JPH02302343A - Production of hermetic-covered optical fiber - Google Patents

Production of hermetic-covered optical fiber

Info

Publication number
JPH02302343A
JPH02302343A JP1121273A JP12127389A JPH02302343A JP H02302343 A JPH02302343 A JP H02302343A JP 1121273 A JP1121273 A JP 1121273A JP 12127389 A JP12127389 A JP 12127389A JP H02302343 A JPH02302343 A JP H02302343A
Authority
JP
Japan
Prior art keywords
optical fiber
hermetic
gas
coating
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1121273A
Other languages
Japanese (ja)
Inventor
Makoto Furuguchi
古口 誠
Yoshikazu Matsuda
松田 美一
Akira Iino
顕 飯野
Kunio Ogura
邦男 小倉
Kazuto Hirabayashi
平林 和人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1121273A priority Critical patent/JPH02302343A/en
Publication of JPH02302343A publication Critical patent/JPH02302343A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings
    • C03C25/1061Inorganic coatings
    • C03C25/1062Carbon

Abstract

PURPOSE:To obtain optical fiber with sufficient hermetic coating thickness by feeding a raw gas for coating as well as halogen gas into a reaction oven to pass optical fiber. CONSTITUTION:Drawn optical fiber is passed through a reaction oven to coat its surface with a hermetic coating consisting of carbon or carbon compound. In this case, halogen gas such as chlorine is added to a raw gas for coating such as C2H4. The raw gas and chlorine are mutually put to exothermic reaction in the reaction oven, and the heat thus produced will help the thermal decomposition of the raw gas. Thereby, hermetic coating formation will be promoted even if the surface temperature of the optical fiber is somewhat lower. Also, the manufacturing conditions for such optical fiber can be set in a broader way than ever, thus stably obtaining the objective optical fiber.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、光ファイバ表面にカーボンまたはカーボン化
合物(SiC、TiC等)から成るハーメチック被覆を
被覆したハーメチック被覆光ファイバを得るための方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for obtaining a hermetic coated optical fiber in which the surface of the optical fiber is coated with a hermetic coat made of carbon or a carbon compound (SiC, TiC, etc.).

〔従来技術〕[Prior art]

最近、第2図に示すように、コア3a、クラッド3bよ
りなる光ファイバ3の表面にカーボンまたはカーボン化
合物からなる被覆30(以下ハーメチック被覆という)
を設け、外部から光ファイバ3の内部へFIFOやH!
が侵入するのを防止する、いわゆるハーメチック被覆光
ファイバ40と称されるものが提案されている。
Recently, as shown in FIG. 2, a coating 30 (hereinafter referred to as a hermetic coating) made of carbon or a carbon compound is coated on the surface of an optical fiber 3 consisting of a core 3a and a cladding 3b.
A FIFO or H! is provided from the outside to the inside of the optical fiber 3.
A so-called hermetic coated optical fiber 40 has been proposed that prevents the intrusion of light.

このハーメチック被覆光ファイバ40の特徴は、前記外
部からのH2OやH2の侵入を防止でき、その結果耐水
素特性が向上するだけでなく、光ファイバの疲労特性も
向上することが見出され、現在その製造をいかにして安
定に、かつ効率良く行うか検討が急がれている。 ゛ 第3図は従来行われているハーメチック被覆光ファイバ
40の製造方法の一例を示すものである。
The characteristics of this hermetic coated optical fiber 40 are that it can prevent the intrusion of H2O and H2 from the outside, and as a result, it has been found that not only the hydrogen resistance properties are improved, but also the fatigue properties of the optical fiber are improved. There is an urgent need to consider how to carry out the production stably and efficiently. 3 shows an example of a conventional method for manufacturing a hermetic coated optical fiber 40.

これは光ファイバ用母材1を線引炉2に導入してコア3
a、クラッド3bを有する光ファイバ3と成し、これを
熱CVD用の反応炉5に導く。この反応炉5の外側には
必要に応じてヒータ6が配置されていて、該°ヒータ6
により反応炉5内には加熱ゾーン7が設定されている。
This involves introducing the optical fiber preform 1 into the drawing furnace 2 and drawing the core 3.
a, an optical fiber 3 having a cladding 3b is formed, and the optical fiber 3 is guided to a reactor 5 for thermal CVD. A heater 6 is arranged outside the reactor 5 as required.
Accordingly, a heating zone 7 is set within the reactor 5.

