JP3307231B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3307231B2
JP3307231B2 JP18032096A JP18032096A JP3307231B2 JP 3307231 B2 JP3307231 B2 JP 3307231B2 JP 18032096 A JP18032096 A JP 18032096A JP 18032096 A JP18032096 A JP 18032096A JP 3307231 B2 JP3307231 B2 JP 3307231B2
Authority
JP
Japan
Prior art keywords
separator
aqueous electrolyte
temperature
secondary battery
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18032096A
Other languages
Japanese (ja)
Other versions
JPH1027597A (en
Inventor
由衣 高橋
彰規 粟野
孝浩 寺岡
正晴 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16081158&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3307231(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP18032096A priority Critical patent/JP3307231B2/en
Publication of JPH1027597A publication Critical patent/JPH1027597A/en
Application granted granted Critical
Publication of JP3307231B2 publication Critical patent/JP3307231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、AV機器あるいはパソコン等の電
子機器のポータブル化,コードレス化が急速に進んでお
り、これらの駆動用電源として小型,軽量で高エネルギ
ー密度を有する二次電池への要望が高い。このような点
で非水系二次電池、特に高電圧,高エネルギー密度を有
する非水電解液リチウム二次電池への期待が大きい。
2. Description of the Related Art In recent years, portable and cordless electronic devices such as AV devices and personal computers have been rapidly advanced, and there is a demand for a small, lightweight, high energy density secondary battery as a power supply for driving these devices. high. In this respect, there is great expectation for non-aqueous secondary batteries, especially non-aqueous electrolyte lithium secondary batteries having high voltage and high energy density.

【0003】リチウム二次電池で高エネルギー密度が期
待される理由としては、適切な正極、すなわち高い電位
を有する正極を選択することによって、高電圧で高エネ
ルギー密度が得られるというところにある。この要望を
満たすものとしてLiCoO 2 やLiMn24 系のお
よそ4Vの高電圧を示す材料が挙げられる。一方、負極
としては金属リチウムをはじめリチウム合金やリチウム
イオンを吸蔵,放出できる炭素材料等が検討されている
が、金属リチウムには充放電に伴う、デンドライトとい
われる樹脂状生成物による短絡の問題がそれぞれあり、
これらの問題の生じない炭素材がリチウム二次電池とし
て、有望視されている。
[0003] High energy density is expected for lithium secondary batteries.
The reason for this is that a suitable positive electrode,
By selecting a positive electrode with high voltage, high voltage and high energy
The point is that you can obtain a high density. This request
LiCoO as filling TwoAnd LiMnTwoOFourOf the system
A material exhibiting a high voltage of about 4 V may be used. Meanwhile, the negative electrode
As metal lithium, lithium alloys and lithium
Carbon materials that can store and release ions are being studied
However, metallic lithium is called a dendrite due to charging and discharging.
There is a problem of short circuit due to resinous products,
Carbon materials that do not cause these problems are lithium secondary batteries.
It is promising.

【0004】リチウム二次電池等の非水電解液を用いる
電池では非水電解液の電導度が水溶液系の電解液の電導
度の1/10程度しかないため、一般に電流が取り出し
難い。さらに、非水電解液二次電池の極板は水溶液系の
二次電池と同等の電流特性をもたせるため、薄くかつ長
く作られ、電極面積を大きくしている。そうした場合、
安全性に問題を生じる。非水電解液の溶媒には有機溶媒
がよく用いられるため、電池が何らかの原因で短絡状態
に陥った時、電池内部は大きな短絡電流によるジュール
熱で熱せられ、その熱による種々の化学反応および熱暴
走を引き起こし発火さらには爆発といった事態にまでな
ることがある。
In a battery using a non-aqueous electrolyte such as a lithium secondary battery, the conductivity of the non-aqueous electrolyte is only about 1/10 of the conductivity of the aqueous electrolyte, so that it is generally difficult to extract a current. Further, the electrode plate of the non-aqueous electrolyte secondary battery is made thin and long so as to have current characteristics equivalent to those of the aqueous secondary battery, and the electrode area is increased. If you do,
Causes safety issues. Since an organic solvent is often used as a solvent for the non-aqueous electrolyte, when the battery is short-circuited for some reason, the inside of the battery is heated by Joule heat due to a large short-circuit current, and various chemical reactions and heat caused by the heat are generated. It can cause a runaway and result in a fire or even an explosion.

