JPH02304863A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH02304863A
JPH02304863A JP1124914A JP12491489A JPH02304863A JP H02304863 A JPH02304863 A JP H02304863A JP 1124914 A JP1124914 A JP 1124914A JP 12491489 A JP12491489 A JP 12491489A JP H02304863 A JPH02304863 A JP H02304863A
Authority
JP
Japan
Prior art keywords
separator
porosity
battery
microporous membrane
air permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1124914A
Other languages
Japanese (ja)
Inventor
Satoshi Ubukawa
生川 訓
Minoru Fujimoto
実 藤本
Hiroshi Shimozono
下園 浩史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1124914A priority Critical patent/JPH02304863A/en
Publication of JPH02304863A publication Critical patent/JPH02304863A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve high rate charge performance by forming a spiral electrode by interposing a separator comprising a specific synthetic resin microporous film between a belt-shaped negative electrode using a light metal as the active material and a belt-shaped positive electrode. CONSTITUTION:A separator 3 comprising a synthetic resin microporous film whose gas permeability is 50-350sec/100cc.piece, porosity is 50-80%, and thickness is 10-40mum is interposed between a belt-shaped negative electrode 2 using a light metal as the active material and a belt-shaped positive electrode 1, and they are spirally wound to form a spiral electrode. Transfer distance of lithium ions and transfer of lithium ions in low temperature and room temperature operations are efficiently improved, and high rate discharge performance in low temperature and room temperature operations is increased.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はリチウム、ナトリウムなどの軽金属を活物質と
する帯状負極と、金属の酸化物、硫化物あるいはハロゲ
ン化物などを活物質とする帯状正極との間に、セパレー
タを介在させ、これらを捲回してなる渦巻電極体を備え
た非水電解液電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention relates to a strip-shaped negative electrode using a light metal such as lithium or sodium as an active material, and a strip-shaped negative electrode using a metal oxide, sulfide, or halide as an active material. The present invention relates to a non-aqueous electrolyte battery including a spiral electrode body formed by winding the separator with a separator interposed between the positive electrode and the positive electrode.

(ロ)従来の技術 電池から大きな電流を取り出そうとする場合には、一般
に電極体を渦巻状として、正、負極間の対向面積を大き
くする方法がとられる。しかし、有機電解液を用いる非
水電解液電池では、電解液の電気伝導度が比較的低いの
で対向面積を大きくするだけでは十分ではなく、電極間
距離をできるだけ小さくする必要がある。つまり、セパ
レータの厚みを薄くする必要がある。このような構造は
大電流を取り出すのに都合がよいが、セパレータに不織
布などを用いた場合には、外部短絡を起こし過大電流が
流れると、短絡電流によるジュール熱で電池が異常に高
温になることがある。
(B) Prior Art When attempting to extract a large current from a battery, a method is generally used in which the electrode body is formed into a spiral shape to increase the facing area between the positive and negative electrodes. However, in a non-aqueous electrolyte battery using an organic electrolyte, the electrical conductivity of the electrolyte is relatively low, so simply increasing the facing area is not sufficient, and it is necessary to reduce the distance between the electrodes as much as possible. In other words, it is necessary to reduce the thickness of the separator. This type of structure is convenient for extracting large currents, but if nonwoven fabric is used as the separator, if an external short circuit occurs and an excessive current flows, the Joule heat caused by the short circuit current will cause the battery to become abnormally high temperature. Sometimes.