符号8はハーメチック被覆用の原料ガス導入口で、ここ
から原料ガス、例えばメタン、エタン、エチレン、アセ
チレン、プロパン、ブタン等の炭化水素ガスが、必要に
応じて添加されるN、ガスと共に反応炉5へと供給され
る。
Reference numeral 8 denotes a raw material gas inlet for hermetic coating, through which raw material gas, such as hydrocarbon gas such as methane, ethane, ethylene, acetylene, propane, butane, etc., is introduced into the reactor together with N and gas added as necessary. 5.

また符号9はガスの排気口を示している。加えて、符号
10^、IOBはそれぞれ前記反応炉5の両端部を示し
、ここにはシールガス導入口11A 、IIBが設けら
れていて、反応炉5内への外気の導入を防ぐため前記導
入口11A 、 IIBを介してシールガス、例えば不
活性ガスの1つであるN2ガスが供給されている。
Further, reference numeral 9 indicates a gas exhaust port. In addition, numerals 10^ and IOB respectively indicate both ends of the reactor 5, where seal gas inlets 11A and IIB are provided to prevent the introduction of outside air into the reactor 5. A sealing gas, such as N2 gas, which is one of the inert gases, is supplied through ports 11A and IIB.

このようにして成る反応炉5内に導かれた光ファイバ3
の表面には、前記原料ガスが前記ヒータ6の加熱により
熱分解されてカーボンが生成され、これが気相化学反応
により光ファイバ3の表面上に堆積し、第2図に示すよ
うなハーメチック被覆30が形成される0図中の符号4
は外径測定器で、この値により線引速度や光ファイバ用
母材1の送り速度が調整され光ファイバ3の外径が一定
になるように制御される。
Optical fiber 3 guided into reactor 5 constructed in this way
Carbon is generated on the surface of the optical fiber 3 by thermal decomposition of the raw material gas by the heating of the heater 6, and this is deposited on the surface of the optical fiber 3 by a gas phase chemical reaction, forming a hermetic coating 30 as shown in FIG. 0 code 4 in the figure is formed
is an outer diameter measuring device, and the drawing speed and the feeding speed of the optical fiber preform 1 are adjusted based on this value, so that the outer diameter of the optical fiber 3 is controlled to be constant.

二のようにして得られたハーメチック被覆光ファイバ4
0の外側には通常の方法でプラスチック被覆が形成され
る。例えば紫外線硬化性樹脂を塗布装置12でハーメチ
ック被覆光ファイバ40上に塗布し、これを紫外線照射
炉等の硬化炉13により硬化せしめ、巻取機14で巻き
取る。ここで塗布する樹脂として熱硬化性樹脂や熱可塑
性樹脂も使用でき、熱硬化性樹脂を使用する場合であれ
ば、前記硬化炉13として加熱炉を配すればよい。
Hermetic coated optical fiber 4 obtained as in 2.
A plastic coating is applied to the outside of the 0 in the usual manner. For example, an ultraviolet curable resin is applied onto the hermetic coated optical fiber 40 using a coating device 12, cured using a curing furnace 13 such as an ultraviolet irradiation furnace, and wound up using a winder 14. A thermosetting resin or a thermoplastic resin can also be used as the resin to be applied here, and if a thermosetting resin is used, a heating furnace may be provided as the curing furnace 13.

ところが前述した従来の方法では、相対的に温度が高い
反応炉5の内周壁近傍で熱分解されたカーボンが反応炉
5内の空間に比較的粒径の大きなスス状粒子として浮遊
し易く、これがハーメチック被覆30内に混入するとハ
ーメチック被覆30の密度が低下し、かつ光ファイバ3
の表面から剥離し易くなる。その結果、前述した耐水素
特性や疲労特性が低下するという問題があった。
However, in the conventional method described above, carbon that is thermally decomposed near the inner circumferential wall of the reactor 5, where the temperature is relatively high, tends to float in the space inside the reactor 5 as soot-like particles with a relatively large particle size. When mixed into the hermetic coating 30, the density of the hermetic coating 30 decreases, and the optical fiber 3
easily peels off from the surface. As a result, there was a problem in that the aforementioned hydrogen resistance properties and fatigue properties deteriorated.

