JPH02302308A - Production of activated carbon - Google Patents

Production of activated carbon

Info

Publication number
JPH02302308A
JPH02302308A JP1028985A JP2898589A JPH02302308A JP H02302308 A JPH02302308 A JP H02302308A JP 1028985 A JP1028985 A JP 1028985A JP 2898589 A JP2898589 A JP 2898589A JP H02302308 A JPH02302308 A JP H02302308A
Authority
JP
Japan
Prior art keywords
activated carbon
coal
coal group
group
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1028985A
Other languages
Japanese (ja)
Inventor
Kazuo Hanmyo
半明 和夫
Kazuo Nakamura
和夫 中村
Yoshio Hino
日野 善雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP1028985A priority Critical patent/JPH02302308A/en
Publication of JPH02302308A publication Critical patent/JPH02302308A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/384Granulation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents

Abstract

PURPOSE:To obtain activated carbon having improved characteristics by finely crushing a compound mainly comprising two species of coal group having specific properties, molding under pressure, carbonizing and activating. CONSTITUTION:A compound mainly composed of 30 to 95wt.% coal group A and 70 to 5wt.% coal group B having following properties is finely crushed, molded under pressure, adjusted to <=10mm thickness or <=10mm granular diameter and carbonized in a coking equipment of chamber oven type, then activated to afford the objective activated carbon. Coal group A: (a) 0.4 to 1.0 averaged optical reflectance (RO), (b) <=2.0(log DDPM) Giesler maximum fluidity(MF) and (c) <=3 free swelling index. Coal group B: (a) 0.6 to 1.2 averaged optical reflectance (RO), (b) 2.0 to 4.5 (log DDPM) Giesler maximum fluidity(MF) and (c) >=3 free swelling index.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、活性炭の製造方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for producing activated carbon.

以下本明細書において、“%”とあるのは、“重量%”
を意味する。
In the following specification, "%" means "% by weight"
means.

従来技術とその問題点 まず、従来技術による活性炭製造方法のフローの一例を
示す第1図を参照しつつ、説明する。原料石炭を乾燥機
(1)において200℃で予備乾燥し、微粉砕機(2)
で約200メツシユ以下に粉砕した後、貯炭槽(3)に
貯蔵する。通常複数の貯炭槽(図示せず)に貯蔵されて
いる複数種の石炭を一定配合率で切り出し、ミキサー(
4)で混合し、成形機(5)で約200もで加温成形し
た後、調粒機(6)で粒度調整する。次いで、スクリー
ン(7)で所定の粒度(通常7〜20メツシュ程度)に
ふるい分け、粗粒は調粒機(6)に、また微粒はミキサ
ー(4)に戻す。粒度調整された原料は、炭化炉(8)
において約300〜700℃で焼成コークス化された後
、賦活炉(9)において約700〜1000℃で水蒸気
賦活された後、製品として取得されている。
Prior Art and its Problems First, an explanation will be given with reference to FIG. 1, which shows an example of the flow of an activated carbon manufacturing method according to the prior art. The raw coal is pre-dried at 200°C in a dryer (1), and then pulverized in a pulverizer (2).
After pulverizing the coal into approximately 200 mesh pieces or less, the coal is stored in a coal storage tank (3). Multiple types of coal, which are usually stored in multiple coal storage tanks (not shown), are cut out at a constant blending ratio, and a mixer (
After mixing in step 4), heating and molding in a molding machine (5) at about 200 ml, the particle size is adjusted in a granulator (6). Next, the particles are sieved to a predetermined particle size (usually about 7 to 20 mesh) using a screen (7), and the coarse particles are returned to the granulator (6) and the fine particles are returned to the mixer (4). The raw material whose particle size has been adjusted is sent to the carbonization furnace (8)
After baking and coking at about 300 to 700°C, the coke is activated with steam at about 700 to 1000°C in an activation furnace (9), and then obtained as a product.

しかしながら、この様な従来方法は、設備費が高価であ
るため、結果的に活性炭の製造コストが高くなっている
However, such conventional methods require high equipment costs, resulting in high production costs for activated carbon.

