raw material gas.
, PHs as dopant gas, p instead of BxHi
Cl.

BClxを用いてもよい、また、基板上に先に堆積され
る微粉体の結晶薄膜化は、堆積させながら行うのではな
く、堆積後のレーザ光照射で行ってもよい。
BClx may be used, and the crystal thinning of the fine powder deposited on the substrate first may be performed by irradiation with laser light after the deposition, instead of being performed while the powder is being deposited.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、基板上への第−導電形の半導体微粉体
の堆積およびレーザ照射により、第−導電形の結晶化薄
膜を形成し、その上に第二導電形の半導体微粉体を堆積
したのち、前に形成した第−導電形の結晶化薄膜との間
にドーパントの相互拡散が起きないように表面からの熱
拡散距離を制御してレーザアニールを行い、第二導電形
の結晶化薄膜を形成することにより、両結晶薄膜の間で
良好なpn接合の形成を高速に行うことができ、特性良
好な光電変換素子を安価に製造することができた。
According to the present invention, a crystallized thin film of a first conductivity type is formed by depositing semiconductor fine powder of a second conductivity type on a substrate and laser irradiation, and semiconductor fine powder of a second conductivity type is deposited thereon. After that, laser annealing is performed by controlling the thermal diffusion distance from the surface to prevent interdiffusion of the dopant with the previously formed crystallized thin film of the first conductivity type, thereby crystallizing the second conductivity type. By forming the thin film, a good pn junction could be formed quickly between both crystal thin films, and a photoelectric conversion element with good characteristics could be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に用いる半導体薄膜生成装置
の断面図である。 1:反応槽、2:基板支持台、3:石英ガラス基板、4
:原料ガス導入管、5:付加ガス導入管、6;トーチ、
7:シリコン微粉体流、8:第一レーザ発振器、11:
第二レーザ発振器。 でゝ6、
FIG. 1 is a sectional view of a semiconductor thin film production apparatus used in an embodiment of the present invention. 1: Reaction tank, 2: Substrate support stand, 3: Quartz glass substrate, 4
: Raw material gas introduction pipe, 5: Additional gas introduction pipe, 6; Torch,
7: Silicon fine powder flow, 8: First laser oscillator, 11:
Second laser oscillator. De6,

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に第一導電形の半導体微粉体の堆積および
レーザ光の照射により第一導電形の結晶化薄膜を形成し
、次いでその薄膜の上に第二導電形の半導体微粉体を所
定の膜厚に堆積後、レーザ光を照射して第二導電形の結
晶化薄膜を形成し、その際表面からの熱拡散距離を制御
することを特徴とする光電変換素子の製造方法。
(1) A crystallized thin film of the first conductivity type is formed by depositing semiconductor fine powder of the first conductivity type on a substrate and irradiation with laser light, and then a predetermined semiconductor fine powder of the second conductivity type is deposited on the thin film. 1. A method for manufacturing a photoelectric conversion element, which comprises depositing the crystallized thin film of the second conductivity type by irradiating the crystallized thin film with laser light, and controlling the distance of heat diffusion from the surface at this time.
JP1134410A 1989-05-26 1989-05-26 Manufacture of photoelectric transducer Pending JPH02312286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1134410A JPH02312286A (en) 1989-05-26 1989-05-26 Manufacture of photoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1134410A JPH02312286A (en) 1989-05-26 1989-05-26 Manufacture of photoelectric transducer

Publications (1)

Publication Number Publication Date
JPH02312286A true JPH02312286A (en) 1990-12-27

Family

ID=15127733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1134410A Pending JPH02312286A (en) 1989-05-26 1989-05-26 Manufacture of photoelectric transducer

Country Status (1)

Country Link
JP (1) JPH02312286A (en)

Similar Documents

Publication Publication Date Title
US5409867A (en) Method of producing polycrystalline semiconductor thin film
JPS59226174A (en) Locally crystallized amorphous growth
JPH0281424A (en) Manufacture of polycrystalline silicon thin film
JPH02258689A (en) Method for forming crystalline thin film
Bäuerle Laser-induced chemical vapor deposition
TWI484653B (en) Method of fabricating solar cell using microwave and apparatus for the same
JPH02312286A (en) Manufacture of photoelectric transducer
JPH0692280B2 (en) Crystal thin film manufacturing method
JPH0324717A (en) Manufacture of single crystal thin film
JPH09312258A (en) Polycrystal silicon thin film laminate, its manufacture and silicon thin film solar cell
JP4289018B2 (en) Method for manufacturing photovoltaic power generation element
JPH01244609A (en) Production of semiconductor thin film
JP2698363B2 (en) Manufacturing method of polycrystalline silicon thin film
JPH01231315A (en) Device for manufacturing crystal semiconductor thin-film
JP2001326177A (en) Crystalline silicon semiconductor device and method of manufacturing
JPS6149392B2 (en)
JPS63152177A (en) Manufacture of solar cell
JPH0210719A (en) Manufacture of polycrystalline layer having rough crystal structure for thin film semiconductor device
JPS5935016A (en) Preparation of hydrogen-containing silicon layer
JP2734474B2 (en) Method for producing amorphous silicon-based thin film
JPS61145818A (en) Heat processing method for semiconductor thin film
JP2517705B2 (en) Selective vapor deposition method for thin films
JPS6126775A (en) Formation of accumulated film
JPS62291908A (en) Polycrystaline silicon thin film and manufacture of the same
JPS6480020A (en) Manufacture of silicon thin film