特開昭60−23954号公報では、上記外部短絡時に
於ける安全を確保するために、セパレータに微多孔膜を
用いることが提案されている。このようにセパレータに
微多孔膜を用いると、外部短絡が起きた場合においても
、短絡電流によるジュール熱で電池温度が上昇すると、
微多孔膜の微細孔が溶融物で閉塞されてイオンの移動を
阻止できる。これにより、電池内の電流が流れなくなる
ので、電池温度の上昇が抑制されて、セパレータに不織
布を用いた場合のように電池が異常に高温になることが
防止できる。また、特開昭60−23954号公報では
実施例においてポリプロピレン製とポリエチレン製の2
種類の微多孔膜が記載されているが、ポリエチレンの方
が融点が低いため、電池温度の上昇が小さくより安全で
ある。
Japanese Unexamined Patent Publication No. 60-23954 proposes the use of a microporous membrane as a separator in order to ensure safety in the event of an external short circuit. If a microporous membrane is used as a separator in this way, even if an external short circuit occurs, the Joule heat caused by the short circuit current will cause the battery temperature to rise.
The fine pores of the microporous membrane are blocked by the melt to prevent ion movement. This prevents current from flowing within the battery, suppressing a rise in battery temperature, and preventing the battery from becoming abnormally high temperature as in the case where a nonwoven fabric is used for the separator. In addition, in JP-A No. 60-23954, in the examples, two types of polypropylene and polyethylene were used.
Although several types of microporous membranes have been described, polyethylene has a lower melting point and therefore is safer with less rise in battery temperature.

ところが上記微多孔膜を用いた非水電解液電池において
、微多孔膜の膜厚による影響を考慮し、低温及び室温で
の大電流放電特性を改善しようとしたが、十分な効果が
得られなかった。
However, in non-aqueous electrolyte batteries using the above-mentioned microporous membrane, attempts were made to improve the large current discharge characteristics at low temperatures and room temperatures by taking into account the effect of the thickness of the microporous membrane, but no sufficient effect was obtained. Ta.

(ハ)発明が解決しようとする課題 本発明は前記問題点に鑑みてなされたものであって、有
機電解液を用いる非水電解液電池の、低温及び室温作動
時における大電流放電の特性を改善しようとするもので
ある。
(c) Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned problems, and aims to improve the characteristics of large current discharge during low temperature and room temperature operation of non-aqueous electrolyte batteries using organic electrolytes. It is something that we try to improve.

(ニ)課題を解決するための手段 本発明の非水電解液電池は、軽金属を活物質とする帯状
負極と、帯状正極との間に、合成樹脂製の微多孔膜から
なるセパレータを介在させ、前記正、負極及びセパレー
タを捲回して構成した渦巻電極体を備え、前記微多孔膜
は、透気度が50〜350sec/100cc一枚、空
孔率が50〜80%、膜厚が10〜40μmであること
を特徴とするものである。
(d) Means for Solving the Problems The non-aqueous electrolyte battery of the present invention has a separator made of a microporous synthetic resin membrane interposed between a strip-shaped negative electrode containing a light metal as an active material and a strip-shaped positive electrode. , the microporous membrane has an air permeability of 50 to 350 sec/100 cc per sheet, a porosity of 50 to 80%, and a membrane thickness of 10%. It is characterized by being ~40 μm.

ここで微多孔膜の主成分としては、ポリオレフィン系樹
脂が好ましく、特にポリエチレン、ポリプロピレン等が
好適である。
Here, as the main component of the microporous membrane, polyolefin resins are preferred, and polyethylene, polypropylene, etc. are particularly preferred.

