JPH02308548A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02308548A
JPH02308548A JP1128641A JP12864189A JPH02308548A JP H02308548 A JPH02308548 A JP H02308548A JP 1128641 A JP1128641 A JP 1128641A JP 12864189 A JP12864189 A JP 12864189A JP H02308548 A JPH02308548 A JP H02308548A
Authority
JP
Japan
Prior art keywords
region
regions
island
type
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1128641A
Other languages
Japanese (ja)
Other versions
JP2567472B2 (en
Inventor
Teruyoshi Mihara
輝儀 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1128641A priority Critical patent/JP2567472B2/en
Priority to DE19904016695 priority patent/DE4016695C2/en
Publication of JPH02308548A publication Critical patent/JPH02308548A/en
Priority to US07/762,264 priority patent/US5212109A/en
Application granted granted Critical
Publication of JP2567472B2 publication Critical patent/JP2567472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0928Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76283Lateral isolation by refilling of trenches with dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To facilitate formation of island regions for element isolation without using an epitaxial growth method by a method wherein the island regions are formed separately from a semiconductor substrate by etching and the island regions are surrounded by buried regions made of polycrystalline or amorphous semiconductor material. CONSTITUTION:Parts of the main surface side of an n-type Si substrate 1 are completely separated from the substrate 1 to form a plurality of island regions, i.e., a p-type island region 2 and n-type island regions 3 and 4. Polycrystalline Si or amorphous Si is buried between the substrate 1 and the respective regions 2-4 to form buried regions 5 and 6. The conductivity type of the regions 5 and 6 is p-type and the regions 5 and 6 are connected to a low potential point. The regions 3 and 4 are elastically isolated from the regions 5 and 6 by a reverse bias applied to a p-n junction. As the region 2 and the regions 5 and 6 have a substrate potential (low potential) in common, no isolation is provided between the region 2 and the region 5 and 6 by a p-n junction. With this constitution, the respective regions 2-4 can be formed without using an epitaxial growth method. Further, as the regions 5 and 6 are made of polycrystalline Si or amorphous Si, latchup can be avoided.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、新規なアイソレーション法を施した半導体
装置に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor device using a novel isolation method.

(従来の技術) ICでは集積された各素子が、その素子同士の間で相互
干渉をもたないように、電気的に分離される。
(Prior Art) In an IC, each integrated element is electrically isolated so that there is no mutual interference between the elements.

第8図は、このようなアイソレーション法の施された第
1の従来例を示しており、自己分離法が用いられたCM
O5の例を示している。同図中、101はn形基板であ
り、その主面には、p+ソース領域102、p+ ドレ
イン領域103、ゲート酸化膜104及びゲート電極1
05等によりpチャネルMO3FET (以下、pMO
3のように云う)106が形成され、また、pウェル1
07内にはn1ソース領域108、n“ ドレイン領域
109、ゲート酸化111110及びゲート電極111
等によりnMO3112が形成され、この9MOs10
6及びnMOs112によりCMO8が構成されている
。113はフィールド酸化膜、114は絶縁膜である。
Figure 8 shows a first conventional example in which such an isolation method is applied, and shows a CM using the self-isolation method.
An example of O5 is shown. In the figure, 101 is an n-type substrate, and its main surface includes a p+ source region 102, a p+ drain region 103, a gate oxide film 104, and a gate electrode 1.
p-channel MO3FET (hereinafter referred to as pMO
3) 106 is formed, and p-well 1
07 includes an n1 source region 108, an n" drain region 109, a gate oxide 111110 and a gate electrode 111.
etc., nMO3112 is formed, and this 9MOs10
6 and nMOs 112 constitute CMO8. 113 is a field oxide film, and 114 is an insulating film.

そして、n形基板101が電源VDD  (>0)に接
続され、pウェル107が低電位点に接続されてpMO
5106及びnMO8112は、それぞれ電気的に独立
して動作するようになっている。
Then, the n-type substrate 101 is connected to the power supply VDD (>0), the p-well 107 is connected to the low potential point, and the pMO
5106 and nMO8112 are designed to operate electrically independently.

しかしながら、このようなCMO3構造では、基板内に
p”  (102)−n (101)−E)(107)
−n”  (108)からなる寄生サイリスタが形成さ
れてラッチアップが起き易い。
However, in such a CMO3 structure, p” (102)-n (101)-E)(107)
A parasitic thyristor consisting of -n'' (108) is formed and latch-up is likely to occur.

