JPH0230375B2 - - Google Patents

Info

Publication number
JPH0230375B2
JPH0230375B2 JP54160758A JP16075879A JPH0230375B2 JP H0230375 B2 JPH0230375 B2 JP H0230375B2 JP 54160758 A JP54160758 A JP 54160758A JP 16075879 A JP16075879 A JP 16075879A JP H0230375 B2 JPH0230375 B2 JP H0230375B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic core
core material
present
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54160758A
Other languages
Japanese (ja)
Other versions
JPS5684439A (en
Inventor
Takeshi Masumoto
Shigehiro Oonuma
Kiwamu Shirakawa
Masateru Nose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP16075879A priority Critical patent/JPS5684439A/en
Publication of JPS5684439A publication Critical patent/JPS5684439A/en
Publication of JPH0230375B2 publication Critical patent/JPH0230375B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、磁心材料に関し、特に電気抵抗が高
く、しかも磁歪が小さくて透磁率の高いコバルト
基非晶質合金からなる磁心材料に関するものであ
る。 〔従来の技術〕 従来弱電用小型磁心、例えば捲鉄心、磁気ヘツ
ド等の材料としては、Moパーマロイ(JIS−PC
級パーマロイ)が主として用いられているが、こ
れらの合金はその特性を得るためには極めて厳し
い条件下での熱処理が必要であり、特に捲鉄心と
して使用する際の鉄損をできるだけ少なくするた
めに100〜50μmという薄帯にしなければならず、
そのための圧延および熱処理の工程が複雑であ
る。又、磁気ヘツドとして長時間使用すると磁気
テープによる摩耗のために録音特性が著しく劣化
する点に問題があり、そのために現在では磁気ヘ
ツド用磁性合金としては前述のパーマロイ系合金
のほかにフエライト、アルパームあるいはセンダ
ストのような高硬度の材料も用いられている。こ
れらのうちフエライトは高周波において優れた電
磁気特性を示し、かつ摩耗および変形は小さい
が、一方飽和磁化が低く記録歪みを生じやすい上
に摺動ノイズが多く信号対雑音比(S/N)を大
きくすることができないことが本質的欠陥となつ
ている。またアルパームやセンダストは磁気特性
の点では優れているが、これらの材料は展延性及
び機械加工性に乏しいという欠点を有している。 以上述べたように、従来用いられている磁心用
材料は種々の欠点があり、十分満足しうる材料は
得られていない。 〔発明が解決しようとする課題〕 これに対し、最近、非晶質金属磁性材料が着目
されてきた。この材料は、従来の結晶質磁性金属
材料にみられた磁気特性に加え電気抵抗が高く、
さらに製法上から本質的に薄帯状で得られるため
に、交流磁心材料として注目されているものであ
る。すなわち、Fe、Co、Niとその他にP、C、
B、Siなどの非晶質化元素を約20原子%含む成分
組成の非晶質合金は、上記の各種結晶質高透磁率
金属材料に比べ、保磁力が小さく、透磁率が大き
い等優れた磁気特性が得られることが知られてい
る。 しかしながら、これらの非晶質合金は、磁気特
性改善のために一般に結晶化温度以下の温度で熱
処理を施す必要があるが、前記熱処理によれば脆
性は逆に大きくなり、機械的性質、特に耐摩耗性
は硬度が高い割には低いという欠点がある。さら
に、例えばFe40−Ni40−P14−B6非晶質合金に見
られるように磁性の熱的安定性が悪いという欠点
もある。 しかも、P、C、B、Si等の半金属元素を約20
原子%も多量に含む非晶質合金は硬度が800〜
1100Hvと高いために所望の形状に打ち抜くため
のダイスの寿命が極めて短いことが問題となつて
いる。 本発明は、従来実用されている結晶質の磁心用
高透磁率金属材料が有する前記諸欠点がなく、し
かも既知の非晶質合金が有する前記欠点をも同時
に解消し、磁心材料として要求される高い電気抵
抗を有するだけでなく、保磁力および磁歪が小さ
く、透磁率が大きく、かつこれらの磁気特性の熱
的安定性に優れていることに加え、打ち抜きある
いは切断等の機械加工性が良く、熱処理による脆
化が少ないという特長を備えた非晶質合金からな
る磁心材料を提供することを目的とするものであ
る。 〔課題を解決するための手段〕 このような目的によく適合する磁心材料とし
て、本発明は、原子比率で、Zrを7〜15%、Cr、
Mo、W、V、Nb、Taの中から選ばれる何れか
1種または2種以上を5超〜20%以下、残部実質
的にCoよりなる非晶質合金であつて、電気抵抗
が120〜140μΩcmである磁心材料を提案する。 より好ましくは、Zrを8〜13%、Cr、Mo、
W、V、Nb、Taの中から選ばれる何れか1種ま
たは2種以上を7〜17%、残部実質的にCoより
なる非晶質合金であつて、電気抵抗が120〜140μ
Ωcmを示す磁心材料、を提案する。 〔作用〕 通常、固体の金属、合金は結晶構造を有する
が、適当な組成をもつ合金を液体状態から急速に
冷却するか、あるいは蒸着法、スパツタ法、メツ
キ法等の種々の技術を用いることにより、液体に
類似した周期的原子配列を持たない非結晶構造の
固体が得られる。このような金属は、非晶質金属
あるいは非晶質合金と呼ばれる(以下非晶質金属
あるいは非晶質合金を合わせて非晶質合金と称
す)。この非晶質合金は、前述のように種々の技
術を適当に用いても得られることがよく知られて
おり(例えば特開昭49−91014号)、中でも気相か
ら超急冷するスパツタ法によれば液体急冷法によ
り得られる非晶質合金の組成範囲よりも広い組成
範囲で非晶質合金が得られることが知られてい
る。 なお、液体急冷法の例としては、第1図aに示
す如く高速回路する1つの円板の外周面上または
第1図bに示す如く高速に互いに逆回転する2つ
のロールの間に液体金属を連続的に噴出させ、回
転円板または双ロールの表面上で104〜106℃/秒
程度の冷却速度で急冷凝固させる方法がある。 この、非晶質合金を組成的に見ると、遷移金属
元素と半金属元素とを組み合わせた合金系(半金
属量は約10〜30原子%)と、原子半径が異なる2
種又は3種以上の遷移金属元素を組み合わせた合
金系との2種の合金系が知られている。 後者の合金系の一例としては、遷移金属元素で
ある鉄族元素とジルコニウムからなる非晶質合金
が知られており、本発明者らは、上記鉄族元素と
ジルコニウムを含む各種非晶質合金の中に強磁性
を有する合金があることを新規に知見し、特願昭
54−43838号(特公昭60−30734号;特許第
1314339号)として、先に特許出願した。 本発明者らは、上記鉄族元素とジルコニウムを
含む非晶質合金のうち特にCoを主成分とする非
晶質合金につき、主として磁心材料として用いる
ために、さらに詳細な研究を行なつた結果、所定
成分組成を有する合金を液相、気相から超急冷し
て得た非晶質合金、又はこれに所定の熱処理を磁
場中あるいは応力下で施した合金は、電気抵抗が
高く、保磁力および磁歪が小さく、透磁率が高
く、熱的ならびに経時的に安定した磁気特性を具
え耐摩耗性に富み、さらに半金属元素を多量に含
む従来の非晶質合金に比べ脆化し難く、かつ打ち
抜き、研磨あるいは切断等の機械加工性が良好で
あるということを、新規に知見して本発明に想到
した。 本発明の磁心材料は、前記特長の他に次のよう
な特長をも有する。機械加工によつてその上記特
性がほとんど変化しない。例えば透磁率、保磁
力、残留磁束密度などはこの磁心材料に張力を加
えても殆んど一定で変わらず、外部応力に対して
不感である。したがつて、本発明の磁心材料が、
切断、打ち抜きあるいは研磨等の機械加工によつ
て磁気特性が殆んど劣化しないので、磁心材料を
所定の寸法、形状に打ち抜き、研磨あるいは切断
して得られる薄片を使用する際に非常に有利であ
る。さらに本発明磁心材料は、電気抵抗がが120
〜140μΩcmと高く、しかも20〜40μm程度の薄帯
状にも製造できるので、高周波特性の良い小型磁
心材料として非常に好適な材料である。 次に本発明の磁心材料を実験データに基いて説
明する。 本実験において用いた磁心材料は幅約2mm、厚
さ約20μmの非晶質合金からなる薄帯試料であ
る。該試料は本発明の成分組成を有する合金溶湯
を、第1図aに示す如く高速回転する1つの円板
の外周面上に連続的に噴出させて、回転円板の表
面上で105〜106℃/秒程度の冷却速度で急冷凝固
させて得た。さらに前記超急冷してなる磁心材料
を約350〜500℃の温度範囲でかつその材料の結晶
化温度未満の温度において焼鈍した後、室温まで
冷却し磁気特性を測定した。 第1表に本発明の非晶質合金からなる磁心材
料、既知の金属−半金属系非晶質合金の一部なら
びに従来一般に用いられている各種結晶質高透磁
率金属材料について、それらの成分組成および磁
気特性を示した。
[Industrial Application Field] The present invention relates to a magnetic core material, and particularly to a magnetic core material made of a cobalt-based amorphous alloy that has high electrical resistance, low magnetostriction, and high magnetic permeability. [Prior Art] Conventionally, Mo permalloy (JIS-PC
These alloys require heat treatment under extremely severe conditions in order to obtain their properties, and in particular, in order to minimize iron loss when used as a wound core. It must be made into a thin strip of 100 to 50 μm,
The rolling and heat treatment steps required for this purpose are complicated. Another problem is that when used as a magnetic head for a long time, the recording characteristics deteriorate significantly due to wear caused by the magnetic tape.As a result, in addition to the above-mentioned permalloy alloys, ferrite and alperm are currently used as magnetic alloys for magnetic heads. Alternatively, a highly hard material such as sendust is also used. Among these, ferrite exhibits excellent electromagnetic properties at high frequencies and has low wear and deformation, but has low saturation magnetization and is prone to recording distortion, as well as high sliding noise and a high signal-to-noise ratio (S/N). The inability to do so has become an essential flaw. Although Alperm and Sendust have excellent magnetic properties, these materials have the disadvantage of poor malleability and machinability. As described above, the conventionally used magnetic core materials have various drawbacks, and a fully satisfactory material has not been obtained. [Problems to be Solved by the Invention] In response to this problem, amorphous metal magnetic materials have recently attracted attention. In addition to the magnetic properties seen in conventional crystalline magnetic metal materials, this material has high electrical resistance.
Furthermore, because it can be obtained essentially in the form of a thin strip due to its manufacturing method, it is attracting attention as an AC magnetic core material. That is, in addition to Fe, Co, and Ni, P, C,
Amorphous alloys with a composition containing about 20 atomic percent of amorphous elements such as B and Si have superior properties such as lower coercive force and higher magnetic permeability than the various crystalline high-permeability metal materials mentioned above. It is known that magnetic properties can be obtained. However, these amorphous alloys generally need to be heat treated at a temperature below their crystallization temperature in order to improve their magnetic properties, but this heat treatment increases their brittleness and impairs their mechanical properties, especially their resistance. The drawback is that the abrasion resistance is low despite its high hardness. Furthermore, it also has the disadvantage of poor magnetic thermal stability, as seen, for example, in Fe40 - Ni40 - P14 - B6 amorphous alloys. Furthermore, approximately 20 metalloid elements such as P, C, B, and Si are