【0005】特に、正極活物質にLiCoO2 やLiM
24 系のおよそ4Vの高電圧を示す材料を用いると
電位差が大きいため、さらに短絡電流が大きくなり安全
性が低下する。
In particular, LiCoO 2 or LiM
When an n 2 O 4 -based material showing a high voltage of about 4 V is used, the potential difference is large, so that the short-circuit current is further increased and safety is reduced.

【0006】これらの問題点を解決するため、110〜
130℃近くの温度で熱溶融により自ら微孔を閉じて多
孔性を消失し、電流遮断するいわゆるシャットダウン機
能をもったポリエチレン製の多孔質膜や、ポリエチレン
とポリプロピレンのような層構造を有するポリオレフィ
ン複合多孔質膜がセパレータとしてよく用いられてい
る。
In order to solve these problems, 110-110
Polyethylene composite with a so-called shutdown porous function, which has a so-called shutdown function that closes the micropores and loses porosity by thermal melting at a temperature near 130 ° C, and a layer structure like polyethylene and polypropylene Porous membranes are often used as separators.

【0007】[0007]

【発明が解決しようとする課題】しかし、ポリエチレン
単体の多孔性膜やポリエチレンを含むポリオレフィン複
合微多孔性膜は、孔の熱閉塞温度であるシャットダウン
温度付近になると著しい熱収縮を伴う。そして、収縮が
著しい場合、短絡時にセパレータがシャットダウンして
も、その収縮のために極板群に変形を与え、正極板と負
極板が接触し、再び短絡状態となり安全性が低下する。
However, a porous membrane of polyethylene alone or a microporous polyolefin composite membrane containing polyethylene is accompanied by a remarkable thermal shrinkage when the temperature becomes close to a shutdown temperature, which is a heat closing temperature of pores. If the contraction is remarkable, even if the separator is shut down at the time of short circuit, the electrode plate group is deformed due to the contraction, and the positive electrode plate and the negative electrode plate come into contact with each other, resulting in a short circuit state again and a decrease in safety.

【0008】本発明は、従来の電流特性を維持し、かつ
短絡時の安全性に優れた非水電解液二次電池を提供する
ことを目的とするものである。
An object of the present invention is to provide a non-aqueous electrolyte secondary battery which maintains the current characteristics of the related art and is excellent in safety during a short circuit.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の非水電解液二次電池は、リチウム複合酸化
物からなる正極と、炭素材料からなる負極との間に、ポ
リエチレン単体の微多孔性膜あるいはポリエチレンを含
むポリオレフィン複合微多孔性膜から形成され、非水電
解液を含浸保持したセパレータを介在して渦巻状に巻回
した電極体を備えており、前記セパレータとして、微多
孔性膜の熱閉塞温度より低い温度にて熱処理が施されて
おり、この熱処理後の透気度が熱処理前に比べて増加し
ており、且つその値が400sec/100cc以上、
1100sec/100cc以下の範囲にあり、前記熱
閉塞温度における収縮率が50%以下にあるものを用い
る。
In order to achieve the above object, a non-aqueous electrolyte secondary battery according to the present invention comprises a single-piece of polyethylene between a positive electrode made of a lithium composite oxide and a negative electrode made of a carbon material. An electrode body formed from a microporous film of polyolefin or a microporous polyolefin composite film containing polyethylene and spirally wound with a separator impregnated and held with a non-aqueous electrolyte. Heat treatment is performed at a temperature lower than the heat blocking temperature of the porous membrane, and the air permeability after this heat treatment increases compared to before the heat treatment.
And the value is 400 sec / 100 cc or more,
One having a range of 1100 sec / 100 cc or less and a shrinkage ratio at the heat closing temperature of 50% or less is used.