(ホ)作用 有機電解液を用いるこの種電池において、大電流を取り
出す方法としては、上述したように電極体を渦巻状にし
て正、負極間の対向面積を大きくすること、及びセパレ
ータを薄くして正、負極間の距離を短くすることが挙げ
られる。しかし、セパレータとして単に膜厚の薄い微多
孔膜を用いるだけでは、放電時のリチウムイオンの移動
距離が短くなるものの、低温での放電特性は十分に改善
されない。これは微多孔膜内でのリチウムイオンの移動
のし易さに起因していると考えられる。この膜内におけ
るリチウムイオンの移動の容易さは、微多孔膜の透気度
及び空孔率に大きく依存することが、本発明者の検討に
より判明した。つまり、微多孔膜の膜厚を10〜40μ
mとし、加えて透気度を50−350s、ec/100
cc ・枚とし、更には空孔率を50〜80%と規定す
ることにより、リチウムイオンの移動距離や、低温及び
室温作動時におけるリチウムイオンの移動の容易さが相
互に効率良く改善しうる。その結果、低温及び室温作動
時における、この種電池の大電流放電の特性が向上する
(e) In this type of battery that uses a functional organic electrolyte, a method for extracting a large current is to make the electrode body spiral to increase the facing area between the positive and negative electrodes, and to make the separator thinner. An example of this is to shorten the distance between the positive and negative electrodes. However, simply using a thin microporous membrane as a separator shortens the distance that lithium ions travel during discharge, but does not sufficiently improve the discharge characteristics at low temperatures. This is considered to be due to the ease of movement of lithium ions within the microporous membrane. The inventor's studies have revealed that the ease of movement of lithium ions within this membrane largely depends on the air permeability and porosity of the microporous membrane. In other words, the thickness of the microporous membrane is 10 to 40μ.
m, and in addition, the air permeability is 50-350s, ec/100
cc · sheets and furthermore, by specifying the porosity as 50 to 80%, the migration distance of lithium ions and the ease of movement of lithium ions during low temperature and room temperature operation can be mutually and efficiently improved. As a result, the high current discharge characteristics of this type of battery during low temperature and room temperature operation are improved.

(へ)実施例 二酸化マンガン、導電剤及び結着剤としてのフッ素樹脂
を、それぞれ85:10:5の重量比で混合しペースト
状としたものを、ステンレス製のラス板に塗着、乾燥し
た後、圧延を数回行なって所定の厚みにし、これを熱処
理して帯状正極を得た。
(F) Example Manganese dioxide, a conductive agent, and a fluororesin as a binder were mixed in a weight ratio of 85:10:5, respectively, and made into a paste, which was applied to a stainless steel plate and dried. Thereafter, rolling was performed several times to obtain a predetermined thickness, and this was heat-treated to obtain a strip-shaped positive electrode.

また、セパレータとしてポリエチレン含有量が99重量
%以上であり、膜厚が25μm、透気度が170sec
/100cc ・枚、空孔率が60%である微多孔膜を
用い、このセパレータで帯状リチウム負極の両面を覆っ
たものを用意する。
In addition, as a separator, the polyethylene content is 99% by weight or more, the film thickness is 25 μm, and the air permeability is 170 sec.
A microporous membrane with a porosity of 60% and a porosity of 60% was used, and both sides of a strip-shaped lithium negative electrode were covered with the separator.

次いで、セパレータで覆ったリチウム負極に前記正極を
重ねて、これらを巻き取り渦巻を掻体を構成した。この
渦巻電極体を外装缶に挿入した後、プロピレンカーボネ
ート及びl、3−ジオキソランの混合溶媒に、過塩素酸
リチウムを溶解してなる電解液を注潰し、封口して本発
明電池Aを作製した。
Next, the positive electrode was stacked on the lithium negative electrode covered with a separator, and these were wound up to form a scroll. After inserting this spiral electrode body into an outer can, an electrolytic solution prepared by dissolving lithium perchlorate in a mixed solvent of propylene carbonate and l,3-dioxolane was poured and sealed, to prepare a battery A of the present invention. .

第1図は、上記電池の縦断面図である。第1図において
、1は正極、2は負極、3はセパレータ、4は外装缶、
5は封口蓋、6は絶縁パ・ソキング、7は負極リード、
8は正極リード、9は缶底絶縁板、lOは絶縁部材であ
る。
FIG. 1 is a longitudinal sectional view of the battery. In Figure 1, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is an outer can,
5 is a sealing lid, 6 is an insulation pad/soaking, 7 is a negative electrode lead,
8 is a positive electrode lead, 9 is a can bottom insulating plate, and IO is an insulating member.