Amorphous alloys containing a large amount of atomic percent have a hardness of 800~
Due to the high voltage of 1100Hv, the lifespan of the die used to punch out the desired shape is extremely short, which is a problem. The present invention does not have the above-mentioned drawbacks of conventional crystalline high permeability metal materials for magnetic cores, and also eliminates the above-mentioned drawbacks of known amorphous alloys, and is required as a magnetic core material. It not only has high electrical resistance, but also low coercive force and magnetostriction, high magnetic permeability, and excellent thermal stability of these magnetic properties, as well as good machinability such as punching or cutting. The object of the present invention is to provide a magnetic core material made of an amorphous alloy that has the feature of being less susceptible to embrittlement due to heat treatment. [Means for Solving the Problems] As a magnetic core material well suited for such purposes, the present invention contains Zr in an atomic ratio of 7 to 15%, Cr,
An amorphous alloy consisting of more than 5 to 20% of one or more selected from Mo, W, V, Nb, and Ta, and the remainder substantially Co, and has an electrical resistance of 120 to 20%. We propose a magnetic core material with a resistance of 140μΩcm. More preferably, Zr is 8 to 13%, Cr, Mo,
An amorphous alloy consisting of 7 to 17% of one or more selected from W, V, Nb, and Ta, and the remainder substantially Co, and has an electrical resistance of 120 to 140μ.
We propose a magnetic core material that exhibits Ωcm. [Operation] Normally, solid metals and alloys have a crystalline structure, but alloys with appropriate compositions can be rapidly cooled from a liquid state, or various techniques such as vapor deposition, sputtering, plating, etc. can be used. This results in a solid with an amorphous structure that does not have a periodic atomic arrangement similar to that of a liquid. Such metals are called amorphous metals or amorphous alloys (hereinafter, amorphous metals or amorphous alloys are collectively referred to as amorphous alloys). It is well known that this amorphous alloy can be obtained by appropriately using various techniques as mentioned above (for example, Japanese Patent Application Laid-Open No. 49-91014). It is known that an amorphous alloy can be obtained in a wider composition range than that obtained by a liquid quenching method. In addition, as an example of the liquid quenching method, a liquid metal is cooled on the outer circumferential surface of one circular plate that circulates at high speed as shown in Figure 1a, or between two rolls that rotate in opposite directions at high speed as shown in Figure 1b. There is a method in which the material is continuously ejected and rapidly solidified on the surface of a rotating disk or twin rolls at a cooling rate of about 10 4 to 10 6 ° C./sec. Looking at the composition of this amorphous alloy, there are two types: an alloy system that combines a transition metal element and a metalloid element (the amount of metalloid element is approximately 10 to 30 at%), and two types with different atomic radii.
Two types of alloy systems are known: a transition metal element or an alloy system that is a combination of three or more transition metal elements. As an example of the latter alloy system, an amorphous alloy consisting of an iron group element, which is a transition metal element, and zirconium is known. New knowledge that there is an alloy with ferromagnetism in
No. 54-43838 (Special Publication No. 60-30734; Patent No.
No. 1314339), a patent application was previously filed. The present inventors have conducted more detailed research on amorphous alloys containing Co as a main component among the above-mentioned amorphous alloys containing iron group elements and zirconium, in order to use them mainly as magnetic core materials. , amorphous alloys obtained by ultra-quenching an alloy with a certain composition from the liquid phase or gas phase, or alloys obtained by subjecting it to a certain heat treatment in a magnetic field or under stress, have high electrical resistance and coercive force. It has low magnetostriction, high magnetic permeability, thermally and temporally stable magnetic properties, high wear resistance, and is less susceptible to embrittlement than conventional amorphous alloys containing large amounts of metalloid elements, and can be punched. The present invention was conceived based on the new finding that machining properties such as polishing and cutting are good. In addition to the above features, the magnetic core material of the present invention also has the following features. The above properties hardly change due to machining. For example, magnetic permeability, coercive force, residual magnetic flux density, etc. remain almost constant even when tension is applied to the magnetic core material, and are insensitive to external stress. Therefore, the magnetic core material of the present invention
Since the magnetic properties are hardly degraded by machining such as cutting, punching, or polishing, it is very advantageous when using thin pieces obtained by punching, polishing, or cutting magnetic core materials into predetermined dimensions and shapes. be. Furthermore, the magnetic core material of the present invention has an electrical resistance of 120
Since it has a high thickness of ~140 μΩcm and can also be manufactured in the form of a thin strip of about 20 to 40 μm, it is an extremely suitable material as a small magnetic core material with good high frequency characteristics. Next, the magnetic core material of the present invention will be explained based on experimental data. The magnetic core material used in this experiment was a ribbon sample made of an amorphous alloy with a width of about 2 mm and a thickness of about 20 μm. The sample was prepared by continuously jetting a molten alloy having the composition of the present invention onto the outer peripheral surface of one disk rotating at high speed as shown in FIG . It was obtained by rapid solidification at a cooling rate of about 10 6 °C/sec. Further, the ultra-quenched magnetic core material was annealed in a temperature range of about 350 to 500°C and below the crystallization temperature of the material, and then cooled to room temperature and its magnetic properties were measured. Table 1 lists the components of the magnetic core material made of the amorphous alloy of the present invention, some of the known metal-metalloid amorphous alloys, and various crystalline high permeability metal materials commonly used in the past. The composition and magnetic properties are shown.

【表】 第1表においてNo.1〜6は本発明磁心材料、No.
7、8は既知のFe−Ni−P−B系およびCo−Fe
−Si−B系非晶質合金、No.9、10はそれぞれ市販
の高硬度パーマロイおよびフエライトである。 第1表から判るように、本発明磁心材料は、市
販の高透磁率金属材料に比べて優れた磁気特性を
有している。例えば、第1表No.3の磁心材料は比
較例No.9の高硬度パーマロイに比べて保磁力は小
さく、最大透磁率、実効透磁率も高く、しかも飽
和磁束密度もほぼ同等である。 また、第1表No.3の本発明磁心材料は、既知の
非晶質合金の一例である第1表No.7の合金に比べ
ても保磁力は小さく、飽和磁束密度はほぼ同等で
あり、実効透磁率は3倍以上であり、しかも磁歪
は10分の1以下であるような優れた磁気特性を有
することが判る。 さらにまた、第1表No.4の磁心材料を第1表No.
8の非晶質合金と比較すると、保磁力、最大透磁
率は若干劣るものの、実効透磁率は同等であり、
飽和磁束密度は約2000Gも高く、磁心材料として
より有利に使用することができる。 以上説明した本発明材料は、第1表から判るよ
うに、磁歪と透磁率とに優れるのみならず、さら
に高い電気抵抗をも有するものであり、そのため
に磁心材料として必要な鉄損値の低い優れた磁気
特性を有するものである。 特に、電気抵抗については、Co−Zr系(メタ
ル−メタル系)であるにも拘わらず、第1表中に
比較例として示したメタル−メタロイド系のもの
と遜色のない程高い値を示すものであり、それ故
に、従来のメタル−メタル系非晶質合金では知見
されていなかつた磁心材料として好適であること
が判る。 本発明の磁心材料は、何れも硬度が高硬度パー
マロイの約1.7〜2倍と高く、またフエライトと
比較するとほぼ同等であることが判る。例えば、
第1表No.2あるいはNo.3の磁心材料のビツカース
硬度はそれぞれ657、698であり、これらの値はフ
エライトの硬度とほぼ同等である。 本発明中Co78Cr10.5Zr11.5、Co79.5Mo9.5Zr11の2
種の非晶質合金の薄帯試料をトロイダル状に巻
き、それぞれ150〜490℃間の範囲で各20分間焼な
ました際の1KHzにおける実効透磁率の変化を第
2図に示す。 熱処理を施さない急冷材の実効透磁率は1500〜
5000程度であるが、この合金を非酸化性雰囲気あ
るいは真空中において結晶化温度以下の温度範囲
内で焼なましを施すことにより、磁気特性が大き
く改善され、例えば450〜500℃で焼なました試料
の実効透磁率は30000〜40000程度にまで上昇する
ことが判る。 第3図に、本発明の磁心材料の一例として
Co81Mo9Zr10非晶質合金の急冷材について、保磁
力および残留磁束密度に対する張力の影響を調べ
た結果を示す。 この結果によれば、張力の影響はほとんど認め
られず、本発明の磁心材料は切断、打ち抜きなど
の機械加工によつて磁気特性が殆んど劣化しない
ことが判る。 また、第4図に示すように、Moパーマロイの
実効透磁率は、周波数10KHzを超えると急激に低
下するが、本発明の磁心材料、例えば
Co80Mo9Nb2Zr9非晶質合金の実効透磁率は、周
波数50KHz付近までは10000以上の値を示し、可
聴周波数範囲内で優秀な性質を有することが判つ
た。一方、アルパームに比べても、広い周波数範
囲ではるかに高い実効透磁率を有することが判
る。このことから本発明の磁心材料は、磁気ヘツ
ドあるいは家電用小型トランス等に適した材料で
あることが判る。 次に本発明の磁心材料の成分組成を限定する理
由、とくに磁心材料として好ましい高い電気抵抗
を有する一方で、それと共に優れた磁気特性を得
るために必要な各成分組成の範囲についてを説明
する。 本発明において、Zrは、7%より少ないと超
急冷しても高い透磁率を有する良好な非晶質合金
を得ることが困難であり、15%より多いと、飽和
磁束密度が著しく低下するので、7〜15%の範囲
内にする必要がある。とくに、8〜13%の範囲内
で保磁力がより小さく飽和磁束密度が比較的大き
い優れた磁気特性が得られる。 Cr、Mo、W、V、Nb、Ta(族あるいは族
元素)は非晶質化を助成し、キユーリー温度を下
げる効果を有するために熱処理を容易にし、さら
に磁歪の低減効果をも有する。その量が5%以下
であると、その効果は小さく、20%よりも多い
と、飽和磁速密度が著しく低下するので、これら
の元素は5を越え20%以下の範囲内にする必要が
あり、望ましくは7〜17%の範囲内にすることが
より好適である。また、上記各成分組成範囲内に
おいては120〜140μΩcmの高電気抵抗を有する磁
心材料を得ることができることを確認した。 本発明の磁心材料は、前述の種々の技術を用い
て得た非晶質合金素材を、その合金素材の結晶化
温度未満の温度で焼鈍した後、急冷あるいは徐冷
することによつて得ることができる。この場合、
焼鈍雰囲気は非酸化性あるいは真空中で行うこと
は有利である。ただし、若干の酸素によつて非晶
質合金の表面が酸化されても磁気特性をそこなう
ことがない場合には、むしろそれによつて形成さ
れる酸化被膜が絶縁被膜としての効果を有する。。 本発明の非晶質合金からなる磁心材料を150℃
〜結晶化温度未満の範囲内で焼鈍した後、急冷あ
るいは徐冷すると加工歪が除去され、磁気特性を
向上させることができる。 また本発明の非晶質合金からなる磁心材料を磁
場あるいは応力の少なくとも1つの作用下におい
て、結晶化温度以下の温度で焼鈍した後、急冷あ
るいは徐冷すると、より優れた磁気特性を有する
合金を得ることができる。 なお、前記磁場中焼なましによる磁気特性改善
方法として、本発明者の一人が発明し、特開昭51
−73923号公報により開示された方法を用いるこ
とができる。 次に本発明を実施例について説明する。 実施例 1 本発明の磁心材料のCo80Mo10Zr10非晶質合金
と、比較例としてFe40Ni40P14B6非晶質合金を360
℃及び400℃で各30分間熱処理を施した後、曲げ
試験を行なつた結果を第2表に示す。 なお、実施例1〜3において用いた非晶質合金
は幅約2mm、厚さ約20μmの薄帯試料である。 一般に非晶質合金の脆化の評価方法として、2
枚の平行板の間隔Lを測定し、試片が破壊した際
のL値を求め、次式により破壊ひずみ εf=t/L−t (ここでtは試片の厚さを示す)を求めるという
手段が採用されているが、第2表の結果もこの方
法によつた。なお、第2表中εf>1は試料を完全
に密着する迄曲げても破壊しないことを表わす。 第2表から明らかなように、所定の磁気特性を
得るための熱処理によつても本発明の磁心材料は
ほとんど脆化しないことが判る。
[Table] In Table 1, Nos. 1 to 6 are magnetic core materials of the present invention, No.
7 and 8 are known Fe-Ni-P-B system and Co-Fe
-Si-B amorphous alloys No. 9 and 10 are commercially available high hardness permalloy and ferrite, respectively. As can be seen from Table 1, the magnetic core material of the present invention has superior magnetic properties compared to commercially available high permeability metal materials. For example, the magnetic core material No. 3 in Table 1 has a smaller coercive force, higher maximum magnetic permeability and higher effective magnetic permeability, and almost the same saturation magnetic flux density than the high-hardness permalloy of Comparative Example No. 9. Furthermore, the magnetic core material of the present invention shown in No. 3 in Table 1 has a smaller coercive force and almost the same saturation magnetic flux density than the alloy shown in No. 7 in Table 1, which is an example of a known amorphous alloy. It can be seen that it has excellent magnetic properties such that the effective magnetic permeability is more than 3 times higher and the magnetostriction is less than 1/10. Furthermore, the magnetic core material of Table 1 No. 4 is used as Table 1 No. 4.
Compared to the amorphous alloy No. 8, the coercive force and maximum magnetic permeability are slightly inferior, but the effective magnetic permeability is the same.
The saturation magnetic flux density is as high as approximately 2000G, making it more advantageous to use as a magnetic core material. As can be seen from Table 1, the materials of the present invention described above not only have excellent magnetostriction and magnetic permeability, but also have higher electrical resistance, and therefore have a lower iron loss value, which is necessary as a magnetic core material. It has excellent magnetic properties. In particular, in terms of electrical resistance, despite being Co-Zr based (metal-metal based), it shows a value as high as that of the metal-metalloid based products shown as comparative examples in Table 1. Therefore, it can be seen that it is suitable as a magnetic core material, which has not been found in conventional metal-metal amorphous alloys. It can be seen that the hardness of the magnetic core materials of the present invention is about 1.7 to 2 times as high as that of high-hardness permalloy, and is almost equivalent to that of ferrite. for example,
The Vickers hardness of the magnetic core materials No. 2 or No. 3 in Table 1 is 657 and 698, respectively, and these values are approximately the same as the hardness of ferrite. In the present invention, Co 78 Cr 10.5 Zr 11.5 , Co 79.5 Mo 9.5 Zr 11-2
Figure 2 shows the change in effective magnetic permeability at 1 KHz when a thin strip sample of the amorphous alloy was wound into a toroidal shape and annealed for 20 minutes each in the range of 150 to 490°C. The effective permeability of quenched material without heat treatment is 1500~
However, by annealing this alloy in a non-oxidizing atmosphere or in a vacuum at a temperature below the crystallization temperature, the magnetic properties can be greatly improved; for example, annealing at 450-500℃ It can be seen that the effective magnetic permeability of the sample increases to about 30,000 to 40,000. FIG. 3 shows an example of the magnetic core material of the present invention.
The results of investigating the influence of tension on the coercive force and residual magnetic flux density of a rapidly solidified Co 81 Mo 9 Zr 10 amorphous alloy are shown. According to the results, almost no influence of tension was observed, and it was found that the magnetic properties of the magnetic core material of the present invention hardly deteriorated by machining such as cutting and punching. Furthermore, as shown in FIG. 4, the effective magnetic permeability of Mo permalloy decreases rapidly when the frequency exceeds 10 KHz, but the magnetic core material of the present invention, e.g.
The effective magnetic permeability of the Co 80 Mo 9 Nb 2 Zr 9 amorphous alloy showed a value of 10,000 or more up to frequencies around 50 KHz, indicating that it had excellent properties within the audible frequency range. On the other hand, it can be seen that it has a much higher effective magnetic permeability over a wide frequency range than Alperm. This shows that the magnetic core material of the present invention is suitable for magnetic heads, small transformers for household appliances, and the like. Next, the reason for limiting the component composition of the magnetic core material of the present invention will be explained, particularly the range of each component composition necessary to have a desirable high electrical resistance as a magnetic core material and also to obtain excellent magnetic properties. In the present invention, if Zr is less than 7%, it is difficult to obtain a good amorphous alloy with high magnetic permeability even after ultra-quenching, and if it is more than 15%, the saturation magnetic flux density is significantly reduced. , it is necessary to keep it within the range of 7-15%. In particular, excellent magnetic properties with a smaller coercive force and a relatively large saturation magnetic flux density can be obtained within the range of 8 to 13%. Cr, Mo, W, V, Nb, and Ta (group or group elements) assist in amorphization, have the effect of lowering the Curie temperature, facilitate heat treatment, and also have the effect of reducing magnetostriction. If the amount is less than 5%, the effect will be small, and if it is more than 20%, the saturation magnetic velocity density will decrease significantly, so the content of these elements must be within the range of more than 5 and less than 20%. , preferably within the range of 7 to 17%. Furthermore, it was confirmed that a magnetic core material having a high electrical resistance of 120 to 140 μΩcm could be obtained within the above-mentioned composition ranges. The magnetic core material of the present invention can be obtained by annealing an amorphous alloy material obtained using the various techniques described above at a temperature below the crystallization temperature of the alloy material, and then rapidly or slowly cooling it. Can be done. in this case,
It is advantageous for the annealing atmosphere to be non-oxidizing or to be carried out in vacuum. However, if the magnetic properties are not impaired even if the surface of the amorphous alloy is oxidized by a small amount of oxygen, the oxide film formed thereby has an effect as an insulating film. . The magnetic core material made of the amorphous alloy of the present invention was heated to 150°C.
After annealing at a temperature below the crystallization temperature, processing strain can be removed and magnetic properties can be improved by rapid cooling or slow cooling. Furthermore, when the magnetic core material made of the amorphous alloy of the present invention is annealed at a temperature below the crystallization temperature under the action of at least one of a magnetic field or stress, and then rapidly or slowly cooled, an alloy having better magnetic properties can be obtained. Obtainable. One of the inventors of the present invention invented a method for improving magnetic properties by annealing in a magnetic field, which was published in Japanese Patent Application Laid-Open No.
The method disclosed in Japanese Patent No.-73923 can be used. Next, the present invention will be explained with reference to examples. Example 1 Co 80 Mo 10 Zr 10 amorphous alloy of the magnetic core material of the present invention and Fe 40 Ni 40 P 14 B 6 amorphous alloy as a comparative example
Table 2 shows the results of a bending test performed after heat treatment at 400°C and 400°C for 30 minutes each. The amorphous alloy used in Examples 1 to 3 is a ribbon sample with a width of about 2 mm and a thickness of about 20 μm. In general, as a method for evaluating the embrittlement of amorphous alloys, 2
Measure the distance L between the parallel plates, find the L value when the specimen breaks, and calculate the fracture strain ε f =t/L−t (where t indicates the thickness of the specimen) using the following formula. The results in Table 2 were also based on this method. Incidentally, in Table 2, ε f >1 indicates that the sample will not break even if it is bent until it is in complete contact. As is clear from Table 2, the magnetic core material of the present invention hardly becomes brittle even when subjected to heat treatment to obtain predetermined magnetic properties.

【表】 実施例 2 本発明の磁心材料の1つであるCo80Mo9.5Zr10.5
非晶質合金、および比較例としてCo70.3Fe4.7
Si15B10非晶質合金について、磁気テープに対す
る耐摩耗性を試験し、その結果を第3表に示す。 使用した非晶質合金の試料はすべて厚さが約
20μm、幅約2mmであり、所定の磁気特性が得ら
れるようにそれぞれの最適熱処理をした後、オー
トリピート型カセツトテープレコーダー(アカイ
GXC−715D)の磁気ヘツド部に装着し、磁気テ
ープの摺動速度4.95cm/秒で50時間および100時
間試験した後、試片の摩耗量を測定した。 第3表にみる如く、本発明の磁心材料の摩耗量
は、比較例のCo70.3Fe4.7Si15B10非晶質合金に比べ
て、1/3以下という優れた耐摩耗性を有すること
がわかる。
[Table] Example 2 Co 80 Mo 9.5 Zr 10.5 , one of the magnetic core materials of the present invention
Amorphous alloy, and Co 70.3 Fe 4.7 as a comparative example
The Si 15 B 10 amorphous alloy was tested for wear resistance against magnetic tape, and the results are shown in Table 3. All amorphous alloy samples used were approximately
20 μm and approximately 2 mm in width, and after being subjected to optimal heat treatment to obtain the specified magnetic properties, it is used in an auto-repeat type cassette tape recorder (AKA).
GXC-715D) was attached to the magnetic head of a magnetic tape, and tested at a magnetic tape sliding speed of 4.95 cm/sec for 50 hours and 100 hours, after which the amount of wear on the specimen was measured. As shown in Table 3, the amount of wear of the magnetic core material of the present invention is less than 1/3 that of the Co 70.3 Fe 4.7 Si 15 B 10 amorphous alloy of the comparative example, indicating that it has excellent wear resistance. Recognize.

【表】 実施例 3 本発明の磁心材料中Co80Cr10Zr10、および
Co80V10Zr10非晶質合金と、比較例としてCo70.3
Fe4.7Si15B10非晶質合金の3種の非晶質合金につ
いての切断試験の結果を第4表に示す。 試験方法は、厚さ約20μm、幅約2mmの試片を
シエアー(剪断機)により切断をくり返し、刃の
摩耗によつて上下の刃が試片をかみ込み、切断が
不可能な状態に至るまでの切断回数を調べたもの
である。なお使用した刃のビツカース硬度は650
である。 第4表にみる如く、本発明の磁心材料はいずれ
もCo−Fe−Si−B系非晶質合金に比べシエアー
の刃の寿命が4倍以上であり、本発明の磁心材料
の機械加工性は従来から知られている非晶質合金
のそれに比べて優れていることがわかる。
[Table] Example 3 Co 80 Cr 10 Zr 10 in the magnetic core material of the present invention, and
Co 80 V 10 Zr 10 amorphous alloy and Co 70.3 as a comparative example
Table 4 shows the results of cutting tests on three types of amorphous alloys: Fe 4.7 Si 15 B 10 amorphous alloy. The test method is to repeatedly cut a specimen approximately 20 μm thick and 2 mm wide using a shearing machine, and as the blades wear down, the upper and lower blades bite into the specimen, resulting in a state where cutting becomes impossible. This is a survey of the number of cuts made up to. The Bitkers hardness of the blade used is 650.
It is. As shown in Table 4, all of the magnetic core materials of the present invention have a shear blade life four times longer than that of the Co-Fe-Si-B amorphous alloy, and the machinability of the magnetic core materials of the present invention is It can be seen that this is superior to that of conventionally known amorphous alloys.

【表】 実施例 4 本発明の磁心材料中第5表に示す組成からなる
磁心材料について、幅約15mm、厚さ約30μmの薄
帯から10mmφ×6mmφのリング試料を打ち抜き、
無磁界中にて各合金の結晶化温度より50℃低い温
度で20分間加熱後、水冷した後その磁気特性を調
べた。いずれも高い実効透磁率と低い保磁力が得
られた。
[Table] Example 4 For the magnetic core material of the present invention having the composition shown in Table 5, a ring sample of 10 mmφ x 6 mmφ was punched out from a ribbon with a width of about 15 mm and a thickness of about 30 μm.
After heating for 20 minutes at a temperature 50°C lower than the crystallization temperature of each alloy in the absence of a magnetic field and cooling with water, the magnetic properties were investigated. In both cases, high effective permeability and low coercive force were obtained.

【表】 実施例 5 本発明の磁心材料のうち、第6表に示す組成か
らなる磁心材料について、幅約10mm、厚さ約30μ
mの薄帯を長手方向に200Oeの磁界を印加しなが
ら、各合金の結晶化温度より50℃低い温度で20分
間加熱し冷却した後、薄帯を巻いてトロイダル状
試料となし、磁気特性を調べた。何れの合金も
9000G以上の高い飽和磁束密度と低い保磁力及び
高い最大透磁率が得られ、巻磁心として有用であ
る事がわかつた。
[Table] Example 5 Among the magnetic core materials of the present invention, a magnetic core material having the composition shown in Table 6 was prepared with a width of about 10 mm and a thickness of about 30 μm.
While applying a magnetic field of 200 Oe in the longitudinal direction, the thin ribbon was heated for 20 minutes at a temperature 50°C lower than the crystallization temperature of each alloy. After cooling, the ribbon was wound to form a toroidal sample, and the magnetic properties were determined. Examined. any alloy
A high saturation magnetic flux density of 9000G or more, low coercive force, and high maximum magnetic permeability were obtained, and it was found to be useful as a wound core.

【表】 実施例 6 本発明の磁心材料のCo83Nb2Mo6Zr9磁心材料
の薄帯(幅約15mm、厚さ約30μm)からフオトエ
ツチング法により磁気ヘツドコアの形状に抜き、
市販のセンダスト及びパーマロイ製の同一形状コ
アと共にカセツトテープ用磁気ヘツドコアに一緒
に組み込んで23℃、相対湿度50%及び40℃、相対
湿度75%の2種類の環境下でそれぞれカセツトデ
ツキを用いてγ−酸化鉄テープによる耐摩耗試験
を行つた。その結果を第5図に示す。 本発明の磁心材料はパーマロイ、センダストの
いずれの合金よりも耐摩耗性に優れ、特に高温多
湿の環境で他の合金が非常に摩耗され易くなるの
に対して特に優れた耐摩耗性を示すことがわか
る。 実施例 7 実施例6で使用した本発明のCo83Nb2Mo6Zr9
磁心材料と同一組成の磁心材料並びに比較例とし
てセンダスト合金をスパツタ法で作製した。アル
ゴンガス圧は6mTorr、RF500Wで1μmの各合
金膜をガラス基板上に付着させた。 これを結晶化温度より50℃低い温度で20分間加
熱し冷却した後、試料の皮相透磁率を測定したと
ころ、下記の第7表に示すように20MHz迄センダ
ストよりも高い透磁率が得られた。
[Table] Example 6 A thin strip (approximately 15 mm in width and approximately 30 μm in thickness) of the magnetic core material of the present invention, Co 83 Nb 2 Mo 6 Zr 9 , was cut out into the shape of a magnetic head core by photoetching.
It was assembled into a magnetic head core for cassette tape together with commercially available Sendust and Permalloy cores of the same shape, and γ- A wear resistance test was conducted using iron oxide tape. The results are shown in FIG. The magnetic core material of the present invention has better wear resistance than either Permalloy or Sendust alloys, and exhibits particularly excellent wear resistance, especially in high temperature and humidity environments, where other alloys are extremely susceptible to wear. I understand. Example 7 Co 83 Nb 2 Mo 6 Zr 9 of the present invention used in Example 6
A magnetic core material having the same composition as the magnetic core material and a sendust alloy as a comparative example were prepared by a sputtering method. Each alloy film with a thickness of 1 μm was deposited on a glass substrate at an argon gas pressure of 6 mTorr and an RF of 500 W. After heating this for 20 minutes at a temperature 50°C lower than the crystallization temperature and cooling it, the apparent magnetic permeability of the sample was measured, and as shown in Table 7 below, a higher magnetic permeability than Sendust was obtained up to 20MHz. .

〔発明の効果〕〔Effect of the invention〕

以上本発明の磁心材料は、高い電気抵抗を有す
るとともに、保磁力が小さく、透磁率が高い優れ
た軟磁気特性を有するだけでなく、耐摩耗性が特
に大きく、さららに磁心材料としての適用にあた
つて好適な形態である薄帯状又は薄膜状試料を容
易に製造することができ、しかも従来知られてい
る半金属元素を多量に含む非晶質合金に比べ、切
断、打ち抜き、研磨等の機械加工がはるかに容易
であるという大きな特長を兼ね備えているので、
磁気ヘツド、高周波トランス等の磁心材料として
極めて好適に使用することができる。
As described above, the magnetic core material of the present invention not only has high electric resistance, low coercive force, and excellent soft magnetic properties such as high magnetic permeability, but also has particularly high wear resistance, and is further suitable for application as a magnetic core material. It is possible to easily produce ribbon-shaped or thin-film specimens, which are suitable for the test, and it is easier to cut, punch, polish, etc. than conventionally known amorphous alloys containing large amounts of metalloid elements. It has the great feature of being much easier to machine, so
It can be extremely suitably used as a magnetic core material for magnetic heads, high frequency transformers, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の磁心材料を溶融状態から超
急冷するのに用いられる装置の2つの例を示す略
線図、第2図は、本発明の磁心材料中、Co79.5
Mo9.5Zr11、Co78Cr10.5Zr11.5非晶質合金を無磁場
中で、それぞれ150〜490℃の間で20分間焼なまし
た際の実効透磁率(1KHz)の変化を示す図、第
3図はCo81Mo9Zr10本発明磁心材料の張力に対す
る保磁力および残留磁束密度の影響を示す図、第
4図は各種磁気ヘツドコア材の耐摩耗性の比較を
示す図、第5図は、各種磁気ヘツドコア材の耐摩
耗性の比較を示す図である。 1……溶融合金、2……急冷凝固された合金、
3……冷却回転円板、4……ロール。
FIG. 1 is a schematic diagram showing two examples of equipment used for ultra-quenching the magnetic core material of the present invention from a molten state, and FIG. 2 is a schematic diagram showing Co 79.5 in the magnetic core material of the present invention.
A diagram showing changes in effective magnetic permeability (1KHz) when Mo 9.5 Zr 11 and Co 78 Cr 10.5 Zr 11.5 amorphous alloys are annealed at 150 to 490°C for 20 minutes in a non-magnetic field. Figure 3 shows the effects of coercive force and residual magnetic flux density on the tension of the Co 81 Mo 9 Zr 10 magnetic core material of the present invention, Figure 4 shows a comparison of the wear resistance of various magnetic head core materials, and Figure 5 FIG. 2 is a diagram showing a comparison of the wear resistance of various magnetic head core materials. 1... Molten alloy, 2... Rapidly solidified alloy,
3... Cooling rotating disk, 4... Roll.

Claims (1)

【特許請求の範囲】 1 原子比率で、Zrを7〜15%、Cr、Mo、W、
V、Nb、Taの中から選ばれる何れか1種または
2種以上を5超〜20%以下、残部実質的にCoよ
りなる非晶質合金であつて、電気抵抗が120〜
140μΩcmである磁心材料。 2 Zrを8〜13%、Cr、Mo、W、V、Nb、Ta
の中から選ばれる何れか1種または2種以上を7
〜17%にしたことを特徴とする特許請求の範囲第
1項記載の磁心材料。
[Claims] 1 In terms of atomic ratio, Zr is 7 to 15%, Cr, Mo, W,
An amorphous alloy consisting of more than 5 to 20% of one or more selected from V, Nb, and Ta, and the remainder substantially Co, and has an electrical resistance of 120 to 20%.
The magnetic core material is 140μΩcm. 2 Zr 8-13%, Cr, Mo, W, V, Nb, Ta
Any one or two or more selected from 7
The magnetic core material according to claim 1, characterized in that the magnetic core material has a content of 17% to 17%.
JP16075879A 1979-12-13 1979-12-13 Cobalt based amorphous alloy having small magnetic strain and high permeability Granted JPS5684439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16075879A JPS5684439A (en) 1979-12-13 1979-12-13 Cobalt based amorphous alloy having small magnetic strain and high permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16075879A JPS5684439A (en) 1979-12-13 1979-12-13 Cobalt based amorphous alloy having small magnetic strain and high permeability

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP1132827A Division JPH0270041A (en) 1989-05-29 1989-05-29 Cobalt-based amorphous alloy reduced in magnetostriction and having high magnetic permeability
JP1132826A Division JPH0270042A (en) 1989-05-29 1989-05-29 Cobalt-base amorphous alloy reduced in magnetostriction and having high magnetic permeability

Publications (2)

Publication Number Publication Date
JPS5684439A JPS5684439A (en) 1981-07-09
JPH0230375B2 true JPH0230375B2 (en) 1990-07-05

Family

ID=15721822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16075879A Granted JPS5684439A (en) 1979-12-13 1979-12-13 Cobalt based amorphous alloy having small magnetic strain and high permeability

Country Status (1)

Country Link
JP (1) JPS5684439A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177432A (en) * 1982-04-13 1983-10-18 Matsushita Electric Ind Co Ltd Amorphous magnetic alloy
US4608297A (en) * 1982-04-21 1986-08-26 Showa Denka Kabushiki Kaisha Multilayer composite soft magnetic material comprising amorphous and insulating layers and a method for manufacturing the core of a magnetic head and a reactor
JPS5990219A (en) * 1982-11-12 1984-05-24 Tdk Corp Magnetic head
JPS5988801A (en) * 1982-11-13 1984-05-22 Alps Electric Co Ltd Soft magnetic material
JPS5996241A (en) * 1982-11-26 1984-06-02 Alps Electric Co Ltd Soft magnetic material
JPS59101025A (en) * 1982-12-01 1984-06-11 Tdk Corp Magnetic head
JPS59193235A (en) * 1983-04-15 1984-11-01 Hitachi Ltd Co-nb-zr type amorphous magnetic alloy and magnetic head using the same
DE69117491T2 (en) * 1990-11-08 1996-09-19 Sony Corp AMORPHY SOFT MAGNETIC MATERIAL
JP7276668B2 (en) * 2020-03-23 2023-05-18 Tdk株式会社 soft magnetic alloy powders, magnetic cores, magnetic parts and electronic devices
CN112251708A (en) * 2020-10-14 2021-01-22 西安特种设备检验检测院 Preparation method of wear-resistant coating of safety gear of high-speed elevator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173920A (en) * 1974-12-24 1976-06-26 Tohoku Daigaku Kinzoku Zairyo
JPS5644752A (en) * 1979-09-21 1981-04-24 Hitachi Ltd Ferromagnetic amorphous alloy
JPS5669360A (en) * 1979-11-12 1981-06-10 Tdk Corp Amorphous magnetic alloy material and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173920A (en) * 1974-12-24 1976-06-26 Tohoku Daigaku Kinzoku Zairyo
JPS5644752A (en) * 1979-09-21 1981-04-24 Hitachi Ltd Ferromagnetic amorphous alloy
JPS5669360A (en) * 1979-11-12 1981-06-10 Tdk Corp Amorphous magnetic alloy material and its manufacture

Also Published As

Publication number Publication date
JPS5684439A (en) 1981-07-09

Similar Documents

Publication Publication Date Title
US5935347A (en) FE-base soft magnetic alloy and laminated magnetic core by using the same
US4416709A (en) Amorphous magnetic alloy material
US4437912A (en) Amorphous magnetic alloys
JPH0230375B2 (en)
JPS6133900B2 (en)
JPS59582B2 (en) Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance and its manufacturing method
Arai et al. Grain growth characteristics and magnetic properties of rapidly quenched silicon steel ribbons
US3837844A (en) Wear resisting magnetic material having high permeability
JPS6212296B2 (en)
EP0083930B1 (en) Amorphous alloy for magnetic head
KR900007666B1 (en) Amorphous alloy for use in magnetic heads
CN100432270C (en) Fe-base amorphous alloy thin strip of excellent soft magnetic characteristic, iron core produced therefrom and master alloy for quench solidification thin strip production for use therein
JPH0413420B2 (en)
JPH05267031A (en) Magnetic core material
JPH0270041A (en) Cobalt-based amorphous alloy reduced in magnetostriction and having high magnetic permeability
JPH03265104A (en) Soft magnetic alloy film
US4750951A (en) Amorphous alloy for magnetic heads
JPH0525947B2 (en)
JPH0368107B2 (en)
JP3019400B2 (en) Amorphous soft magnetic material
JPH0480980B2 (en)
EP0121046B1 (en) Amorphous alloy for magnetic head and magnetic head with an amorphous alloy
JPH02153052A (en) Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head
JPS6151404B2 (en)
JPH04288805A (en) Soft magnetic thin film