第9図は、第2の従来例を示しており、pn接合による
接合分離法が用いられたバイポーラICの例を示してい
る。同図(A)に示すように、まずp形基板201の上
にn形エピタキシャル層202が形成され、そのn形エ
ピタキシャル層202にp形基板201に達するように
p+分離拡散領域203が施されてn形の島領域204
が形成されている。同図(B)に示すように、n形の島
領域204には、そのn形の島領域204をコレクタ領
域としてp形ベース領域及びn+エミッタ領域によりn
pn )ランジスタ205が形成され、また他の島領域
204には、そのn形の島領域204をベース領域とし
てp+エミッタ領域及びp+コレクタ領域によりpnp
)ランジスタ206が形成されている。207は、p形
基板201に予め拡散形成されるn+埋込層である。
FIG. 9 shows a second conventional example, and shows an example of a bipolar IC in which a junction separation method using a pn junction is used. As shown in FIG. 2A, first, an n-type epitaxial layer 202 is formed on a p-type substrate 201, and a p+ isolation diffusion region 203 is formed on the n-type epitaxial layer 202 so as to reach the p-type substrate 201. n-shaped island area 204
is formed. As shown in the figure (B), the n-type island region 204 has an n-type base region and an n+ emitter region, with the n-type island region 204 as a collector region.
A pn transistor 205 is formed, and a pnp transistor 205 is formed in the other island region 204, with the n-type island region 204 as a base region and a p+ emitter region and a p+ collector region.
) A transistor 206 is formed. 207 is an n+ buried layer which is diffused and formed in the p-type substrate 201 in advance.

そして、p形基板201が低電位点に接続されることに
より、各島領域204が電気的に分離され、npnトラ
ンジスタ205及びpnp t−ランジスタ206が、
それぞれ独立して動作するようになっている。
Then, by connecting the p-type substrate 201 to a low potential point, each island region 204 is electrically isolated, and the npn transistor 205 and pnp t-transistor 206 are
Each one operates independently.

しかしながら、このような接合分離法では、エピタキシ
ャル成長法を必須とするため、プロセスコストが高くな
ってチップコストの上昇を招いていた。
However, since such a junction isolation method requires an epitaxial growth method, the process cost becomes high, leading to an increase in chip cost.

第1O図は、第3の従来例を示しており、絶縁膜による
誘電体分離法が用いられたものを示している。同図中、
301は多結晶Si等からなる支持基板であり、支持基
板301上には、5i02膜からなる絶縁膜302によ
り、それぞれ誘電体分離されたn形の島領域303が形
成されている。
FIG. 1O shows a third conventional example, in which a dielectric isolation method using an insulating film is used. In the same figure,
Reference numeral 301 denotes a supporting substrate made of polycrystalline Si or the like, and on the supporting substrate 301, n-type island regions 303 are formed which are dielectrically isolated from each other by an insulating film 302 made of a 5i02 film.

n形の島領域303には、そのn形の島領域303をコ
レクタ領域として、p形ベース領域及びn+エミッタ領
域等によりnpn)ランジスタ304が形成されている
An npn transistor 304 is formed in the n-type island region 303 by using the n-type island region 303 as a collector region, a p-type base region, an n+ emitter region, and the like.

しかしながら、このような誘電体分離法では、各島領域
303が絶縁膜302を用いて分離されているので放熱
性が悪く、サージ電圧や静電気による破壊耐量が低い。
However, in such a dielectric isolation method, since each island region 303 is separated using the insulating film 302, heat dissipation is poor and breakdown resistance due to surge voltage and static electricity is low.

(発明が解決しようとする課題) 自己分離法が用いられた第1の従来例では、基板内にp
”−n−p−n“の寄生サイリスタが形成されてラッチ
アップが起き易いという問題があった。
(Problems to be Solved by the Invention) In the first conventional example in which the self-separation method was used, p
There is a problem in that a "-n-p-n" parasitic thyristor is formed and latch-up is likely to occur.

接合分離法が用いられた第2の従来例では、エピタキシ
ャル成長法を必須とするため、プロセスコストが高くな
り、ひいてはチップコストが高くなるという問題があっ
た。
In the second conventional example in which the junction separation method is used, since the epitaxial growth method is essential, there is a problem that the process cost becomes high, and the chip cost becomes high.

また、誘電体分離法が用いられた第3の従来例では、各
島領域が絶縁膜を用いて分離されているため、放熱性が
悪く、サージ電圧や静電気による破壊耐量が低いという
問題があった。
In addition, in the third conventional example in which the dielectric separation method is used, each island region is separated using an insulating film, which causes problems such as poor heat dissipation and low breakdown resistance due to surge voltage and static electricity. Ta.