そこで近年、線引直後の光ファイバ3自身の持つ熱を利
用して、原料ガスの熱分解をできるだけ光ファイバ3の
表面近傍でのみ行わせ、前述したように反応炉5の内周
壁近傍で熱分解が進んだ場合生じ易いと考えられている
スス状粒子の発生を防止するという提案も成されている
Therefore, in recent years, using the heat of the optical fiber 3 itself immediately after drawing, the thermal decomposition of the raw material gas is performed only as close to the surface of the optical fiber 3 as possible, and as mentioned above, the heat is generated near the inner peripheral wall of the reactor 5. Proposals have also been made to prevent the generation of soot-like particles, which are thought to be likely to occur when decomposition progresses.

この方法を具体的に説明すると、例えば線引炉2に反応
炉5をできるだけ接近させて、線引後の光ファイバ3の
温度低下をできるだけ防ぐようにして光ファイバ3を反
応炉5へと導き、主として光ファイバ3の表面近傍にて
原料ガスの熱分解を行い、スス状粒子の混入しない、す
なわち高密度のハーメチック被覆30を形成しようとす
るものである。
To explain this method in detail, for example, the optical fiber 3 is guided into the reaction furnace 5 by bringing the reaction furnace 5 as close as possible to the drawing furnace 2 and preventing the temperature of the optical fiber 3 from decreasing as much as possible after drawing. The purpose is to thermally decompose the raw material gas mainly near the surface of the optical fiber 3 to form a hermetic coating 30 that is free from soot-like particles, that is, has a high density.

−しかしこの方法の場合、形成されるハーメチック被覆
30の厚さはほとんど光ファイバ3の表面温度に依存し
てしまう、その結果低線速でハーメチック被覆30を行
わなければならないような場合、光ファイバ5は線引炉
2と反応炉δの間で必要以上に冷却されてしまい、反応
炉5に入る直前には原料ガスを必要量熱分解せしめるに
足る表面温度を維持していない場合がでてくる。その場
合所望厚のハーメチック被覆30を得ることができなく
なり、もって耐水素特性や疲労強度を充分に満足せしめ
る八−メチツク被覆光ファイバ40が得られないという
問題があった。
- However, in the case of this method, the thickness of the hermetic coating 30 to be formed depends mostly on the surface temperature of the optical fiber 3. As a result, when the hermetic coating 30 has to be performed at a low linear speed, the thickness of the optical fiber 5 is cooled more than necessary between the drawing furnace 2 and the reactor δ, and there are cases where the surface temperature is not maintained enough to thermally decompose the necessary amount of raw material gas just before entering the reactor 5. come. In that case, there was a problem that the hermetic coating 30 of the desired thickness could not be obtained, and therefore, the eight-metically coated optical fiber 40 that fully satisfied hydrogen resistance and fatigue strength could not be obtained.

〔発明の目的〕[Purpose of the invention]

前記問題に鑑み本発明の目的は、広い製造条件下で、例
えば製造線速の幅を広くとっても、充分なハーメチック
被覆厚さを有するハーメチック被覆光ファイバを得るこ
とのできる方法を提供することにある。
In view of the above-mentioned problems, an object of the present invention is to provide a method capable of obtaining a hermetically coated optical fiber having a sufficient hermetic coating thickness under a wide range of manufacturing conditions, for example, even when the manufacturing speed is wide. .