【0010】[0010]

【発明の実施の形態】本発明は請求項1に記載のよう
に、ポリエチレン単体の微多孔性膜あるいはポリエチレ
ンを含むポリオレフィン複合微多孔性膜を、これら膜の
熱閉塞温度よりも低い温度にて熱処理を施したものをセ
パレータとして用いており、前記セパレータの透気度が
400sec/100cc以上、1100sec/10
0cc以下の範囲にあり、また熱閉塞温度における収縮
率が50%以下にある。ここにおいて、セパレータを形
成する微多孔性膜の熱閉塞温度は、[0006]欄に記
載した通り自ら微孔を閉塞して多孔性を消失する温度で
あり、ポリオレフィン系の微多孔性膜では110〜13
0℃近くの温度となる。この温度ではセパレータの透気
度は10000sec/100cc程度にある。上記の
熱処理を施すことで、通常時には充放電サイクル特性等
を悪化させることがなく、またシャットダウン機能が動
作した場合にはセパレータの収縮率が小さく、正負極の
接触による短絡の発生を防止することから、安全性に優
れた非水電解液二次電池を提供できる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a microporous membrane made of polyethylene alone or polyethylene as described in claim 1.
Polyolefin composite microporous membranes containing
After heat treatment at a temperature lower than the
The separator has an air permeability of 400 sec / 100 cc or more and 1100 sec / 10
0 cc or less , and the shrinkage at the heat closing temperature is 50% or less . Here, the separator
The heat blocking temperature of the resulting microporous membrane is described in [0006].
At the temperature at which the pores are closed and the porosity disappears as described
And 110 to 13 for a polyolefin-based microporous membrane.
The temperature will be close to 0 ° C. At this temperature the air permeability of the separator
The degree is about 10,000 sec / 100 cc. above
By performing heat treatment, the charge / discharge cycle characteristics, etc., during normal times
And the shutdown function operates.
When made, the contraction rate of the separator is small,
Since a short circuit due to contact is prevented , a non-aqueous electrolyte secondary battery with excellent safety can be provided.

【0011】[0011]

【実施例】以下、図面とともに本発明について具体的な
説明をする。本実施例においては、円筒形電池を構成し
て評価を行った。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. In this example, a cylindrical battery was constructed and evaluated.