また、同時に前記電池Aにおいて、セパレータの膜厚、
透気度、空孔率及び材質を種々変化させ、その他は同一
の電池B−Nを作製し、これら電池A−Nについてパル
ス放電特性比較試験を行なった。この時の条件は、室温
と、−20℃において、1.OAの電流で3秒間放電し
た後、7秒間放置し、これを繰り返し行なうものであり
、電池電圧が1.5Vの終止電圧になる迄のパルス回数
を測定するというものである。次表に、各電池のセパレ
ータの膜厚、透気度、空孔率及びパルス放電回数の相対
値を示す。尚、透気度はJIS−P8117に基づいて
測定した値であり、空孔率はセパレータの体積、材料の
比重、目付重量を基にし、以下の計算式により算出した
ものである。
At the same time, in the battery A, the film thickness of the separator,
Batteries B-N were produced with various changes in air permeability, porosity, and material, but were otherwise the same, and a pulse discharge characteristic comparison test was conducted on these batteries A-N. The conditions at this time were: room temperature, -20°C, 1. After discharging with an OA current for 3 seconds, the battery is left for 7 seconds, and this process is repeated, and the number of pulses until the battery voltage reaches a final voltage of 1.5V is measured. The following table shows the relative values of the separator thickness, air permeability, porosity, and number of pulse discharges for each battery. Note that the air permeability is a value measured based on JIS-P8117, and the porosity is calculated using the following formula based on the volume of the separator, the specific gravity of the material, and the basis weight.

また、パルス放電回数の相対値は、電池Aのパルス放電
回数を100として示しである。
Moreover, the relative value of the number of pulse discharges is shown assuming that the number of pulse discharges of battery A is 100.

第  1  表 栗:1を池作製時に内部短縮が生じて不良電池となり測
定できなかった。
1st Table Chestnut: Internal shortening occurred during pond preparation in 1, resulting in a defective battery that could not be measured.

第1表において、電池M、Nはポリプロピレン製のセパ
レータを使用しているが、他の電池は、ポリエチレン製
のセパレータを用いている。
In Table 1, batteries M and N use polypropylene separators, while the other batteries use polyethylene separators.

第1表の電池A、B、D、Gの結果より、膜厚と空孔率
が略同じ場合には透気度が小さくなる程、低温パルス放
電特性が向上する傾向があることがわかる。また電池A
、M、Nの結果より、膜厚と透気度が略同じ場合には、
空孔率が小さくなる程(例えば空孔率45%以下)、室
温パルス放電特性が低下する傾向が観察される。また電
池Bのように透気度が大きく (例えば透気度920s
ec/100cc・枚)且つ空孔率が小さくなる(例え
ば空孔率50%)と、低温及び室温でのパルス放電特性
が低下することがわかる。
From the results of Batteries A, B, D, and G in Table 1, it can be seen that when the film thickness and porosity are approximately the same, the lower the air permeability, the more the low-temperature pulse discharge characteristics tend to improve. Also battery A
, M, and N, if the film thickness and air permeability are approximately the same,
It is observed that as the porosity becomes smaller (for example, 45% or less), the room temperature pulse discharge characteristics tend to deteriorate. Also, like battery B, the air permeability is large (for example, the air permeability is 920s
ec/100cc/sheet) and the porosity decreases (for example, 50% porosity), it can be seen that the pulse discharge characteristics at low temperature and room temperature deteriorate.

一方、電池りのように透気度が適度(例えば透気度80
sec/100cc・枚)であり、空孔率が比較的大き
い(例えば空孔率75%)ものは、両パルス特性共優れ
たものである。
On the other hand, air permeability is moderate (for example, air permeability 80
sec/100cc/sheet) and a relatively large porosity (for example, 75% porosity) has excellent both pulse characteristics.