本発明者は、上記の如き従来技術の問題点に鑑みて、炭
化までの工程を既存の室炉式コークス炉設備を利用して
、安価に活性炭を製造することを着想した。しかしなが
ら、従来法において活性炭製造の原料として使用されて
いる石炭配合物は、塊状コークスを形成しないために、
押出しが不可能であり、上記の着想も実施できないこと
が判明した。これは、この様な活性炭製造の原料として
使用されている石炭配合物が、コークス炉での炭化を想
定していないがためであり、当然の結果である。
In view of the problems of the prior art as described above, the present inventor came up with the idea of manufacturing activated carbon at low cost by using existing indoor coke oven equipment for the steps up to carbonization. However, since the coal blends used as raw materials for activated carbon production in conventional methods do not form lump coke,
It turned out that extrusion was not possible and the above idea could not be implemented. This is a natural result because the coal blend used as a raw material for such activated carbon production is not intended to be carbonized in a coke oven.

また、既存の室炉式コークス炉設備で製造された従来の
コークスをそのまま賦活することも考えられるが、この
場合には、得られる活性炭の比表面積および細孔容積が
小さいため、活性炭としての性能が劣るものとなること
が判明した。これは、この様なコークスが、活性炭の製
造原料とされることを想定していないがためであり、こ
れまた当然の結果である。
It is also possible to activate conventional coke produced in existing chamber-type coke oven equipment, but in this case, the specific surface area and pore volume of the activated carbon obtained are small, so the performance as activated carbon is insufficient. was found to be inferior. This is because such coke is not intended to be used as a raw material for producing activated carbon, and this is also a natural result.

問題点を解決するための手段 本発明者は、さらに研究を重ねた結果、特定の石炭群A
と石炭群Bとを主な構成組成とする配合物を原料とする
場合には、既存の室炉式コークス炉設備で炭化されたコ
ークスを賦活して活性炭を製造することが可能となり、
得られた活性炭の物性も満足すべきものとなることを見
出し、この様な新知見に基いてすでに特許出願を行なっ
ている(特願昭63−81093号:以下ここに開示さ
れた発明を先願発明という)。
Means for Solving the Problems As a result of further research, the inventor discovered that a specific coal group A
When using a mixture whose main constituent composition is Coal Group B as a raw material, it becomes possible to produce activated carbon by activating coke carbonized in existing room furnace coke oven equipment,
We found that the physical properties of the obtained activated carbon were also satisfactory, and based on these new findings, we have already filed a patent application (Japanese Patent Application No. 81093/1983; hereinafter, the invention disclosed herein is referred to as the earlier patent application). invention).

本発明者は、さらに研究を重ねた結果、先願発明を改良
することにより、より優れた特性を備えた活性炭が得ら
れることを見出した。
As a result of further research, the inventors of the present invention discovered that activated carbon with more excellent properties could be obtained by improving the prior invention.

すなわち、本発明は、以下に示す活性炭の製造方法を提
供するものである。
That is, the present invention provides the method for producing activated carbon shown below.

■下記に示す特性をそれぞれ有する石炭群A30〜95
%と石炭群870〜5%とを主な構成組成とする配合物
を微粉砕し、加圧成形し、厚み10am以下、または粒
径10!m以下に調整した後、室炉式コークス炉設備に
おいて炭化し、賦活することを特徴とする活性炭の製造
方法: 石炭群A: (a)光学的平均反射率(R0); 0.4〜1.0 (b)ギーセラー最高流動度(MF)。
■Coal group A30-95 each having the characteristics shown below.
% and coal group 870-5% is finely pulverized and pressure molded to a thickness of 10 am or less or a particle size of 10! A method for producing activated carbon, which is characterized in that the activated carbon is adjusted to less than m, and then carbonized and activated in a room-furnace coke oven facility: Coal group A: (a) Average optical reflectance (R0); 0.4 to 1 .0 (b) Gieseler maximum flow rate (MF).

2.0 (l ogDDPM)未満 (c)ボタン指数; 3未満 石炭群B: (a)光学的平均反射率(R0); 0.6〜1.2 (b)ギーセラー最高流動度(MF);2.0〜4.5
 (1ogDDPM) (c)ボタン指数; 3以上。
Less than 2.0 (l og DDPM) (c) Button index; Less than 3 Coal group B: (a) Average optical reflectance (R0); 0.6 to 1.2 (b) Gieseler maximum fluidity (MF); 2.0-4.5
(1ogDDPM) (c) Button index: 3 or more.