【0012】図1にその円筒形電池の縦断面図を示す。
図において、1は正極で、リチウム複合酸化物の一例で
あるLiCoO2 を活物質とし、電導材としてカーボン
ブラックを結着剤としてポリ4フッ化エチレンの水性デ
イスパージョンを重量比で100:4:7の割合で混合
したものをアルミニウム箔の両面に塗着,乾燥し、圧延
した後、所定の大きさに切断したものである。そして、
この正極1にはチタン製の正極リード板2をスポット溶
接している。なお、結着剤のポリ4フッ化エチレンの水
性デイスパージョンの混合比率は、その固形分で計算し
ている。3は負極で、炭素質材料とフッ素系結着剤とを
重量比で100:5の割合で混合したものを銅箔の両面
に塗着,乾燥し、圧延した後、所定の大きさに切断した
ものである。この負極3にも銅製の負極リード板4をス
ポット溶接している。5はセパレータで、正極1と負極
3との間に介在し、全体が渦巻状に巻回されて極板群を
構成している。この極板群の上下それぞれにポリプロピ
レン製の上部絶縁板6および下部絶縁板7を配設して鉄
にニッケルメッキを施したケース8に挿入し、正極リー
ド2をチタン製の封口板9に、負極リード4をケース8
の底部にそれぞれスポット溶接した後、エチレンカーボ
ネートとエチルメチルカーボネートとの体積比1:1の
混合溶媒に1モルのLiPF6 を溶解させた電解液を注
入し、カズケット10を介して電池を封口して完成電池
とする。この電池の寸法は直径17mm,高さ50mm
である。11は電池の正極端子であり、負極端子は電池
ケース8がこれを兼ねている。
FIG. 1 is a longitudinal sectional view of the cylindrical battery.
In the figure, reference numeral 1 denotes a positive electrode, LiCoO 2 , which is an example of a lithium composite oxide, as an active material, and an aqueous dispersion of polytetrafluoroethylene in a weight ratio of 100: 4 using carbon black as a binder as a conductive material. : A mixture mixed at a ratio of 7 was applied to both sides of an aluminum foil, dried, rolled, and then cut into a predetermined size. And
A positive electrode lead plate 2 made of titanium is spot-welded to the positive electrode 1. The mixing ratio of the aqueous dispersion of polytetrafluoroethylene as the binder is calculated based on the solid content. Reference numeral 3 denotes a negative electrode, which is a mixture of a carbonaceous material and a fluorine-based binder at a weight ratio of 100: 5, applied to both sides of a copper foil, dried, rolled, and cut into a predetermined size. It was done. The negative electrode 3 is also spot-welded with a negative electrode lead plate 4 made of copper. Reference numeral 5 denotes a separator, which is interposed between the positive electrode 1 and the negative electrode 3, and is entirely spirally wound to form an electrode plate group. An upper insulating plate 6 and a lower insulating plate 7 made of polypropylene are arranged on the upper and lower sides of the electrode plate group, respectively, inserted into a case 8 in which nickel is plated on iron, and the positive electrode lead 2 is inserted into a sealing plate 9 made of titanium. Negative lead 4 in case 8
After spot welding to the bottom of each, an electrolytic solution in which 1 mol of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and ethyl methyl carbonate at a volume ratio of 1: 1 was injected, and the battery was sealed via a pocket 10. To complete batteries. The dimensions of this battery are 17mm in diameter and 50mm in height.
It is. Reference numeral 11 denotes a positive electrode terminal of the battery, and the battery case 8 also serves as a negative electrode terminal.

【0013】セパレータには、表1に示すように原反
となる樹脂の延伸率を変化させたポリエチレン単体の微
多孔膜を用いた。本実施例では、100sec/100
cc1700sec/100ccの透気度をもつポリ
エチレン単体の微多孔性膜を用い、これらを所定の寸法
に切断し、セパレータA〜Gを得た。さらにこれらの微
多孔性膜を熱閉塞温度(110〜130℃)よりも低い
温度である100℃24時間の熱処理を施した後、前
記と同寸法に切断したセパレータA’G’を得た。そ
して、これらセパレータA〜G、及びセパレータA’
G’を前記の円筒形電池の作製に供した。
As shown in Table 1, the separator 5
Of polyethylene alone with different stretch ratio of resin
A porous membrane was used. In this embodiment, 100 sec / 100
Separators A to G were obtained by using polyethylene microporous membranes having air permeability of cc to 1700 sec / 100 cc and cutting them into predetermined dimensions . Furthermore, these microporous membranes are kept below the heat blocking temperature (110-130 ° C.).
100 ℃ is the temperature, was subjected to a heat treatment of 24 hours, before
Separators A ′ to G ′ cut to the same dimensions as described above were obtained. So
These separators A to G and separators A ′ to
G ′ was used for producing the above cylindrical battery.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】表1と表2を比較すると各セパレータを1
00℃にて24時間熱処理をすることにより、若干の透
気度の増加を伴うものの、閉塞温度での収縮率が大幅に
低下するのがみられた。
A comparison between Tables 1 and 2 shows that each separator is 1
The heat treatment at 00 ° C. for 24 hours was accompanied by a slight increase in air permeability, but a significant decrease in the shrinkage at the closing temperature was observed.

【0017】なお、ここでの透気度はASTMのD72
6,方法Aに基づき膜面積6.4cm2 ,圧力124m
mH2Oにおける100ccの空気が通過するに要する
時間(sec)で計測したものである。また、収縮率の
測定はセパレータ単体を閉塞温度で10分間熱処理を行
い、面積変化により算出を行った。
The air permeability here is ASTM D72.
6, based on method A, membrane area 6.4 cm 2 , pressure 124 m
It is measured by the time (sec) required for 100 cc of air to pass through in mH 2 O. The shrinkage was measured by subjecting the separator alone to a heat treatment at a closing temperature for 10 minutes and calculating the change in area.