また、電池E、Fの結果より、透気度が低くなり過ぎた
り(例えば40sec/100cc・枚以上)、空孔率
が大きくなり過ぎたり(例えば85%以上)すると、セ
パレータとしての隔離性が十分でなく、電池作製時にセ
パレータを介して内部短絡を起こし電池不良となり、パ
ルス放電が行なえなくなるという不都合が生じることが
わかる。
Also, from the results of Batteries E and F, if the air permeability becomes too low (e.g. 40 sec/100 cc/sheet or more) or the porosity becomes too large (e.g. 85% or more), the isolation properties as a separator will deteriorate. It can be seen that this is not sufficient, causing an internal short circuit through the separator during battery fabrication, resulting in a defective battery and the inconvenience that pulse discharge cannot be performed.

第2図はセパレータの膜厚、空孔率が同じまたは類似し
た電池A、C,D、Gにおける、セパレータの透気度と
、低温パルス放電回数相対値との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the air permeability of the separator and the relative value of the number of low-temperature pulse discharges in batteries A, C, D, and G having the same or similar separator thickness and porosity.

第2図より、透気度が350sec/100cc・枚を
越えると、低温におけるパルス放電特性が低下すること
が理解される。
From FIG. 2, it is understood that when the air permeability exceeds 350 sec/100 cc·sheet, the pulse discharge characteristics at low temperatures deteriorate.

したがって、セパレータの透気度としては、50〜35
0sec/ 100cc・枚が好ましいと言える。
Therefore, the air permeability of the separator is 50 to 35.
It can be said that 0 sec/100 cc/piece is preferable.

また同様に、第3図はセパレータの膜厚、透気度が同じ
または類似した電池A、 G、 M、 Nにおける、セ
パレータの空孔率と、室温パルス放電回数相対値との関
係を示す図である。第3図より、空孔率が大きくなる程
、室温におけるパルス放電特性が向上し、50%を境に
して、これより空孔率が小さくなると、室温パルス放電
特性が低下することが理解できる。
Similarly, FIG. 3 is a diagram showing the relationship between the porosity of the separator and the relative value of the number of room temperature pulse discharges in batteries A, G, M, and N whose separator film thickness and air permeability are the same or similar. It is. From FIG. 3, it can be seen that as the porosity increases, the pulse discharge characteristics at room temperature improve, and when the porosity becomes smaller than 50%, the room temperature pulse discharge characteristics deteriorate.

したがってセパレータの空孔率としては、50〜80%
とするのが望ましいと言える。
Therefore, the porosity of the separator is 50 to 80%.
It can be said that it is desirable to do so.

一方、セパレータの膜厚に関して、セパレータの透気度
と空孔率が近い値を有する電池A、 H。
On the other hand, regarding the film thickness of the separator, batteries A and H have values in which the air permeability and porosity of the separator are close to each other.

Iにおける第1表の結果を比較検討すると、膜厚が薄く
なる程、低温及び室温でのパルス放電特性が向上する傾
向があることが伺える。また、電池J、により、膜厚が
厚い(例えば80μm)と、透気度が50〜350se
c/100cc・枚の範囲であり且つ空孔率が大きいに
もかかわらず、低温及び室温でのパルス放電特性が低下
することが明らかである。
Comparing and examining the results in Table 1 for I, it can be seen that the thinner the film thickness is, the more the pulse discharge characteristics at low temperature and room temperature tend to improve. Also, depending on the battery J, if the film thickness is thick (e.g. 80 μm), the air permeability will be 50 to 350 se.
It is clear that the pulse discharge characteristics at low temperature and room temperature deteriorate even though the porosity is in the range of c/100 cc·sheet and the porosity is large.

よって膜厚の上限は、40μmとするのが望ましいこと
がわかる。一方、膜厚の下限については、膜厚が薄すぎ
ると、電池作製時に、セパレータを介して内部短絡が多
発することから、膜厚の下限は10μmとするのが好ま
しい。
Therefore, it can be seen that the upper limit of the film thickness is preferably 40 μm. On the other hand, regarding the lower limit of the film thickness, if the film thickness is too thin, internal short circuits will occur frequently through the separator during battery production, so the lower limit of the film thickness is preferably 10 μm.