〔発明の構成〕[Structure of the invention]

前記目的を達成すべく本発明は、光ファイバ用母材から
光ファイバを線引し、しかる後に該光ファイバをして反
応炉内を通過せしめ、その表面上に熱CVD法によりカ
ーボンまたはカーボン化合物からなるハーメチック被覆
を施すハーメチック被覆光ファイバの製造方法において
、前記反応炉内にハーメチック被覆用の原料ガスと共に
ハロゲンガスを供給することを特徴とするものである。
In order to achieve the above object, the present invention involves drawing an optical fiber from an optical fiber base material, passing the optical fiber through a reactor, and applying carbon or a carbon compound onto its surface by thermal CVD. A method for producing a hermetic coated optical fiber comprising a hermetic coating, characterized in that a halogen gas is supplied into the reactor together with a raw material gas for the hermetic coating.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の実施例を図面を参照して詳細に説明する
0本発明者は前述した従来の製造方法を充分に検討した
結果、ハーメチック被覆用の原料ガス例えばCJ4に、
例えば塩素等のハロゲンガスを添加してやれば、光ファ
イバ3の表面温度が多少不足している場合でも、光ファ
イバ3の表面近傍における原料ガスの熱分解を促進でき
、所望厚のハーメチック被覆30が得られることを見出
した。
Embodiments of the present invention will be described below in detail with reference to the drawings. As a result of thorough study of the conventional manufacturing method described above, the present inventor has found that the raw material gas for hermetic coating, for example, CJ4,
For example, by adding halogen gas such as chlorine, even if the surface temperature of the optical fiber 3 is somewhat insufficient, thermal decomposition of the raw material gas near the surface of the optical fiber 3 can be promoted, and the hermetic coating 30 of the desired thickness can be obtained. I found out that it can be done.

このメカニズムは以下のように推論される。This mechanism is inferred as follows.

すなわち、C,I(、ガスと塩素とは反応炉5内で下記
反応式(1)が示すような発熱反応をする。この発熱反
応によって生ずる熱が(2)式に示す原料ガスであるC
zHaガスの熱分解を助け、ハーメチック被覆30の形
成が促進される、というものである。
That is, C, I(, gas and chlorine undergo an exothermic reaction as shown in the following reaction formula (1) in the reactor 5. The heat generated by this exothermic reaction is
The thermal decomposition of the zHa gas is aided, and the formation of the hermetic coating 30 is promoted.

C!+14 +2CI□−ン4HC1+2C+ (熱〕
・・・(1)CzH42G  +2Hz  −・−−−
−−−−(2)尚、(2)式における2Cがハーメチッ
ク被覆30として光ファイバ3の表面上に堆積するもの
である。
C! +14 +2CI□-n4HC1+2C+ (heat)
...(1) CzH42G +2Hz -・---
----(2) Note that 2C in equation (2) is deposited on the surface of the optical fiber 3 as the hermetic coating 30.

尚、ハロゲンガスとしては前述した塩素の他に、例えば
CF4.5OC1z等のガスも適用できる。またハーメ
チック被覆用の原料ガスについても前記c8114ガス
の他に、CHa 、CJz、C3HIl、 CJ+oガ
ス等他の炭化水素ガスあるいはこれにSiH4やTiC
l4等を添加したものも使用できる。
In addition to the above-mentioned chlorine, gases such as CF4.5OC1z can also be used as the halogen gas. In addition to the above C8114 gas, raw material gases for hermetic coating include other hydrocarbon gases such as CHa, CJz, C3HIl, and CJ+o gases, or SiH4 and TiC gases.
Those to which l4 etc. are added can also be used.

以下に本発明め実施例を具体的に述べる。Examples of the present invention will be specifically described below.

実施例 前記第2図に示す装置において、まず反応炉5として内
径50mm、厚さ21、長さ4501の石英ガラス製の
炉を用意した。これをヒータ6にて包囲したが、本実施
例ではこのヒータ6は必要でなかったため使用しなかっ
た。但し、原料ガスの熱分解温度が高いとき等必要に応
じて補助手段として使用することができる。
EXAMPLE In the apparatus shown in FIG. 2, a quartz glass furnace having an inner diameter of 50 mm, a thickness of 21 mm, and a length of 450 mm was prepared as the reactor 5. This was surrounded by a heater 6, but this heater 6 was not needed in this embodiment and was therefore not used. However, it can be used as an auxiliary means if necessary, such as when the thermal decomposition temperature of the raw material gas is high.

そして原料ガスとしてはCtH4ガスを、これにハロゲ
ンガスである塩素を添加して総量2.01 /minと
成して原料ガス導入口8より反応炉5に供給した。また
反応炉5を外気からシールするためにN!ガスをシール
ガス導入口11A 、 IIBを介して51/鵡inづ
つ流し込んだ。
CtH4 gas was used as the raw material gas, and chlorine, which is a halogen gas, was added thereto to give a total flow rate of 2.01/min, and the mixture was supplied to the reactor 5 through the raw gas inlet 8. Also, in order to seal the reactor 5 from the outside air, N! Gas was injected at a rate of 51/cm through the seal gas inlets 11A and IIB.

次に光ファイバ用母材1から線引を開始し、線速500
s/sinで光ファイバ3を反応炉5内に導いた。
Next, start drawing from optical fiber base material 1, and draw at a drawing speed of 500.
The optical fiber 3 was guided into the reactor 5 at s/sin.

この実験ではC*H4ガスに添加する塩素量(重量%)
を変化せしめて、形成されるハーメチック被覆30の厚
さの変化を調査した。
In this experiment, the amount of chlorine added to C*H4 gas (wt%)
The changes in the thickness of the hermetic coating 30 formed were investigated by changing the .

得られた外径125I−のハーメチック被覆光ファイバ
40上には従来法により紫外線硬化性樹脂から成る樹脂
被覆が形成された。
A resin coating made of an ultraviolet curable resin was formed on the obtained hermetic coated optical fiber 40 having an outer diameter of 125 I by a conventional method.

このようにして得られた各光ファイバ心線から樹脂被覆
を除去し、しかる後これを軸に対して直角に切断して、
その横断面を電子類@鏡にて観察してハーメチック被覆
30の厚さを測定した。この結果を第1図に示す。この
図で縦軸はハーメチック被覆30の厚さく人)で、横軸
は反応炉5に供給したC1H,ガス及び塩素の総量に占
める塩素の濃度(重量%)を示している。
The resin coating was removed from each optical fiber core obtained in this way, and then it was cut at right angles to the axis.
The thickness of the hermetic coating 30 was measured by observing the cross section with an electronic mirror. The results are shown in FIG. In this figure, the vertical axis represents the thickness of the hermetic coating 30, and the horizontal axis represents the concentration (% by weight) of chlorine in the total amount of C1H, gas, and chlorine supplied to the reactor 5.

本図が示すようにハロゲンガスが0重量%の場合、すな
わち従来方法では原料ガス量が本発明の実施例のものと
同量あるいはそれより多いにもかかわらず、ハーメチッ
ク被覆30の厚さは500Å以下のものしか得られなか
らだ、しかしながら、反応炉5にCzHaガスと共に塩
素を少しづつ添加供給していくとハーメチック被覆30
の厚さが急激に増してきた。特に塩素量が0.2重量%
以上になると、光ファイバ3への)120や■、の侵入
を防止するのに最低限必要と言われている500Å以上
の厚さを確保できた。
As shown in this figure, when the halogen gas is 0% by weight, that is, in the conventional method, the thickness of the hermetic coating 30 is 500 Å even though the amount of raw material gas is the same as or greater than that of the embodiment of the present invention. This is because only the following can be obtained. However, if chlorine is added and supplied little by little together with CzHa gas to the reactor 5, the hermetic coating 30
The thickness has increased rapidly. In particular, the amount of chlorine is 0.2% by weight.
With the above, it was possible to secure a thickness of 500 Å or more, which is said to be the minimum necessary to prevent the intrusion of )120 and (2) into the optical fiber 3.

このように原料ガスの熱分解が塩素の添加により促進さ
れ、もってハーメチック被覆3oの形成が効率良く行わ
れるようになった。
In this way, the thermal decomposition of the raw material gas is promoted by the addition of chlorine, and as a result, the hermetic coating 3o can be formed efficiently.

また本発明により得られたハーメチック被覆3゜の性能
を調べるため、得られたハーメチック被覆光ファイバ心
線を100%水素雰囲気、75°Cの条件下に8時間晒
し、しかる後そのロススペクトルを測定した。この測定
の結果とこの処理前の測定結果とを比較したところ、前
記処理によるロス増加、すなわち水素によるロス増加は
なんら認められなかった。
In addition, in order to investigate the performance of the hermetic coating 3° obtained by the present invention, the obtained hermetic coated optical fiber was exposed to a 100% hydrogen atmosphere at 75°C for 8 hours, and then its loss spectrum was measured. did. When the results of this measurement were compared with the measurement results before this treatment, no increase in loss due to the treatment, that is, no increase in loss due to hydrogen was observed.

このように本発明の方法によれば、原料ガスにハロゲン
ガスを添加せしめたことにより、両ガスの反応により生
ずる反応熱を原料ガスの熱分解に寄与させることができ
、仮に熱CVD用の反応炉に入る直前の光ファイバ自身
の表面温度が多少低かったとしても、有効厚さのハーメ
チック被覆を形成することができる。すなわち本発明に
よれば所望厚さのハーメチック被覆を形成できる製造条
件が従来に比して広がり、ハーメチック被覆光ファイバ
の製造がより容易になるという効果がある。
As described above, according to the method of the present invention, by adding halogen gas to the raw material gas, the reaction heat generated by the reaction of both gases can contribute to the thermal decomposition of the raw material gas. Even if the surface temperature of the optical fiber itself just before entering the furnace is somewhat low, a hermetic coating of effective thickness can be formed. That is, according to the present invention, the manufacturing conditions under which a hermetic coating of a desired thickness can be formed are expanded compared to the conventional method, and the manufacturing of a hermetic-coated optical fiber becomes easier.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明の方法によれば、ハーメチック被覆光
ファイバを製造するに際して、従来よりもより広い範囲
で製造条件を設定できるため、より容易に、しかも安定
してハーメチック被覆光ファイバを製造することができ
る。
As described above, according to the method of the present invention, when manufacturing a hermetic coated optical fiber, manufacturing conditions can be set in a wider range than conventional methods, so that the hermetic coated optical fiber can be manufactured more easily and stably. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるもので、CtLガス及び塩素の
総量に占める塩素の濃度と形成されるハーメチック被覆
厚の関係を示すグラフ、第2図はノ\−メチツク被覆光
ファイバの一例を示す横断面図、第3図はハーメチック
被覆光ファイバの製造方法を説明するための説明図であ
る。 1〜光ファイバ用母材 2〜線引炉 3〜光ファイバ 
5〜反応炉 6〜ヒーク 8〜原料ガス導入口 11A
 、IIB〜シールガス導入口特許出願人   古河電
気工業株式会社第1図 第2図 第3図
Figure 1 relates to the present invention, and is a graph showing the relationship between the concentration of chlorine in the total amount of CtL gas and chlorine and the thickness of the hermetic coating formed, and Figure 2 shows an example of a metal-coated optical fiber. The cross-sectional view and FIG. 3 are explanatory diagrams for explaining a method of manufacturing a hermetic coated optical fiber. 1 - Base material for optical fiber 2 - Drawing furnace 3 - Optical fiber
5~Reactor 6~Heat 8~Raw material gas inlet 11A
, IIB ~ Seal gas inlet Patent applicant Furukawa Electric Co., Ltd. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims]  光ファイバ用母材から光ファイバを線引し、しかる後
に該光ファイバをして反応炉内を通過せしめ、その表面
上に熱CVD法によりカーボンまたはカーボン化合物か
らなるハーメチック被覆を施すハーメチック被覆光ファ
イバの製造方法において、前記反応炉内にハーメチック
被覆用の原料ガスと共にハロゲンガスを供給することを
特徴とするハーメチック被覆光ファイバの製造方法。
A hermetic coated optical fiber in which an optical fiber is drawn from an optical fiber base material, and then the optical fiber is passed through a reactor, and a hermetic coating made of carbon or a carbon compound is applied to the surface of the optical fiber by thermal CVD. A method for manufacturing a hermetic coated optical fiber, characterized in that a halogen gas is supplied into the reactor together with a raw material gas for hermetic coating.
JP1121273A 1989-05-15 1989-05-15 Production of hermetic-covered optical fiber Pending JPH02302343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1121273A JPH02302343A (en) 1989-05-15 1989-05-15 Production of hermetic-covered optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1121273A JPH02302343A (en) 1989-05-15 1989-05-15 Production of hermetic-covered optical fiber

Publications (1)

Publication Number Publication Date
JPH02302343A true JPH02302343A (en) 1990-12-14

Family

ID=14807173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1121273A Pending JPH02302343A (en) 1989-05-15 1989-05-15 Production of hermetic-covered optical fiber

Country Status (1)

Country Link
JP (1) JPH02302343A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153549A (en) * 1989-11-10 1991-07-01 Sumitomo Electric Ind Ltd Production of optical fiber coated with carbon
JPH0497925A (en) * 1990-08-15 1992-03-30 Fujikura Ltd Production of optical fiber
EP0524090A2 (en) * 1991-07-15 1993-01-20 Mitsubishi Cable Industries, Ltd. Method for producing silica glass optical fiber and reaction apparatus for carbon coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283240A (en) * 1987-09-18 1990-03-23 American Teleph & Telegr Co <Att> Airtight sealed treated optical fiber
JPH02167843A (en) * 1988-12-21 1990-06-28 Sumitomo Electric Ind Ltd Production of element wire of optical fiber
JPH02263741A (en) * 1988-12-27 1990-10-26 Sumitomo Electric Ind Ltd Production of carbon-coated optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283240A (en) * 1987-09-18 1990-03-23 American Teleph & Telegr Co <Att> Airtight sealed treated optical fiber
JPH02167843A (en) * 1988-12-21 1990-06-28 Sumitomo Electric Ind Ltd Production of element wire of optical fiber
JPH02263741A (en) * 1988-12-27 1990-10-26 Sumitomo Electric Ind Ltd Production of carbon-coated optical fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153549A (en) * 1989-11-10 1991-07-01 Sumitomo Electric Ind Ltd Production of optical fiber coated with carbon
JPH0497925A (en) * 1990-08-15 1992-03-30 Fujikura Ltd Production of optical fiber
US5354348A (en) * 1991-05-12 1994-10-11 Mitsubishi Cable Industries, Ltd. Method for producing silica glass optical fiber with carbon coating
EP0524090A2 (en) * 1991-07-15 1993-01-20 Mitsubishi Cable Industries, Ltd. Method for producing silica glass optical fiber and reaction apparatus for carbon coating

Similar Documents

Publication Publication Date Title
JPH0283240A (en) Airtight sealed treated optical fiber
KR970000903B1 (en) Hermetically coated optical fiber and production of the same
JPH02302343A (en) Production of hermetic-covered optical fiber
JPH0227308A (en) Optical fiber and its production
JPH0312345A (en) Production of hermetically-coated optical fiber
JPH02279541A (en) Production of hermetically coated optical fiber
JP2001524921A (en) Method for depositing coating layer of optical fiber during drawing and apparatus for carrying out the method
JP2685889B2 (en) Method for producing hermetic coated optical fiber
JPH02275736A (en) Production of optical fiber of hermetic coating
JP3039948B2 (en) Optical fiber manufacturing method
JPS62279303A (en) Production of optical waveguide layer
JP2955787B2 (en) Manufacturing method of silica glass optical fiber
JP2798790B2 (en) Optical fiber manufacturing method
JP2644018B2 (en) Optical fiber manufacturing method
JP3316290B2 (en) Method for producing hermetic coated optical fiber
JP3039949B2 (en) Optical fiber manufacturing method
JPH02263741A (en) Production of carbon-coated optical fiber
JP2796167B2 (en) Optical fiber manufacturing equipment
JPH02167843A (en) Production of element wire of optical fiber
JPH04285041A (en) Production of hermetically coated optical fiber
JP2710402B2 (en) Optical fiber
JPH02160642A (en) Production of optical fiber
JPH0442841A (en) Production of optical fiber
JPH0345536A (en) Production of optical fiber
JPH02160643A (en) Production of optical fiber