【0018】作成した円筒電池は、20℃の環境下で、
充放電電流を750mA,充電終止電圧を4.2V,放
電終止電圧3.0Vの定電流充放電を10サイクル繰り
返し充電状態で止め、室温で短絡試験を行った。10サ
イクル目の放電容量および短絡試験の結果を表3,表4
に示した。
The produced cylindrical battery is placed in an environment of 20 ° C.
The charge / discharge current was 750 mA, the charge end voltage was 4.2 V, and the constant current charge / discharge at the discharge end voltage 3.0 V was repeated 10 cycles, stopped in the charged state, and a short circuit test was performed at room temperature. Tables 3 and 4 show the discharge capacity at the 10th cycle and the results of the short-circuit test.
It was shown to.

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【表4】 [Table 4]

【0021】表3からわかるように、セパレータA,
B,C,D,Eを用いた電池は、短絡試験において電池
表面温度が135℃以上になり、封口部からガスの噴出
があった。短絡試験後、X線CTスキャンにて極板群の
観察を行ったが、セパレータA,B,C,D,Eを用い
た電池では、極板群の変形がみられ、正負極板が接触し
再短絡が生じているのが確認できた。セパレータF,G
を用いた電池では、極板群の変形はみられず、正負極板
の接触箇所は確認できなかった。
As can be seen from Table 3, the separators A,
In the batteries using B, C, D, and E, the battery surface temperature became 135 ° C. or higher in the short-circuit test, and gas was ejected from the sealing portion. After the short-circuit test, the electrode group was observed by X-ray CT scan. However, in the batteries using separators A, B, C, D, and E, the electrode group was deformed, and the positive and negative electrode plates were in contact. It was confirmed that a short circuit occurred again. Separator F, G
In the battery using, no deformation of the electrode plate group was observed, and no contact portion between the positive and negative electrode plates could be confirmed.

【0022】セパレータA,B,C,D,Eはセパレー
タF,Gに比べて、閉塞温度における収縮率が大きいた
め、その収縮により極板群に変形を与え、正負極板が接
触し再短絡が生じたためと考えられる。短絡時の発熱の
際に、極板群に変形を与えず、正負極板の接触による再
短絡を防ぐには、閉塞温度における収縮率が50%以下
であるセパレータを用いるのが望ましいことがわかる。
Since the separators A, B, C, D, and E have a higher shrinkage at the closing temperature than the separators F and G, the shrinkage causes deformation of the electrode plate group, and the positive and negative electrode plates come into contact and re-short-circuit. It is considered that this occurred. It can be seen that it is desirable to use a separator having a shrinkage ratio of 50% or less at the closing temperature in order to prevent the electrode group from being deformed during the heat generation during a short circuit and to prevent the re-short circuit due to the contact of the positive and negative electrodes with each other. .

【0023】次に表4からわかるように、透気度が20
0sec/100ccのセパレータA’を用いた電池
は、短絡試験において電池表面温度が131℃になっ
た。短絡試験後、X線CTスキャンにて極板群の観察を
行ったが、極板群の変形はみられず、正負極板の接触箇
所は確認できなかった。
Next, as can be seen from Table 4, the air permeability is 20
The battery using the 0 sec / 100 cc separator A 'had a battery surface temperature of 131 ° C. in the short-circuit test. After the short-circuit test, the electrode group was observed by an X-ray CT scan, but no deformation of the electrode group was observed, and no contact point between the positive and negative electrode plates was confirmed.

【0024】セパレータA’と閉塞温度における収縮率
が同じ50%であるセパレータB’,Fを用いた電池の
短絡挙動を図2に示す。
FIG. 2 shows the short-circuit behavior of a battery using separators B ′ and F having the same 50% shrinkage at the closing temperature as that of the separator A ′.