したがってセパレータの膜厚としては、10〜40μm
とするのが望ましいと言える。
Therefore, the thickness of the separator is 10 to 40 μm.
It can be said that it is desirable to do so.

以上、詳述した実施例では、セパレータとじて純度99
重斌%以上のポリエチレン微多孔膜もしくは純度99重
量%以上のポリプロピレン微多孔膜を用いたが、電池温
度が上昇した時にはセパレータが溶融し、絶縁膜化する
ものであれば使用可能である。ただし、ポリエチレンの
方がポリプロピレンより融点が低いため、より有効であ
り、ポリエチレンと他の樹脂との混合物や共重合体など
も有効である。
In the detailed examples described above, the separator has a purity of 99%.
Although a polyethylene microporous membrane with a purity of 99% or more or a polypropylene microporous membrane with a purity of 99% or more was used, any material whose separator melts and becomes an insulating film when the battery temperature rises can be used. However, since polyethylene has a lower melting point than polypropylene, it is more effective, and mixtures and copolymers of polyethylene and other resins are also effective.

(ト)発明の効果 以上の如く、本発明では非水系電解液電池のセパレータ
として用いる微多孔膜において、透気度を50〜350
sec/100cc一枚、空孔率を50−80%、膜厚
を10〜40μmと規定しているので、リチウムイオン
の移動距離や、低温及び室温作動時におけるリチウムイ
オンの移動の容易さが、相互に効率良く改善しうる。そ
の結果、低温及び室温作動時における、この種を池の大
電流放電特性を向上しうるちのであり、その工業的価値
は極めて大きい。
(g) Effects of the invention As described above, in the present invention, the microporous membrane used as a separator of a non-aqueous electrolyte battery has an air permeability of 50 to 350.
sec/100cc one sheet, porosity of 50-80%, and film thickness of 10-40 μm, so the migration distance of lithium ions and the ease of lithium ion migration during low-temperature and room-temperature operation are Mutual improvements can be made efficiently. As a result, it is possible to improve the large current discharge characteristics of this type of cell during low temperature and room temperature operation, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の対象となる渦巻電極体を備えた電池の
縦断面図、第2図はセパレータの透気度と低温パルス放
電回数相対値との関係を示す図、第3図はセパレータの
空孔率と室温パルス放電回数相対値との関係を示す図で
ある。 1・・・正極、2・・・負楊、3・・・セパレータ。
FIG. 1 is a longitudinal cross-sectional view of a battery equipped with a spiral electrode body, which is the object of the present invention, FIG. 2 is a diagram showing the relationship between the air permeability of the separator and the relative number of low-temperature pulse discharges, and FIG. 3 is a diagram showing the relationship between the separator air permeability and the relative number of low-temperature pulse discharges. FIG. 3 is a diagram showing the relationship between the porosity and the relative value of the number of room temperature pulse discharges. 1... Positive electrode, 2... Negative electrode, 3... Separator.

Claims (4)

【特許請求の範囲】[Claims] (1)軽金属を活物質とする帯状負極と、帯状正極との
間に、合成樹脂製の微多孔膜からなるセパレータを介在
させ、前記正、負極及びセパレータを捲回して構成した
渦巻電極体を備え、 前記微多孔膜は、透気度が50〜350sec/100
cc・枚、空孔率が50〜80%、膜厚が10〜40μ
mであることを特徴とする非水電解液電池。
(1) A separator made of a microporous synthetic resin membrane is interposed between a strip-shaped negative electrode containing a light metal as an active material and a strip-shaped positive electrode, and a spiral electrode body is constructed by winding the positive, negative electrodes and separator. The microporous membrane has an air permeability of 50 to 350 sec/100
cc/sheet, porosity 50-80%, film thickness 10-40μ
A non-aqueous electrolyte battery characterized in that m.
(2)前記微多孔膜の主成分が、ポリオレフィン系樹脂
であることを特徴とする請求項(1)記載の非水電解液
電池。
(2) The non-aqueous electrolyte battery according to claim 1, wherein the main component of the microporous membrane is a polyolefin resin.
(3)前記微多孔膜の主成分が、ポリエチレンであるこ
とを特徴とする請求項 記載の非水電解液電池。
(3) The non-aqueous electrolyte battery according to claim 1, wherein the main component of the microporous membrane is polyethylene.
(4)前記微多孔膜の主成分が、ポリプロピレンである
ことを特徴とする請求項(2)載の非水電解液電池。
(4) The non-aqueous electrolyte battery according to claim (2), wherein the main component of the microporous membrane is polypropylene.
JP1124914A 1989-05-18 1989-05-18 Nonaqueous electrolyte battery Pending JPH02304863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1124914A JPH02304863A (en) 1989-05-18 1989-05-18 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1124914A JPH02304863A (en) 1989-05-18 1989-05-18 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH02304863A true JPH02304863A (en) 1990-12-18

Family

ID=14897246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1124914A Pending JPH02304863A (en) 1989-05-18 1989-05-18 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH02304863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0655793A2 (en) * 1993-11-19 1995-05-31 Medtronic, Inc. High-reliability electrochemical cell and electrode assembly therefor
JP2005293950A (en) * 2004-03-31 2005-10-20 Tdk Corp Lithium ion secondary battery and charging method of lithium ion secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276868A (en) * 1987-05-08 1988-11-15 Tokuyama Soda Co Ltd Separator for cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276868A (en) * 1987-05-08 1988-11-15 Tokuyama Soda Co Ltd Separator for cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0655793A2 (en) * 1993-11-19 1995-05-31 Medtronic, Inc. High-reliability electrochemical cell and electrode assembly therefor
EP0655793A3 (en) * 1993-11-19 1997-03-12 Medtronic Inc High-reliability electrochemical cell and electrode assembly therefor.
JP2005293950A (en) * 2004-03-31 2005-10-20 Tdk Corp Lithium ion secondary battery and charging method of lithium ion secondary battery

Similar Documents

Publication Publication Date Title
KR100646535B1 (en) Electrode Assembly for Lithium Ion Second Battery and Lithium Ion Secondary Battery using the Same
JPH0778635A (en) Safe secondary battery of non-aqueous group
JP2006032246A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
US9048490B2 (en) Lithium ion secondary battery
JPH0516139B2 (en)
JP4382557B2 (en) Non-aqueous secondary battery
JP2642206B2 (en) Explosion-proof secondary battery
JPS6023954A (en) Nonaqueous electrolyte battery
JPS63308866A (en) Nonaqueous electrolytic solution battery
JPH0562662A (en) Nonaqueous electrolyte secondary battery
JPH02304863A (en) Nonaqueous electrolyte battery
JPH0548209U (en) Non-aqueous electrolyte battery
JPH03291848A (en) Battery
WO2015022862A1 (en) Separator for electrochemical devices, and electrochemical device
JPH08111214A (en) Organic electrolytic battery
JPH05190208A (en) Lithium secondary battery
JPH0887995A (en) Organic electrolyte battery
JP2792859B2 (en) Non-aqueous electrolyte battery
JP2016181323A (en) Separator for electrochemical device and electrochemical device
JPS63205048A (en) Nonaqueous electrolyte battery
JPS61232560A (en) Lithium battery
JP2925631B2 (en) Non-aqueous electrolyte battery
JPH01161671A (en) Nonaqueous electrolyte battery
JP3307231B2 (en) Non-aqueous electrolyte secondary battery
JP2005141997A (en) Lithium / iron disulfide primary battery, and manufacturing method