そこで、この発明は、エピタキシャル成長法を用いずに
素子分離用の島領域を形成することができてチップコス
トを低減することができ、また島領域内の素子と半導体
基体上の素子或いは他の島領域内の素子との間のラッチ
アップ等の寄生動作を抑えることダでき、さらには放熱
性がよく、サージ電圧や静電気による破壊耐量を高める
ことのできる半導体装置を提供することを目的とする。
Therefore, the present invention makes it possible to form an island region for element isolation without using epitaxial growth, thereby reducing chip cost, and to connect the elements in the island region to the elements on the semiconductor substrate or other islands. It is an object of the present invention to provide a semiconductor device that can suppress parasitic operations such as latch-up with elements within a region, has good heat dissipation, and can increase breakdown resistance due to surge voltage and static electricity.

[発明の構成] (課題を解決するための手段) 上記課題を解決するために、第1の発明は、半導体基体
の主面にエツチングにより当該半導体基体から切離して
形成された島領域と、該島領域と前記半導体基体領域と
の間に埋込まれた多結晶又は非晶質の半導体からなる埋
込領域とを有することを要旨とする。また、前記埋込領
域は、前記島領域又は半導体基体とは逆の導電形である
ことも第1の発明の要旨として包含する。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, a first invention provides an island region formed on the main surface of a semiconductor substrate by being separated from the semiconductor substrate by etching; The gist thereof is to have a buried region made of a polycrystalline or amorphous semiconductor buried between the island region and the semiconductor base region. The gist of the first invention also includes that the buried region has a conductivity type opposite to that of the island region or the semiconductor substrate.

さらに、第2の発明は、第1導電形の半導体基体の主面
に形成された第2導電チャネルのMISFETと、前記
半導体基体の一部に形成された第2導電形ウェルの表面
部に形成された第1導電チャネルのMISFETとから
なる相補形MISFETにおいて、前記第2導電チャネ
ルのMI 5FETの形成部又は前記第2導電形ウェル
の少なくとも一方は前記半導体基体からエツチングによ
り切離して島領域とし、該島領域と前記半導体基体領域
との間には多結晶又は非晶質の半導体からなる埋込領域
を形成してなることを要旨とする。
Furthermore, a second invention provides a MISFET having a second conductive channel formed on the main surface of the semiconductor substrate of the first conductivity type, and a MISFET formed on the surface portion of the well of the second conductivity type formed in a part of the semiconductor substrate. In a complementary MISFET comprising a first conductive channel MISFET, at least one of the second conductive channel MISFET formation portion or the second conductive type well is separated from the semiconductor substrate by etching to form an island region; The gist is that a buried region made of polycrystalline or amorphous semiconductor is formed between the island region and the semiconductor base region.

(作用) 第1の発明では、エピタキシャル成長法を用いずに接合
分離された島領域を形成することが可能となる。また、
埋込領域を形成している多結晶又は非晶質の半導体は多
量の再結合中心を含んでいるため、島領域内の素子と半
導体基体上の素子等との間の寄生動作が抑えられる。さ
らに多結晶又は非晶質の半導体は放熱性がよく、サージ
電圧や静電気による破壊耐量の向上が実現される。
(Function) In the first invention, it is possible to form a junction-separated island region without using an epitaxial growth method. Also,
Since the polycrystalline or amorphous semiconductor forming the buried region contains a large number of recombination centers, parasitic operation between the elements in the island region and the elements on the semiconductor substrate is suppressed. Furthermore, polycrystalline or amorphous semiconductors have good heat dissipation properties, and can improve breakdown resistance due to surge voltage and static electricity.

また、第2の発明では、多量の再結合中心を含む多結晶
又は非晶質の半導体からなる埋込領域により、CMO3
特有の寄生サイリスタによるラッチアップの発生が抑え
られる。
In addition, in the second invention, CMO3
The occurrence of latch-up due to the peculiar parasitic thyristor can be suppressed.

(実施例) 以下、この発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図ないし第5図は、この発明の第1実施例を示す図
である。この実施例は、1チツプ上にCMO5とバイポ
ーラトランジスタとが集積されたICを示している。
1 to 5 are diagrams showing a first embodiment of the present invention. This embodiment shows an IC in which a CMO5 and a bipolar transistor are integrated on one chip.

まず、第1図ないし第4図を用いて半導体装置の構成を
説明すると、これらの図中、lは半導体基体としてのn
形(又はp形であってもよい)のSi基板であり、その
主面側の一部が当該Si基板1から完全に切離されて複
数個の島領域2.3.4が形成されている。島領域3.
4は、n形のSi基板1からそのまま切出されているの
で、n形となっているが、他の島領域2は、予めp形の
拡散が施されてから切出されているので、p形となって
いる。そしてSi基板1と各島領域2.3.4との間に
は多結晶St又は非晶質Stが埋込まれて埋込領域5.
6が形成されている。埋込領域5.6は、多結晶St等
がp形にドープされてp形とな7ており、低電位点に接
続されている。
First, the structure of the semiconductor device will be explained using FIGS. 1 to 4. In these figures, l represents n as a semiconductor substrate.
(or may be p-type), and a part of its main surface side is completely separated from the Si substrate 1 to form a plurality of island regions 2.3.4. There is. Island area 3.
4 is cut out as is from the n-type Si substrate 1, so it is n-type, but the other island regions 2 are cut out after being subjected to p-type diffusion in advance. It is p-type. Polycrystalline St or amorphous St is buried between the Si substrate 1 and each island region 2.3.4 in the buried region 5.
6 is formed. The buried region 5.6 is doped with polycrystalline St or the like to be p-type 7, and is connected to a low potential point.

p形の島領域2には、n+ソース領域7、n 4′ドレ
イン領域8及び多結晶Siのゲート電極9等によりnM
O311が形成され、n形の島領域3には、p+ソース
領域12、p+ ドレイン領域13及び多結晶SLのゲ
ート電極14等により9MO515が形成されている。
In the p-type island region 2, an nM
In the n-type island region 3, a 9MO515 is formed by a p+ source region 12, a p+ drain region 13, a gate electrode 14 of polycrystalline SL, and the like.

このnMO311と9MO815とでCMO3が構成さ
れている。
This nMO311 and 9MO815 constitute CMO3.

一方、n形の島領域4には、そのn形の島領域4をコレ
クタ領域としてp形ベース領域16及びn+エミッタ領
域17によりnpn)ランジスタ18が形成されている
On the other hand, in the n-type island region 4, an npn) transistor 18 is formed by a p-type base region 16 and an n+ emitter region 17, with the n-type island region 4 as a collector region.

n形の島領域3.4とp形の埋込領域5.6との間は、
pn接合が逆バイアスされることにより電気的に分離さ
れている。p形の島領域2と埋込領域5.6との間は、
基板電位(低電位)を共有しているので、あえてpn接
合による分離はされてないが、島領域2を予めp形に拡
散するときの拡散窓の大きさを小さくして島嶺域2にお
ける埋込領域5.6との境界部にn形層が残るようにし
、そのpn接合により電・気的な分離を施すことも可能
である。
Between the n-type island region 3.4 and the p-type buried region 5.6,
The pn junction is electrically isolated by being reverse biased. Between the p-type island region 2 and the buried region 5.6,
Since they share the substrate potential (low potential), they are not intentionally separated by a p-n junction, but the size of the diffusion window when diffusing the island region 2 into p-type is made smaller in advance, so that the island region 2 It is also possible to leave an n-type layer at the boundary with the buried region 5.6 and provide electrical isolation through the pn junction.

この実施例の半導体装置は上述のように構成されている
ので、エピタキシャル成長法を用いずに各島領域2.3
.4を形成することが可能となる。
Since the semiconductor device of this embodiment is constructed as described above, each island region 2.3 is grown without using epitaxial growth.
.. 4 can be formed.

また、埋込領域5.6を形成している多結晶St又は非
晶質Stは、単結晶Siと比べると多量の再結合中心を
含んでいるため、CMO3の寄生サイリスクのゲイン和
が αNPN+αPNP<1 となり、ラッチアップの発生を完全に抑えることが可能
となる。さらに、多結晶Si又は非晶質Siは熱伝導性
が良いので端子部等から過渡的なサージ電圧や静電気が
デバイスに印加されても、これに対する破壊耐量を高め
ることが可能となる。
Furthermore, since the polycrystalline St or amorphous St forming the buried region 5.6 contains a large number of recombination centers compared to single crystal Si, the gain sum of parasitic silicon risks of CMO3 is αNPN+αPNP< 1, making it possible to completely suppress the occurrence of latch-up. Furthermore, since polycrystalline Si or amorphous Si has good thermal conductivity, even if a transient surge voltage or static electricity is applied to the device from a terminal portion or the like, it is possible to increase the breakdown resistance against this.

次に、第5図を用いて、この実施例に係る半導体装置の
製造方法の一例を説明する。なお、以下の説明において
、(a)〜(e)の各項目記号は、第5図の(a)〜(
e)のそれぞれに対応する。また、同図(b)及び同図
(d)には、それぞれ縮小平面図も併せ示しである。
Next, an example of a method for manufacturing a semiconductor device according to this embodiment will be explained using FIG. In the following explanation, each item symbol of (a) to (e) is replaced by (a) to (e) in Fig. 5.
Corresponds to each of e). Further, FIGS. 3(b) and 4(d) also each show a reduced plan view.

(a)  (1,OO)面のn形St基板1を使用し、
p形の島領域を作る所に予めp形拡散を施してから、島
予定領域をS i02−S i3 N4−S i。
(a) Using an n-type St substrate 1 with a (1,OO) plane,
After performing p-type diffusion in advance where a p-type island region is to be created, the planned island region is Si02-S i3 N4-S i.

2の多層絶縁膜19でマスクする。The multilayer insulating film 19 of No. 2 is used as a mask.

(b)  反応性イオンエツチングにより、垂直の溝2
1を掘る。
(b) Vertical groove 2 created by reactive ion etching.
Dig 1.

(C)  溝21の側壁をヒドラジンやエチレンジアミ
ン等のアルカリ系異方性エツチング液を用いてエツチン
グし、各島領域となる部分を切出す。アルカリ系異方性
エツチング液でSiをエツチングすると(111)面で
著しくエッチレートか遅くなるので、(111)面が露
出したところでエツチングが止り、各島領域が適切に切
出される。
(C) The side walls of the groove 21 are etched using an alkaline anisotropic etching solution such as hydrazine or ethylenediamine to cut out portions that will become each island region. When Si is etched with an alkaline anisotropic etching solution, the etching rate is significantly slower on the (111) plane, so the etching stops when the (111) plane is exposed, and each island region is properly cut out.

(d)  p形のドープド多結晶Siで、エツチングに
より拡大された溝の部分を埋める。次いて前記の溝21
と直角方向(X方向)に溝22を掘り、これを再びp形
のドープド多結晶Stで埋込み、各島領域2.3.4を
Si基板1から完全に分離し、またその分離した間隙部
に埋込領域5.6を形成する。
(d) Fill the groove enlarged by etching with p-type doped polycrystalline Si. Next, the groove 21
A trench 22 is dug in the direction perpendicular to the direction (X direction), and this is filled again with p-type doped polycrystalline St, completely separating each island region 2.3.4 from the Si substrate 1, and also filling the separated gap. A buried region 5.6 is formed in the area.

(e)  埋込領域5.6部分の多結晶Siの表面を7
000A程度に厚く酸化して基板を完成する。
(e) The surface of the polycrystalline Si in the buried region 5.6 is
The substrate is completed by oxidizing it to a thickness of about 000A.

この後、各島領域2.3.4に公知のプロセスにより、
nMO3,pMO3及びバイポーラトランジスタ等の所
望のデバイスを形成する。
After this, by a process known to each island region 2.3.4,
Form desired devices such as nMO3, pMO3 and bipolar transistors.

このように、この実施例の半導体装置は、エピタキシャ
ル成長法を用いずに、p形、n形の各島領域2.3.4
が形成される。
In this way, the semiconductor device of this embodiment can be constructed by forming the p-type and n-type island regions 2.3.4 without using the epitaxial growth method.
is formed.

次いで、第6図には、この発明の第2実施例を示す。同
図(b)は同図(a)の1−1線断面図、同図(C)は
同図(a)の■−■線断面図である。
Next, FIG. 6 shows a second embodiment of the present invention. 3B is a cross-sectional view taken along the line 1--1 in FIG. 3A, and FIG.

なお、第6図及び後述の第7図において、前記第1図な
いし第4図における部材及び部位等と同一ないし均等の
ものは、前記と同一符号を以って示し重複した説明を省
略する。
In FIG. 6 and FIG. 7, which will be described later, the same or equivalent members and parts in FIGS. 1 to 4 are designated by the same reference numerals, and redundant explanation will be omitted.

この実施例では、各島領域20が5角柱状に形成されて
いる。島領域20をこのような形状に形成すると、深さ
方向の有効面積が増して、厚さの必要なデバイスの形成
に極めて好都合となる。勿論、前述のCMOS及びバイ
ポーラトランジスタも、この島領域20内に形成するこ
とができる。
In this embodiment, each island region 20 is formed into a pentagonal column shape. When the island region 20 is formed in such a shape, the effective area in the depth direction increases, which is extremely convenient for forming a device that requires a large thickness. Of course, the aforementioned CMOS and bipolar transistors can also be formed within this island region 20.

製造法としては、前記第5図(b)に示した溝の形成途
中で一旦溝壁面にSi3N4等の耐エツチング膜を被着
してからさらに溝を所要深さまで掘下げる。次いで、溝
底部の露出した側壁をアルカリ系異方性エツチング液で
エツチングすることにより、5角柱状の各島領域20が
形成される。
As for the manufacturing method, during the formation of the groove shown in FIG. 5(b), an etching-resistant film such as Si3N4 is once applied to the groove wall surface, and then the groove is further dug to a required depth. Next, by etching the exposed side walls of the groove bottom with an alkaline anisotropic etching solution, each pentagonal columnar island region 20 is formed.

第7図には、この発明の第3実施例を示す。同図(b)
は同図(a)の1−1線断面図、同図(C)は同図(a
)の■−■線断面図である。
FIG. 7 shows a third embodiment of the invention. Same figure (b)
is a cross-sectional view taken along the line 1-1 of the same figure (a), and the same figure (C) is a cross-sectional view taken along the line 1-1 of the same figure (a).
) is a sectional view taken along the line ■-■.

この実施例は、バルクのCMOS (相補形M l5F
ET)に適用されている。
This example is a bulk CMOS (complementary M I5F
ET).

そして、pチャネルのMI 5FETとしてのpMO3
15の形成部がエツチングにより島領域24として半導
体基板1から切出され、その島領域24と半導体基板1
の領域との間にn形の埋込領域5.6が形成されている
。一方、nチャネルのMISFETとしてのnMO31
1はpウェル25の表面部に形成されている。
and pMO3 as p-channel MI 5FET
15 is cut out from the semiconductor substrate 1 as an island region 24 by etching, and the island region 24 and the semiconductor substrate 1 are
An n-type buried region 5.6 is formed between the region. On the other hand, nMO31 as an n-channel MISFET
1 is formed on the surface of the p-well 25.

この実施例のCMOSは上述のように構成されているの
で、多結晶St又は非晶質Stからなる埋込領域5.6
により、pMOs15とn M OS11との間にでき
るp+ (12)−n (24)−n(5)、(6)−
n (1)  p (25)−n“(7)の経路からな
る寄生サイリスクのゲインが落されてラッチアップの発
生が防止される。
Since the CMOS of this example is constructed as described above, the buried regions 5.6 made of polycrystalline St or amorphous St
Therefore, p+ (12)-n (24)-n(5), (6)- is created between pMOs15 and nMOS11.
The gain of the parasitic risk consisting of the path n (1) p (25) - n'' (7) is reduced to prevent latch-up from occurring.

上述のように、この実施例は、元来、自己分離形のCM
OSに適用したので、埋込領域5.6と島領域24とは
同一導電形のn形でよい。また、pMOs15の形成部
を島領域とすることに代えて、pウェル25の部分を島
領域とし、その島領域と半導体基板1の領域との間にp
形の埋込領域を形成しても、上記と同様にラッチアップ
の発生を防止することができる。勿論、pMO815の
形成部及びpウェル25の部分の両者を島領域とし、そ
の両島領域の周囲に埋込領域を形成してもよく、このと
きはラッチアップの発生を一層確実に防止することがで
きる。
As mentioned above, this embodiment is originally a self-separated CM
Since this embodiment is applied to an OS, the buried region 5.6 and the island region 24 may be of the same conductivity type, n-type. Also, instead of forming the pMOs 15 as an island region, the p well 25 may be formed into an island region, and a p-well 25 may be formed between the island region and the semiconductor substrate 1 region.
Even if a shaped embedded region is formed, latch-up can be prevented from occurring in the same manner as described above. Of course, both the pMO 815 formation part and the p well 25 part may be made into island regions, and a buried region may be formed around both island regions.In this case, it is possible to more reliably prevent the occurrence of latch-up. I can do it.

なお、上述の各実施例において、Si基板からの島領域
の切出しには異方性エツチングを用いたが、これに代え
て等方性エツチングを用いることもできる。
In each of the above embodiments, anisotropic etching was used to cut out the island regions from the Si substrate, but isotropic etching may be used instead.

[発明の効果] 以上説明したように、第1の発明によれば、半導体基体
からエツチングにより切離して形成した島領域を多結晶
又は非晶質の半導体からなる埋込領域で取囲む構成とし
たため、エピタキシャル成長法を用いずに素子分離用の
島領域を形成することがてきる。また埋込領域を形成し
ている多結晶又は非晶質の半導体は多量の再結合中心を
含んでいるので島領域内の素子と半導体基体上の素子等
との間の寄生動作を抑えることができる。さらに多結晶
又は非晶質の半導体は放熱性がよいのでサージ電圧や静
電気による破壊耐量を高めることができる。
[Effects of the Invention] As explained above, according to the first invention, the island region formed by being separated from the semiconductor substrate by etching is surrounded by the buried region made of polycrystalline or amorphous semiconductor. , island regions for element isolation can be formed without using epitaxial growth. In addition, since the polycrystalline or amorphous semiconductor forming the buried region contains a large number of recombination centers, it is possible to suppress parasitic operation between the elements in the island region and the elements on the semiconductor substrate. can. Furthermore, since polycrystalline or amorphous semiconductors have good heat dissipation properties, they can enhance breakdown resistance due to surge voltage and static electricity.

また、第2の発明によれば、相補形MISFETにおい
て、第2導電チャネルのMISFETの形成部又は第1
導電チャネルのMISFETの形成された第2導電形ウ
ェルの少なくとも一方を半導体基体からエツチングによ
り切離して島領域とし、その島領域を多結晶又は非晶質
の半導体からなる埋込領域で取囲む構成としたため、相
補形MISFETに特有の寄生サイリスクによるラッチ
アップの発生を抑えることができる。
Further, according to the second invention, in the complementary MISFET, the formation part of the MISFET of the second conductive channel or the first
At least one of the second conductivity type wells in which the conductive channel MISFET is formed is separated from the semiconductor substrate by etching to form an island region, and the island region is surrounded by a buried region made of a polycrystalline or amorphous semiconductor. Therefore, it is possible to suppress the occurrence of latch-up due to parasitic silage, which is specific to complementary MISFETs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図はこの発明に係る半導体装置の第1
実施例を示すもので、第1図は平面図、第2図は第1図
のI−1線断面図、第3図は第1図の■−■線断面図、
第4図は第1図の■−■線断面図、第5図は製造方法の
一例を示す工程図、第6図はこの発明の第2実施例を示
す図、第7図はこの発明の第3実施例を示す図、第8図
は半導体装置の第1の従来例を示す縦断面図、第9図は
第2の従来例を示す縦断面図、第10図は第3の従来例
を示す縦断面図である。 1:Si基板(半導体基体)、 2.3.4.24:島領域、 5.6:埋込領域、 11 : nMO5(MISFET)、15 : pM
O3(MISFET)、25:pウェル。 代理人  弁理士  三 好  秀 和第1図 第2図 第3図 第4図 第5図(a) 第5図(b) M5図(C) 第5図(d ) 第5図(e) 第7図(a) 第7図(b) 第7図(C) 第8図 第9図(a) 第9図(b)
1 to 5 show a first diagram of a semiconductor device according to the present invention.
Fig. 1 is a plan view, Fig. 2 is a sectional view taken along line I-1 in Fig. 1, and Fig. 3 is a sectional view taken along line ■-■ in Fig. 1.
4 is a sectional view taken along the line ■-■ in FIG. 1, FIG. 5 is a process diagram showing an example of the manufacturing method, FIG. 6 is a diagram showing a second embodiment of the present invention, and FIG. 8 is a longitudinal sectional view showing the first conventional example of the semiconductor device, FIG. 9 is a longitudinal sectional view showing the second conventional example, and FIG. 10 is the third conventional example. FIG. 1: Si substrate (semiconductor base), 2.3.4.24: Island region, 5.6: Buried region, 11: nMO5 (MISFET), 15: pM
O3 (MISFET), 25:p well. Agent Hidekazu Miyoshi, Patent Attorney Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 (a) Figure 5 (b) Figure M5 (C) Figure 5 (d) Figure 5 (e) Figure 7 (a) Figure 7 (b) Figure 7 (C) Figure 8 Figure 9 (a) Figure 9 (b)

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基体の主面にエッチングにより当該半導体
基体から切離して形成された島領域と該島領域と前記半
導体基体領域との間に埋込まれた多結晶又は非晶質の半
導体からなる埋込領域とを有することを特徴とする半導
体装置。
(1) An island region formed on the principal surface of a semiconductor substrate by being separated from the semiconductor substrate by etching, and a buried region made of polycrystalline or amorphous semiconductor buried between the island region and the semiconductor substrate region. What is claimed is: 1. A semiconductor device comprising: a semiconductor device;
(2)前記埋込領域は、前記島領域又は半導体基体とは
逆の導電形であることを特徴とする請求項1記載の半導
体装置。
(2) The semiconductor device according to claim 1, wherein the buried region has a conductivity type opposite to that of the island region or the semiconductor substrate.
(3)第1導電形の半導体基体の主面に形成された第2
導電チャネルのMISFETと、前記半導体基体の一部
に形成された第2導電形ウェルの表面部に形成された第
1導電チャネルのMISFETとからなる相補形MIS
FETにおいて、 前記第2導電チャネルのMISFETの形 成部又は前記第2導電形ウェルの少なくとも一方は前記
半導体基体からエッチングにより切離して島領域とし、
該島領域と前記半導体基体領域との間には多結晶又は非
晶質の半導体からなる埋込領域を形成してなることを特
徴とする半導体装置。
(3) A second conductivity type formed on the main surface of the semiconductor substrate of the first conductivity type.
A complementary MIS comprising a conductive channel MISFET and a first conductive channel MISFET formed on the surface of a second conductivity type well formed in a part of the semiconductor substrate.
In the FET, at least one of the MISFET formation portion of the second conductive channel or the second conductivity type well is separated from the semiconductor substrate by etching to form an island region;
A semiconductor device characterized in that a buried region made of a polycrystalline or amorphous semiconductor is formed between the island region and the semiconductor base region.
JP1128641A 1989-05-24 1989-05-24 Semiconductor device Expired - Lifetime JP2567472B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1128641A JP2567472B2 (en) 1989-05-24 1989-05-24 Semiconductor device
DE19904016695 DE4016695C2 (en) 1989-05-24 1990-05-23 Method of forming buried areas in a semiconductor substrate
US07/762,264 US5212109A (en) 1989-05-24 1991-09-20 Method for forming PN junction isolation regions by forming buried regions of doped polycrystalline or amorphous semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1128641A JP2567472B2 (en) 1989-05-24 1989-05-24 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH02308548A true JPH02308548A (en) 1990-12-21
JP2567472B2 JP2567472B2 (en) 1996-12-25

Family

ID=14989846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1128641A Expired - Lifetime JP2567472B2 (en) 1989-05-24 1989-05-24 Semiconductor device

Country Status (2)

Country Link
JP (1) JP2567472B2 (en)
DE (1) DE4016695C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405454A (en) * 1992-03-19 1995-04-11 Matsushita Electric Industrial Co., Ltd. Electrically insulated silicon structure and producing method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310636A (en) * 1986-07-01 1988-01-18 Nippon Zeon Co Ltd Production of paraticulate rubber

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912795B1 (en) * 1968-12-05 1974-03-27
US3990102A (en) * 1974-06-28 1976-11-02 Hitachi, Ltd. Semiconductor integrated circuits and method of manufacturing the same
JPS61184843A (en) * 1985-02-13 1986-08-18 Toshiba Corp Composite semiconductor device and manufacture thereof
US4888300A (en) * 1985-11-07 1989-12-19 Fairchild Camera And Instrument Corporation Submerged wall isolation of silicon islands
JP2757872B2 (en) * 1989-01-31 1998-05-25 三菱電機株式会社 Semiconductor device and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310636A (en) * 1986-07-01 1988-01-18 Nippon Zeon Co Ltd Production of paraticulate rubber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405454A (en) * 1992-03-19 1995-04-11 Matsushita Electric Industrial Co., Ltd. Electrically insulated silicon structure and producing method therefor

Also Published As

Publication number Publication date
JP2567472B2 (en) 1996-12-25
DE4016695C2 (en) 1994-05-05
DE4016695A1 (en) 1990-11-29

Similar Documents

Publication Publication Date Title
KR100456526B1 (en) Silicon-on-insulator substrate having an etch stop layer, fabrication method thereof, silicon-on-insulator integrated circuit fabricated thereon, and method of fabricating silicon-on-insulator integrated circuit using the same
US5502317A (en) Silicon controlled rectifier and method for forming the same
JP2974211B2 (en) SOI semiconductor device
KR100562539B1 (en) Silicon-on-insulator configuration which is compatible with bulk cmos architecture
US7141484B2 (en) Electrostatic discharge protection circuit of non-gated diode and fabrication method thereof
JP3090081B2 (en) Semiconductor device
JPH05129429A (en) Semiconductor device and manufacture thereof
KR100329895B1 (en) Semiconductor device with decoupling capacitance and method thereof
JPH0652792B2 (en) Semiconductor device
JPS5992548A (en) Semiconductor device and manufacture thereof
US5212109A (en) Method for forming PN junction isolation regions by forming buried regions of doped polycrystalline or amorphous semiconductor
JPH02308548A (en) Semiconductor device
JPS5984572A (en) Semiconductor device
EP0281032B1 (en) Semiconductor device comprising a field effect transistor
JPS61265859A (en) Complementary mos semiconductor device
JPH01223769A (en) Semiconductor device and manufacture of the same
KR100290471B1 (en) Cmos device and method for manufacturing the same
KR100649813B1 (en) Manufacturing method of semiconductor device
JPH02283070A (en) Semiconductor integrated circuit device using input protecting circuit
KR100332473B1 (en) Semiconductor device and device isolation method using it
JPS59200459A (en) Complementary type semiconductor device and manufacture thereof
JP2000208714A (en) Semiconductor device and its manufacture
JPH01248555A (en) Semiconductor device
JPH0289358A (en) Complementary mis integrated circuit
JPH04196440A (en) Semiconductor device