【0025】図2からわかるように、セパレータA’は
透気度が低いため短絡電流が大きく、そのためジュール
熱も大きくなり、電池内部で急激な発熱が生じ、熱暴走
に至ったと考えられる。
As can be seen from FIG. 2, it is considered that the separator A ′ has a low air permeability and therefore a large short-circuit current, which also increases the Joule heat, causing rapid heat generation inside the battery, leading to thermal runaway.

【0026】以上より、透気度が400sec/100
cc以上でポリエチレン単体の微多孔性膜で透気度が1
00000sec/100ccになる閉塞温度におい
て、収縮率が50%以下であるセパレータを用いること
により、短絡時の安全性に優れていることがわかる。
As described above, the air permeability is 400 sec / 100
Above 1 cc, air permeability is 1 with a polyethylene microporous membrane
It can be seen that by using a separator having a shrinkage ratio of 50% or less at a closing temperature of 00000 sec / 100 cc, safety in a short circuit is excellent.

【0027】次に、表3表4より、10サイクル目の
放電容量を比較すると、熱処理が施されていないセパレ
ータF、セパレータG、及び熱処理が施されているにも
拘らず透気度が本発明の範囲外にあるセパレータF’、
セパレータG’では放電容量が著しく低下していること
が確認された。
Next, Table 3, Table 4 shows, when comparing the discharge capacity of the 10th cycle, the heat treatment is not subjected separator
Data F, separator G, and heat-treated
Regardless, the separator F ′ whose air permeability is out of the range of the present invention,
Discharge capacity of separator G 'is significantly reduced
Was confirmed.

【0028】これらの結果から、セパレータには熱処理
後の透気度が400sec/100cc以上、1100
sec/100cc以下の範囲にあり、且つ熱閉塞温度
における収縮率が50%以下であるものを用いるのが望
ましいことがわかる。
From these results, the heat treatment was applied to the separator.
Air permeability after 400sec / 100cc or more , 1100
sec / 100cc or less , and thermal plugging temperature
It can be seen that it is desirable to use one having a shrinkage ratio of 50% or less.

【0029】なお、本実施例ではセパレータにポリエチ
レン単体の微多孔性膜を用いたが、ポリエチレンを含む
ポリオレフィン複合多孔性膜でも同様な結果が得られ
た。
In the present embodiment, a microporous membrane of polyethylene alone was used as the separator, but similar results were obtained with a polyolefin composite porous membrane containing polyethylene.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、本発明
は短絡時の安全性に優れた非水電解液二次電池を提供で
きる。
As is apparent from the above description, the present invention can provide a non-aqueous electrolyte secondary battery excellent in safety at the time of short circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における円筒形電池の縦断面図FIG. 1 is a longitudinal sectional view of a cylindrical battery according to an embodiment of the present invention.