■配合物が、石炭群A50〜95%と石炭群850〜5
%とを構成組成とする上記第1項に記載の活性炭の製造
方法。
■The blend is 50-95% of coal group A and 850-5% of coal group
%. The method for producing activated carbon according to item 1 above.

本発明においては、原料中に占める割合を石炭群A30
〜95%とし、石炭群870〜5%とすることを特徴と
する。例えば、石炭群A単独を原料とする場合には、塊
状コークスを形成しないため、押し出しが不可能であり
、室炉式コークス炉設備は使用できない。また、石炭群
A単独を原料とし、炭化および賦活を第1図に示す従来
方法により行う場合にも、一般的にやはり良質の活性炭
が得られない。さらに、石炭群Bを単独で使用する場合
には、炭化および賦活の工程如何にかかわらず、一般に
表面積が小さくかつ吸着能の低い低品質の活性炭しか得
られない。さらにまた、石炭群Aと石炭群Bとの混合割
合が、所定の範囲外となる場合にも、一般にやはり所望
の高品質の活性炭は得られない。最終的に得られる活性
炭の品質をより改善するためには、原料中に占める割合
は、石炭群A50〜95%とし、石炭群850〜5%と
することがより好ましい。
In the present invention, the proportion of coal group A30 in the raw material is
~95%, and the coal group is 870~5%. For example, when coal group A alone is used as a raw material, extrusion is impossible because lump coke is not formed, and indoor furnace coke oven equipment cannot be used. Furthermore, even when coal group A alone is used as a raw material and carbonization and activation are performed by the conventional method shown in FIG. 1, good quality activated carbon is generally not obtained. Furthermore, when coal group B is used alone, only low-quality activated carbon with a small surface area and low adsorption capacity is generally obtained, regardless of the carbonization and activation steps. Furthermore, even when the mixing ratio of coal group A and coal group B falls outside the predetermined range, activated carbon of the desired high quality is generally not obtained. In order to further improve the quality of the finally obtained activated carbon, it is more preferable that the proportion of coal group A in the raw material is 50 to 95% and 850 to 5% of coal group A.

石炭群Aと石炭群Bとの配合物を原料とする本発明は、
前述の様に、第1図に示す従来技術による活性炭製造方
法により実施しても良いが、第2図に示す様に、炭化炉
として室炉式コークス炉設備を使用する方式によること
が、より好ましい。
The present invention, which uses a mixture of coal group A and coal group B as raw material,
As mentioned above, the activated carbon manufacturing method according to the prior art shown in Fig. 1 may be used, but as shown in Fig. 2, it is more preferable to use a method of using room furnace type coke oven equipment as the carbonization furnace. preferable.

すなわち、原料石炭群AおよびBをそれぞれ粉砕機(1
1)において常法に従って74μm以下程度に微粉砕し
た後、貯炭槽(12)に貯蔵する。次いで、それぞれの
貯炭槽に貯蔵されている石炭を所定の配合率で切り出し
、ミキサー(13)で混合し、成形機(14)により平
板状に加圧成形する。或いはそれぞれの貯炭槽に貯蔵さ
れている未粉砕の石炭AとBとを所定の配合率で切り出
し、ミキサー(13)で混合して得た配合物を微粉砕し
た後、加圧成形しても良い。加圧成形時の圧力は、常法
の場合と同様に、線圧で1トン/ cm以上、面圧で1
トン/ cj以上とすることが好ましい。次いで、得ら
れた成形物を割砕機(15)で厚み10mm以下(より
好ましくは2〜5關程度)または粒径10mm以下(よ
り好ましくは2〜5關程度)に調整した後、コークス炉
(16)に送り、600〜1300℃程度で炭化する。
That is, raw coal groups A and B are each crushed by a crusher (1
In step 1), the coal is pulverized to about 74 μm or less according to a conventional method, and then stored in a coal storage tank (12). Next, the coal stored in each coal storage tank is cut out at a predetermined blending ratio, mixed with a mixer (13), and pressure-molded into a flat plate shape with a molding machine (14). Alternatively, unpulverized coals A and B stored in each coal storage tank may be cut out at a predetermined blending ratio, mixed in a mixer (13), the resulting blend may be pulverized, and then pressure molded. good. The pressure during pressure molding is 1 ton/cm or more for linear pressure and 1 ton/cm for surface pressure, as in the conventional method.
It is preferable to set it to ton/cj or more. Next, the obtained molded product is adjusted to a thickness of 10 mm or less (more preferably about 2 to 5 mm) or a particle size of 10 mm or less (more preferably about 2 to 5 mm) using a crusher (15), and then placed in a coke oven ( 16) and carbonized at about 600 to 1300°C.

生成した炭化物は、炭化成形体を構成する各粒子の端部
が付着した嵩高な状態でコークス炉(16)から排出さ
れてくるので、例えば、解砕機(17)により容易に各
粒子に分割することができる。この炭化成形体の強度は
、コークス炉(16)からの押出しが可能で且つ手でも
容易に各粒子に分割し得る程度のものであるので、解砕
機(17)としては、特に強力な装置を使用する必要は
ない。収率の観点から過度の粉砕を避けるために、解砕
機(17)としては、各粒子への分割が可能である限り
、むしろ低能力のものが好ましい。分割された炭化物は
、スクリーン(18)でふるい分けされ、0.5〜5m
m程度のものが賦活炉(19)に送られて、常法に従っ
て500〜1200℃程度で水蒸気賦活され、製品とさ
れる。スクリーン(18)で得られた粗粒は、割砕機(
17)に戻され、また微粒は、ブリーズとして再利用さ
れる。本発明においては、原料炭化物を基準とした場合
、ふるい分は後の炭化物の収率は、目的とする炭化物の
粒径にもよるが、80%程度にも達し得る(0.5〜4
mmの場合)。前述の先願発明の場合には、同様の条件
での収率は、50%程度であったから、本発゛明による
収率の改善が著るしいことが明らかである。その結果、
原料石炭を基準とした本発明の活性炭の収率も23%程
度となり、先願発明の15%程度に比して、著るしく向
上している。
The generated carbide is discharged from the coke oven (16) in a bulky state with the ends of each particle constituting the carbonized compact attached, so it can be easily divided into particles by, for example, a crusher (17). be able to. The strength of this carbonized compact is such that it can be extruded from the coke oven (16) and easily divided into individual particles by hand, so a particularly powerful device is required as the crusher (17). There is no need to use it. In order to avoid excessive crushing from the viewpoint of yield, it is preferable that the crusher (17) has a low capacity as long as it can divide the particles into individual particles. The divided carbide is sifted with a screen (18) and is separated by 0.5 to 5 m.
The product is sent to an activation furnace (19), where it is activated with steam at about 500 to 1200°C according to a conventional method, and is made into a product. The coarse particles obtained by the screen (18) are passed through a crusher (
17) and the fine particles are recycled as breeze. In the present invention, when based on the raw material carbide, the yield of the sieved carbide can reach about 80% (0.5 to 4
mm). In the case of the prior invention mentioned above, the yield under similar conditions was about 50%, so it is clear that the yield improvement according to the present invention is remarkable. the result,
The yield of activated carbon of the present invention based on raw material coal is also about 23%, which is significantly improved compared to about 15% of the prior invention.

本発明においては、使用する石炭群の品質と必要とする
活性炭の品質に応じて、石炭重量の20%を超えない範
囲で、バインダーを併用することが出来る。バインダー
としては、通常使用されているコールタール、ピッチ、
パルプ廃液などを使用する。
In the present invention, depending on the quality of the coal group used and the quality of the activated carbon required, a binder can be used in combination within a range not exceeding 20% of the weight of the coal. As a binder, commonly used coal tar, pitch,
Use pulp waste liquid, etc.

本発明方法により得られる活性炭は、原料の種類、製造
工程などにより、通常比表面積900rrr/g以上、
細孔容積0.5cc/g以上、ヨウ素吸着量950mg
/g以上、充填密度0.49g−/ c m 3以上程
度の物性を設計することが出来る。また、本発明方法に
よる活性炭は、硬さ、メチレンブルー脱色力などの点で
、従来法により得られる活性炭とほぼ同等若しくはそれ
以上のものである。
The activated carbon obtained by the method of the present invention usually has a specific surface area of 900 rrr/g or more, depending on the type of raw materials, manufacturing process, etc.
Pore volume 0.5cc/g or more, iodine adsorption amount 950mg
It is possible to design physical properties with a packing density of 0.49 g-/cm3 or more. In addition, the activated carbon obtained by the method of the present invention is approximately equal to or higher than the activated carbon obtained by the conventional method in terms of hardness, methylene blue decolorizing power, etc.

発明の効果 本発明によれば、それぞれ単独では、活性炭製造原料と
して不適な特定の石炭群を配合することにより、既存の
室炉式コークス炉を利用して炭化を行うことも可能とな
ったので、設備コストが大巾に低減される。さらに、製
品の歩留りが著るしく改善されるので、この点からのコ
スト低減も達成される。
Effects of the Invention According to the present invention, by blending specific groups of coals that are unsuitable as raw materials for producing activated carbon on their own, it has become possible to carry out carbonization using an existing indoor coke oven. , equipment costs are significantly reduced. Furthermore, since the product yield is significantly improved, cost reductions from this point of view are also achieved.

また、得られる活性炭の性状も、著るしく向上する。Moreover, the properties of the obtained activated carbon are also significantly improved.

さらにまた、石炭群Aと石炭群Bとの配合割合及びバイ
ンダーなどの添加物の種類と量を変更することにより、
活性炭の性能を調整することが可能である。
Furthermore, by changing the blending ratio of coal group A and coal group B and the type and amount of additives such as binders,
It is possible to adjust the performance of activated carbon.

実施例 以下に実施例を示し、本発明の特徴とするところをより
一層明らかにする。
EXAMPLES Examples will be shown below to further clarify the features of the present invention.

実施例1 下記に示す特性の石炭A65重量部と石炭830重量部
にピッチ5重量部を配合し、95%以上が200メツシ
ュ通過となる様に微粉砕した後、成形機により線圧3ト
ン/ cmで厚み5mmの板状に成形した。次いで、こ
の成形体を粉砕機により粉砕した後、ふるい分けし、粒
径0.6〜5mmのものを収得し、これを室炉式コーク
ス炉で約900℃で炭化した後、得られた塊状コークス
を緩やかに解砕し、ふるい分けた。このうち、0.5〜
4鰭のものをロータリーキルンにおいて900℃で5時
間水蒸気賦活し、活性炭を製造した。
Example 1 65 parts by weight of coal A having the characteristics shown below and 830 parts by weight of coal were blended with 5 parts by weight of pitch, and after pulverizing the mixture so that 95% or more passed through 200 meshes, a linear pressure of 3 tons/ It was molded into a plate with a thickness of 5 mm. Next, this molded body was crushed by a crusher and then sieved to obtain particles with a particle size of 0.6 to 5 mm, which were carbonized at about 900°C in an indoor coke oven to produce the obtained lump coke. was gently crushed and sieved. Of these, 0.5~
The four-fin specimen was steam activated at 900° C. for 5 hours in a rotary kiln to produce activated carbon.

石炭A: (a)光学的平均反射率(R0);0.61(b)ギー
セラー最高流動度(MF)  ;1. 7(c)ボタン
指数:2 石炭B: (a)光学的平均反射率(R0);1.0(b)ギーセ
ラー最高流動度(MP);3(c)ボタン指数;6 原料石炭を基準とする活性炭の収率は、23%であり、
その物性は、以下の通りである。
Coal A: (a) Average optical reflectance (R0); 0.61 (b) Gieseler maximum fluidity (MF); 1. 7 (c) Button index: 2 Coal B: (a) Average optical reflectance (R0); 1.0 (b) Gieseler maximum fluidity (MP); 3 (c) Button index; 6 Based on coking coal The yield of activated carbon is 23%,
Its physical properties are as follows.

充填密度−0,49g/cm3 JIS硬さ=98% メチレンブルー脱色力=170ml/g以上比表面積=
929r!f/g 図面の簡単な説明 第1図は、従来枝術による活性炭製造方法の一例を示す
フローチャート、第2図は、本発明による活性炭製造方
法の一例を示すフローチャートである。
Packing density - 0.49g/cm3 JIS hardness = 98% Methylene blue decolorizing power = 170ml/g or more Specific surface area =
929r! f/g BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flowchart showing an example of a conventional activated carbon production method, and FIG. 2 is a flowchart showing an example of an activated carbon production method according to the present invention.

(1)・・・乾燥機 (2)・・・微粉砕機 (3)・・・貯炭槽 (4)・・・ミキサー (5)・・・成形機 (6)・・・解砕機 (7)・・・スクリーン (8)・・・炭化炉 (9)・・・賦活炉 (11)・・・粉砕機 (12)・・・貯炭槽 (13)・・・ミキサー (14)・・・成形機 (15)・・・解砕機 (16)・・・スクリーン (17)・・・室炉式コークス炉 (18)・・・割砕機 (19)・・・賦活炉 (以上) 手続補正書印発) 工 事件の表示 平成1年特許願第28985号 2 発明の名称 活性炭の製造方法 (028>大阪瓦斯株式会社 4代理人 大阪市中央区平野町2−1−2沢の鶴ビルfij06 
(203) 0941 自  発 6 補正の対象 明細書中「発明の詳細な説明」の項、 「図面の簡単な説明」の項及び図面 補正の内容 1 明細書中の記載を下表の通りに訂正する。
(1)...Dryer (2)...Fine crusher (3)...Coal storage tank (4)...Mixer (5)...Molding machine (6)...Crusher (7) )...Screen (8)...Carbonization furnace (9)...Activation furnace (11)...Crusher (12)...Coal storage tank (13)...Mixer (14)... Molding machine (15)...Crushing machine (16)...Screen (17)...Room oven coke oven (18)...Crushing machine (19)...Activation furnace (and above) Procedure amendment Indication of the case 1999 Patent Application No. 28985 2 Name of the invention Method for manufacturing activated carbon (028> Osaka Gas Co., Ltd. 4 Agent Sawanotsuru Building fij06, 2-1-2 Hirano-cho, Chuo-ku, Osaka City
(203) 0941 Voluntary Issue 6 The "Detailed Description of the Invention" section, the "Brief Explanation of the Drawings" section in the specification subject to amendment, and Contents of Drawing Amendment 1: The statements in the description are corrected as shown in the table below. do.

2 明細書第15頁第1行乃至第3行 r(17)・・・室炉式コークス炉 (18)・・・割砕機 (19)・・・賦活炉」とあるのを下記の通りに訂正す
る。
2. Page 15 of the specification, lines 1 to 3 r(17)...Room oven coke oven (18)...Crusher (19)...Activation furnace" is replaced with the following: correct.

r(17)・・・コークス炉 (18)・・・割砕機 (19)・・・スクリーン (20)・・・賦活炉」 3 図面第2図を別紙添附の通りに訂正する。r(17)...Coke oven (18)...Crushing machine (19)...Screen (20)... Activation Furnace" 3. Correct the drawing No. 2 as shown in the attached sheet.

(以 上) 平成2年7月11日 特許庁長官 植 松   敏 殿 1 事件の表示 平成1年特許願第28985号 2 発明の名称 <028)大阪瓦斯株式会社 4代理人 大阪市中央区平野町2−1−2  沢の鶴ビル2!!0
6 (203> 0941 平成2年7月3日 補正の内容 1 明細書中の記載を下表の通りに訂正する。
(Above) July 11, 1990 Toshi Uematsu, Commissioner of the Japan Patent Office 1 Description of the case 1999 Patent Application No. 28985 2 Name of the invention <028) Osaka Gas Co., Ltd. 4 Agent Hirano-cho, Chuo-ku, Osaka City 2-1-2 Sawa no Tsuru Building 2! ! 0
6 (203> 0941 Contents of the July 3, 1990 amendment 1 The statements in the specification are corrected as shown in the table below.

2 明細書第15頁第1行乃至第3行 [(17)・・・室炉式コークス炉 (18)・・・割砕機 (19)・・・賦活炉」とあるのを下記の通りに訂正す
る。
2 Lines 1 to 3 of page 15 of the specification [(17)...Room furnace type coke oven (18)...Crusher (19)...Activation furnace'' has been replaced with the following: correct.

r(17)・・・コークス炉 (18)・・・割砕機 (19)・・・スクリーン (20)・・・賦割炉」 3 図面第2図を別紙添付の通りに訂正する。r(17)...Coke oven (18)...Crushing machine (19)...Screen (20)...Instalment Furnace" 3. Correct Figure 2 of the drawing as attached.

(第1図は内容に変更なし) (以 上)(The contents of Figure 1 remain unchanged) (that's all)

Claims (2)

【特許請求の範囲】[Claims] (1)下記に示す特性をそれぞれ有する石炭群A30〜
95重量%と石炭群B70〜5重量%とを主な構成組成
とする配合物を微粉砕し、加圧成形し、厚み10mm以
下または粒径10mm以下に調整した後、室炉式コーク
ス炉設備において炭化し、賦活することを特徴とする活
性炭の製造方法: 石炭群A: (a)光学的平均反射率(R_0);0.4〜1.0 (b)ギーセラー最高流動度(MF);2.0(log
DDPM)未満 (c)ボタン指数;3未満 石炭群B: (a)光学的平均反射率(R_0);0.6〜1.2 (b)ギーセラー最高流動度(MF);2.0〜4.5
(logDDPM) (c)ボタン指数;3以上。
(1) Coal group A30~ having the characteristics shown below
A mixture whose main composition is 95% by weight and 70 to 5% by weight of coal group B is finely pulverized, pressure-molded, and adjusted to a thickness of 10 mm or less or a particle size of 10 mm or less, and then processed into an indoor coke oven equipment. A method for producing activated carbon characterized by carbonization and activation in: Coal group A: (a) Average optical reflectance (R_0); 0.4 to 1.0 (b) Gieseler maximum fluidity (MF); 2.0 (log
DDPM) (c) Button index; less than 3 Coal group B: (a) Average optical reflectance (R_0); 0.6 to 1.2 (b) Gieseler maximum fluidity (MF); 2.0 to 4 .5
(logDDPM) (c) Button index: 3 or more.
(2)配合物が、石炭群A50〜95重量%と石炭群B
50〜5重量%とを構成組成とする第1請求項に記載の
活性炭の製造方法。
(2) The blend is 50 to 95% by weight of coal group A and coal group B.
5. The method for producing activated carbon according to claim 1, wherein the composition is 50 to 5% by weight.
JP1028985A 1989-02-08 1989-02-08 Production of activated carbon Pending JPH02302308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028985A JPH02302308A (en) 1989-02-08 1989-02-08 Production of activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028985A JPH02302308A (en) 1989-02-08 1989-02-08 Production of activated carbon

Publications (1)

Publication Number Publication Date
JPH02302308A true JPH02302308A (en) 1990-12-14

Family

ID=12263711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028985A Pending JPH02302308A (en) 1989-02-08 1989-02-08 Production of activated carbon

Country Status (1)

Country Link
JP (1) JPH02302308A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507470A (en) * 2008-11-04 2012-03-29 コーニング インコーポレイテッド Method for producing porous activated carbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507470A (en) * 2008-11-04 2012-03-29 コーニング インコーポレイテッド Method for producing porous activated carbon

Similar Documents

Publication Publication Date Title
CN104927948B (en) A kind of preparation method of water-coal-slurry
JP6676821B2 (en) Method of producing binder-based activated carbon with no binder
US3419645A (en) Process for preparing finely porous, shaped carbon bodies
CN105779059B (en) A kind of fine coal high intensity forming method of binder free
JPH0635623B2 (en) How to make carbon powder
JPH02302308A (en) Production of activated carbon
EP0359997A1 (en) Process for the production of sintered dolomite in a rotary kiln
CN113636551A (en) Method for preparing high-performance activated carbon by using activated carbon powder blended with coal
KR20090116377A (en) The making method of granule coke using coke dust and sludge and the granule coke
WO2018141318A1 (en) Process for producing briquettes and briquettes produced thereby
KR101579350B1 (en) A method of producing graphite material and grinding apparatus of carbon-based raw material
CN113292069A (en) Composite active carbon and preparation method thereof
JPH01252513A (en) Production of active carbon
RU2174949C1 (en) Method of preparing activated carbon
JPH10231166A (en) Baked building material block utilizing waste
JP7371610B2 (en) Method for producing shaped sintered raw material and method for producing sintered ore
RU2724753C1 (en) Method of producing activated carbon
JPS6047095A (en) Preparation of coke for metallurgy
JPS61295216A (en) Preparation of isotropic graphite material having high density and high strength
JPH03290310A (en) Production of active carbon
JPH10226562A (en) Block for calcined building material with waste as main raw material
JPH07103374B2 (en) Coke production method
CN115974078A (en) Coal-based briquetted activated carbon and preparation method thereof
JPH02208215A (en) Production of molded active carbon body
RU2160704C2 (en) High-strength graphitized material