【図2】本発明の実施例における短絡試験時の挙動を示
す図
FIG. 2 is a diagram showing a behavior during a short-circuit test in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 正極リード板 3 負極 4 負極リード板 5 セパレータ 6 上部絶縁板 7 下部絶縁板 8 ケース 9 封口板 10 ガスケット 11 正極端子 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Positive electrode lead plate 3 Negative electrode 4 Negative electrode lead plate 5 Separator 6 Upper insulating plate 7 Lower insulating plate 8 Case 9 Sealing plate 10 Gasket 11 Positive terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱田 正晴 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平7−29563(JP,A) 特開 平5−310989(JP,A) 特開 平8−171934(JP,A) 特開 平4−332479(JP,A) 特開 平4−237971(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 2/16 H01M 10/40 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masaharu Hamada 1006 Kazuma Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-7-29563 (JP, A) JP-A-5-95 310989 (JP, A) JP-A-8-171934 (JP, A) JP-A-4-332479 (JP, A) JP-A-4-237971 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 2/16 H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウム複合酸化物からなる正極と、炭
素材料からなる負極との間に、ポリエチレン単体の微多
孔性膜、もしくはポリエチレンを含むポリオレフィン複
合微多孔性膜から形成され、非水電解液を含浸保持する
セパレータを介在して渦巻状に巻回した電極体を備えた
非水電解液二次電池であって、前記セパレータは、微多
孔性膜の熱閉塞温度よりも低い温度にて熱処理が施さ
、熱処理前に比べて透気度を増加されてなり、熱処理
後におけるセパレータの透気度が400sec/100
cc以上、1100sec/100cc以下にあり、且
つ前記熱閉塞温度における収縮率が50%以下にあるこ
とを特徴とする非水電解液二次電池。
A non-aqueous electrolyte formed between a positive electrode made of a lithium composite oxide and a negative electrode made of a carbon material, formed of a microporous film of polyethylene alone or a polyolefin composite microporous film containing polyethylene. the a nonaqueous electrolyte secondary battery including the interposed a separator impregnated held spirally wound electrode body, wherein the separators, at a temperature lower than the thermal closure temperature of the microporous membrane The heat treatment is performed , and the air permeability is increased as compared with before the heat treatment, and the air permeability of the separator after the heat treatment is 400 sec / 100.
a non-aqueous electrolyte secondary battery, wherein the shrinkage at the heat closing temperature is 50% or less.
JP18032096A 1996-07-10 1996-07-10 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3307231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18032096A JP3307231B2 (en) 1996-07-10 1996-07-10 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18032096A JP3307231B2 (en) 1996-07-10 1996-07-10 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH1027597A JPH1027597A (en) 1998-01-27
JP3307231B2 true JP3307231B2 (en) 2002-07-24

Family

ID=16081158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18032096A Expired - Fee Related JP3307231B2 (en) 1996-07-10 1996-07-10 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3307231B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070659B2 (en) * 2001-03-05 2012-11-14 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2002289164A (en) * 2001-03-28 2002-10-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2884746B2 (en) * 1990-09-03 1999-04-19 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JPH04332479A (en) * 1991-05-02 1992-11-19 Sony Corp Nonaqueous electrolyte secondary battery
JPH05310989A (en) * 1992-04-30 1993-11-22 Mitsubishi Kasei Corp Polyethylenic porous film
JP3050021B2 (en) * 1993-05-11 2000-06-05 三菱化学株式会社 Battery separator and lithium battery using the same
JPH08171934A (en) * 1994-12-16 1996-07-02 Sanyo Electric Co Ltd Lithium secondary battery

Also Published As

Publication number Publication date
JPH1027597A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
JP3586195B2 (en) Composite electrode containing PTC polymer
KR100331209B1 (en) Non-aqueous Electrolyte Secondary Battery
JPH0778635A (en) Safe secondary battery of non-aqueous group
JPH08167429A (en) Rechargeable electrochemical cell and its manufacture
WO1996041394A1 (en) Process for improving lithium ion cell
JP2015088370A (en) Positive electrode, and lithium ion secondary battery
JPH1050287A (en) Nonaqueous electrolyte battery, separator for it, and manufacture of the separator
JP2000331715A (en) Nonaqueous secondary battery
JPH10261386A (en) Battery case and battery
JP2004303597A (en) Lithium secondary battery and manufacturing method of the same
JPH10233237A (en) Nonaqueous electrolyte secondary battery
JPH10112323A (en) Battery
JPH10112321A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH08148184A (en) Nonaqueous electrolyte secondary battery
JP3307231B2 (en) Non-aqueous electrolyte secondary battery
JPH07272762A (en) Nonaqueous electrolytic secondary battery
JPH06243856A (en) Electricity accumulating element
JP4439870B2 (en) Nonaqueous electrolyte secondary battery
JP2000058125A (en) Nonaqueous electrolyte battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP3508464B2 (en) Non-aqueous electrolyte secondary battery
JPH0855637A (en) Nonaqueous electrolytic secondary battery
JPH10112305A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3409861B2 (en) Non-aqueous electrolyte secondary battery
JP2000040499A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130517

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees