JPH07103374B2 - Coke production method - Google Patents

Coke production method

Info

Publication number
JPH07103374B2
JPH07103374B2 JP1372690A JP1372690A JPH07103374B2 JP H07103374 B2 JPH07103374 B2 JP H07103374B2 JP 1372690 A JP1372690 A JP 1372690A JP 1372690 A JP1372690 A JP 1372690A JP H07103374 B2 JPH07103374 B2 JP H07103374B2
Authority
JP
Japan
Prior art keywords
coke
inert carbon
carbon material
weight
volatile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1372690A
Other languages
Japanese (ja)
Other versions
JPH03220291A (en
Inventor
博 原口
英裕 片平
寿弘 荒牧
末▲吉▼ 竹村
実 石橋
比呂文 柿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP1372690A priority Critical patent/JPH07103374B2/en
Publication of JPH03220291A publication Critical patent/JPH03220291A/en
Publication of JPH07103374B2 publication Critical patent/JPH07103374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコークスの製造方法に関する。TECHNICAL FIELD The present invention relates to a method for producing coke.

更に詳しくは、室式コークス炉を用いて、フリュー温度
1,200℃以上の高稼働率操業下、高品質で大きい塊状の
コークス、特に鋳物等の製錬用コークスを高生産性で製
造する方法に関する。
More specifically, a room temperature coke oven is used to measure the flue temperature.
The present invention relates to a method for producing a high quality, large lump coke, particularly a smelting coke such as a casting, with high productivity under a high operation rate operation of 1,200 ° C. or higher.

〔従来の技術〕[Conventional technology]

一般に製錬用コークスの品質としては、灰分が少なく、
大粒度で、亀裂が少なく、緻密で、且つ落下強度(▲SI
4 50▼)が高いことが要求されている。このような品質
を有する製錬コークスは、従来から、原料炭、ピッチお
よび石油コークス、無煙炭、コースク微粉などを原料と
し、粉砕配合し、あるいは配合、粉砕してコークス炉に
装入し、950〜1,100℃の低い炉温で乾留して製造するこ
とが知られている。低い炉温で乾留するのは、乾留過程
での熱応力の発生を抑制し、亀裂の少ない大粒度の塊コ
ークスを製造するためであるが、炉温が低いと乾留に長
時間を必要とし、生産性が低いという問題があった。
Generally, the quality of smelting coke is low in ash,
Large grain size, few cracks, dense and drop strength (▲ SI
4 50 ▼) is required to be high. Smelting coke having such a quality has conventionally been a raw material coal, pitch and petroleum coke, anthracite, caustic fine powder, etc., pulverized and blended, or blended, pulverized and charged into a coke oven, 950 ~ It is known that it is produced by dry distillation at a low furnace temperature of 1,100 ° C. The carbonization at a low furnace temperature is to suppress the generation of thermal stress in the carbonization process, and to produce a large coke of large grain size with few cracks, but when the furnace temperature is low, carbonization requires a long time, There was a problem of low productivity.

これに対し、特開昭54−120603号公報には、石油コーク
スの代替として、豪州ビクトリア産褐炭ブリケットを使
用することにより炉温1,200℃程度での鋳物用コークス
の製造が可能であることが開示されている。該公報は炉
温1,200℃程度で鋳物用コークスを生産する点では、一
見、本発明と類似技術のように考えられるが、該公報は
褐炭ブリケットの固有水分による脱水特性を利用して、
加熱速度の上昇を押えることにより、すなわち低い炉温
と同じような乾留条件を作り出すことにより、炉温1,20
0℃での鋳物コークスの製造が可能になったものであ
り、本発明とは目的が異なる。
On the other hand, JP-A-54-120603 discloses that casting coke can be produced at a furnace temperature of about 1,200 ° C by using brown coal briquette from Victoria, Australia, as an alternative to petroleum coke. Has been done. The publication, at the point of producing coke for foundry at a furnace temperature of about 1,200 ° C., at first glance, it can be considered as a similar technology to the present invention, but the publication utilizes the dehydration property of brown coal briquette due to the inherent water content,
By suppressing the increase in heating rate, that is, by creating carbonization conditions similar to low furnace temperature, furnace temperature of 1,20
It is possible to manufacture cast coke at 0 ° C., and the purpose is different from the present invention.

本出願人は、先に特願昭63−279382号において、コーク
ス製造用原料鋳に不活性炭素物質を5〜50重量%配合
し、中揮発分不活性炭素物質(生石油コークス、生ピッ
チコークス)と、低揮発分不活性炭素物質(コークス
粉、ピッチコークス粉、焼成石油コークス)との配合重
量比を0.5〜5の範囲内に調整したものを乾留すること
により、良品質の塊状コークスを製造する方法を提供し
ている。この場合、低揮発分不活性炭素物質の粒度が大
きいと、ドラム強度の低下が大きくなるので、低揮発分
不活性炭素物質の粒度は0.5mm以下の含有量が70重量%
以上、好ましくは85重量%以上が望ましいことを明らか
にしているが、フリュー温度は1,080℃で、従来の炉温
範囲内で実施されたものである。
The applicant of the present invention has previously proposed in Japanese Patent Application No. 63-279382 that 5 to 50% by weight of an inert carbon material is blended with a raw material casting for coke production to produce a medium volatile inert carbon material (raw petroleum coke, raw pitch coke). ) And a low volatile inert carbon material (coke powder, pitch coke powder, calcined petroleum coke) adjusted to within a range of 0.5 to 5 by dry distillation to obtain good quality coke. A method of manufacturing is provided. In this case, if the particle size of the low volatile inert carbon material is large, the drum strength is greatly reduced. Therefore, the particle size of the low volatile inert carbon material is 0.5 mm or less and the content is 70% by weight.
As described above, it has been clarified that it is preferably 85% by weight or more, but the flue temperature is 1,080 ° C., and it was carried out within the conventional furnace temperature range.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明の目的は、前記特願昭63−279382号を更に改良
し、フリュー温度1,200℃以上の高稼働率操業下で生産
性よく、高品質の製錬用コークスを製造できる配合条件
を提供することにある。
The object of the present invention is to further improve the above-mentioned Japanese Patent Application No. 63-279382, and to provide compounding conditions capable of producing a high quality smelting coke with high productivity under operation at a high flue temperature of 1,200 ° C. or higher. Especially.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は粘結炭およびピッチ類に、中揮発分不活性炭素
物質と低揮発分不活性炭素物質とからなり両者の配合重
量費が0.5〜3である不活性炭素物質を25〜55重量%配
合してなるコークス製造原料であって、該低揮発分不活
性炭素物質は粒度が0.3mm以下の含有量が90重量%以上
であり、且つ全配合原料の揮発分を20〜22重量%の範囲
内に調整した原料を、室式コークス炉でフリュー温度1,
200℃以上で乾留することを特徴とするコークスの製造
方法である。
According to the present invention, 25 to 55% by weight of an inert carbon substance, which is composed of a medium volatile inert carbon substance and a low volatile inert carbon substance in coking coal and pitches, and has a compounding weight cost of 0.5 to 3 for both. A raw material for producing coke, wherein the low volatile inert carbon substance has a particle size of 0.3 mm or less in a content of 90% by weight or more, and the volatile content of all the blended raw materials is 20 to 22% by weight. The raw material adjusted to within the range is flue temperature1,
It is a method for producing coke, which comprises performing carbonization at 200 ° C or higher.

以下、本発明の内容について詳細に説明する。Hereinafter, the content of the present invention will be described in detail.

製錬用コークスは、原料炭、ピッチ、不活性炭素物質等
の原料をコークス炉に装入し、乾留して製造している。
Smelting coke is manufactured by charging raw materials such as coking coal, pitch, and an inert carbon material into a coke oven and carbonizing.

この場合、炉温が高くなると、乾留過程でのセミコーク
ス層内の温度差が拡大することにより、セミコークス層
内の収縮率の差が拡大し、これに伴い熱応力の発生が増
大し、セミコークス強度が熱応力に耐えられなくなる
と、セミコークス層内に亀裂が発生し、成長し、生成コ
ークスは細粒化する。
In this case, when the furnace temperature becomes high, the temperature difference in the semi-coke layer in the carbonization process increases, the difference in the shrinkage ratio in the semi-coke layer increases, and the occurrence of thermal stress increases accordingly. When the semi-coke strength cannot withstand the thermal stress, cracks occur in the semi-coke layer and grow, and the coke produced becomes finer.

したがって、高炉温下で亀裂の少ない、大粒度の塊コー
クスを製造するためには、セミコークス層内で発生する
熱応力を抑制するとともに、セミコークス強度の向上対
策が必要である。
Therefore, in order to produce a large-sized agglomerate coke with few cracks under the blast furnace temperature, it is necessary to suppress the thermal stress generated in the semi-coke layer and to improve the semi-coke strength.

そこで、本発明者らは、まず乾留過程でのセミコークス
層内の熱応力の抑制に重点を置いて検討を行った。
Therefore, the present inventors first conducted an examination with an emphasis on suppressing thermal stress in the semi-coke layer during the carbonization process.

セミコークス層内での熱応力を抑制するためには、セミ
コークス収縮速度の温度依存性を小さくする必要があ
る。この解決策としては、熱的条件で全然変化しない低
揮発分不活性炭素物質の増配合が効果的である。本発明
でいう低揮発分不活性炭素物質とは、揮発分が3%以下
の石炭コークス粉、焼成ピッチコークス粉、焼成石油コ
ークス粉等をいう。
In order to suppress the thermal stress in the semi-coke layer, it is necessary to reduce the temperature dependence of the semi-coke shrinkage rate. As a solution to this problem, it is effective to increase the content of the low volatile content inert carbon material which does not change at all under thermal conditions. The low volatile inert carbon material referred to in the present invention means coal coke powder, calcined pitch coke powder, calcined petroleum coke powder and the like having a volatile content of 3% or less.

これらのコークス粉であって、粒度が0.3mm以下の含有
量が90重量%以上に微粉砕されたものが好適である。
Of these coke powders, those having a particle size of 0.3 mm or less and finely pulverized to a content of 90% by weight or more are preferable.

しかし、低揮発分不活性炭素 物質は化学的にも不活性であり、増配合により、ドラム
強度(▲DI150 15▼)が大幅に低下する。この場合、低
揮発分不活性炭素物質の粒度が粗粒ほど増配合でのドラ
ム強度の低下が大きく、更に同一配合重量比でもフリュ
ー温度上昇によるドラム強度および落下強度の低下は大
きくなる。
However, the low volatile inert carbon material is also chemically inert, and the drum strength (▲ DI 150 15 ▼) is significantly reduced by increasing the compounding ratio. In this case, the coarser the particle size of the low volatile content inert carbon material, the greater the decrease in the drum strength in the increased compounding, and the greater the mixing ratio by weight, the greater the decrease in the drum strength and the drop strength due to the increase in the flue temperature.

特に、フリュー温度が、1,200℃以上の場合は低揮発分
不活性炭素物質の粒度は0.3mm以下が90重量%以上と微
粒分が多い程、好ましくは0.3m以下が100重量%と微粒
粉が多い程、生成コークスは大粒度で、落下強度は高く
なることを知見した。
In particular, when the flue temperature is 1,200 ° C. or higher, the particle size of the low volatile inert carbon material is 90% by weight or more in 0.3 mm or less, and the finer particles are more, preferably 100% by weight or less in 0.3 m. It was found that the larger the amount, the larger the grain size of the generated coke and the higher the drop strength.

これは熱的にも化学的にも不活性な低揮発分不活性炭素
物質は、粗粒であると、熱歪やミクロ亀裂が生成し、さ
らに石炭粒子やピッチ類との接触不良が生ずるためと考
えられる。
This is because low-volatile inert carbon materials that are both thermally and chemically inactive have coarse particles that cause thermal strain and microcracks, and also cause poor contact with coal particles and pitches. it is conceivable that.

このように、低揮発分不活性炭素物質の増配合により、
乾留過程でのセミコークス層内での熱応力の抑制手段は
見い出されたが、この場合、微粒子の低揮発分不活性炭
素物質であっても、増配合により確実にセミコークス強
度は低下し、生成コークスのドラム強度は低下する。
In this way, by increasing the content of low volatile inert carbon material,
A means for suppressing thermal stress in the semi-coke layer during the carbonization process has been found, but in this case, even with a low volatile content inert carbon substance of fine particles, the semi-coke strength surely decreases due to the increase of the blending, The coke drum strength is reduced.

そこで、低揮発分不活性炭素物質よりも若干の粘結性を
有し、石炭粒子およびピッチ類との結合性のよい中揮発
分不活性炭素物質の増量を目的に、中揮発分不活性炭素
物質と低揮発分不活性炭素物質との混合配合条件につい
て検討した。
Therefore, for the purpose of increasing the amount of the medium volatile inert carbon substance, which has a slightly more caking property than the low volatile inert carbon substance and has good binding properties with coal particles and pitches, the medium volatile inert carbon substance is used. The mixing and blending conditions of the substance and the low volatile inert carbon substance were examined.

前記、特願昭63−279382号では、中揮発分不活性炭素物
質を配合すると、コークス塊の大きさは比較的小さくな
り、落下強度も低下するが、一方ではドラム強度が増大
するとしていた。
In the above-mentioned Japanese Patent Application No. 63-279382, when the medium volatile inert carbon material is blended, the size of the coke mass becomes relatively small and the drop strength also decreases, while the drum strength increases.

本発明者らが、中揮発分不活性炭素物質について更に詳
細に検討した結果、揮発分が約10〜15重量%のものであ
れば、配合重量比が30〜40%までは、コークス粒度は粗
粒化し、落下強度およびドラム強度も向上することを見
い出した。
As a result of further detailed study of the medium volatile inert carbon substance, the present inventors have found that if the volatile matter is about 10 to 15% by weight, the coke particle size is up to 30 to 40% by weight. It has been found that the particles are coarsened and drop strength and drum strength are also improved.

本発明でいう中揮発分不活性炭素物質とは、揮発分が10
〜15重量%の生ピッチコークス粉、生石油コークス粉
(生とは焼成前のコークス粉をいう)等が挙げられる。
The medium volatile inert carbon material referred to in the present invention has a volatile content of 10
-15 wt% raw pitch coke powder, raw petroleum coke powder (raw means coke powder before firing) and the like.

さらに不活性炭素物質の配合重量比を全原料に対し、25
〜55重量%の範囲内で、中揮発分不活性炭素物質と低揮
発分不活性炭素物質との配合重量比を0.5〜3に調整す
ることにより、大粒度で落下強度およびドラム強度の高
いコークスが得られる。
Furthermore, the blending weight ratio of the inert carbon material to all raw materials is 25
Coke with large particle size and high drop strength and high drum strength by adjusting the blending weight ratio of the medium volatile inert carbon material and the low volatile inert carbon material within the range of up to 55% by weight. Is obtained.

この場合、フリュー温度が高くなるほど不活性炭素物質
の配合比および中揮発分と低揮発分の不活性炭素物質の
配合比が大きい方が効果的である。さらに前記配合条件
のみでは、フリュー温度1,200℃以上で乾留して、高品
質の鋳物用コークスを製造するのは不可能であり、前記
配合条件に加えて、粘結炭、ピッチ類、不活性炭素物質
を混合した全配合原料の揮発分を20〜23重量%の範囲内
に調整することによって、高品質の鋳物用コークスの製
造が可能である。
In this case, it is more effective that the mixing ratio of the inert carbon material and the mixing ratio of the inactive carbon material having a medium volatile content and the low volatile content are larger as the flue temperature becomes higher. Furthermore, it is impossible to produce a high quality foundry coke by dry distillation at a flue temperature of 1,200 ° C. or higher only by the above-mentioned compounding conditions, and in addition to the above compounding conditions, coking coal, pitches, inert carbon High-quality foundry coke can be produced by adjusting the volatile content of the total blended raw material to be within the range of 20 to 23% by weight.

これはフリュー温度が高い場合は、低揮発分不活性炭素
物質で熱応力を抑制し、石炭粒子やピッチ類との結合性
のよい中揮発分不活性炭素物質で高い強度のセミコーク
スを形成するとともに、他の部分で発生した亀裂の伝播
を阻止し、さらに全配合原料の揮発分を20〜23重量%と
低目にすることで気孔の発生を少なくすることにより、
亀裂の少ない大粒度のコークスが生成できるものと推定
される。
When the flue temperature is high, the low volatile inert carbon material suppresses thermal stress, and the medium volatile inert carbon material that has good binding properties with coal particles and pitches forms high strength semi-coke. At the same time, by preventing the propagation of cracks generated in other parts, and by reducing the volatile content of all compounded raw materials to 20 to 23% by weight, by reducing the generation of pores,
It is presumed that large-grain coke with few cracks can be generated.

なお、低揮発分不活性炭素物質については、0.3mm以下
の微粒子が望ましいが、これを粉砕して得るとなると、
膨大の粉砕エネルギー・コストを必要とする。近年、省
エネルギーを目的に、室式コークス炉の乾式消火設備が
普及しているが、この設備のバグフィルターで捕集され
た微粉コークスは本発明の低揮発分不活性炭素物質とし
て最適であり、粉砕エネルギーの節減となり、国家経済
上の利益が極めて大きい。
Incidentally, for the low volatile inert carbon substance, fine particles of 0.3 mm or less is desirable, but if it is obtained by crushing this,
Requires enormous grinding energy costs. In recent years, for the purpose of energy saving, dry fire extinguishing equipment of a room-type coke oven has become widespread, but fine coke collected by a bag filter of this equipment is optimal as a low volatile inert carbon substance of the present invention, The energy consumption is reduced and the national economic benefits are extremely large.

〔実施例〕〔Example〕

以下に本発明を実施例によって、更に具体的に説明する
が、本発明は、この実施例によって限定されるものでな
いことはいうまでもない。
Hereinafter, the present invention will be described more specifically with reference to Examples, but it goes without saying that the present invention is not limited to these Examples.

第1表および第2表に本発明の実施例を示した。Examples of the present invention are shown in Tables 1 and 2.

第1表に示すように、原料としては揮発分が約18〜30重
量%の4種類の粘結炭、粒度の異なる2種類の低揮発分
不活性炭素物質、1種類の中揮発分不活性炭素物質およ
び硬ピッチを用いた。
As shown in Table 1, as raw materials, four types of coking coal having a volatile content of about 18 to 30% by weight, two types of low volatile inert carbon substances with different particle sizes, and one type of medium volatile inert Carbon material and hard pitch were used.

第2表に示すように、本発明法で4つの組み合わせの原
料配合物、比較法で5つの組み合わせの原料配合物を作
り、乾留は1/4t試験コークスで、フリュー温度1,230℃
で行った。
As shown in Table 2, four combinations of raw material blends were made by the method of the present invention, and five combinations of raw material blends were made by the comparative method, and the carbonization was carried out with 1 / 4t test coke at a flue temperature of 1,230 ° C.
I went there.

本発明法のコークスは、落下強度(SI50)、ドラム強度
(▲DI150 15▼)が高く、大粒度のコークスが得られ
た。
The coke produced by the method of the present invention has a high drop strength (SI 50 ) and a high drum strength (▲ DI 150 15 ▼), and a large-grain coke was obtained.

しかし、低揮発分不活性炭素物質として0.3mm以下含有
率が約70重量%のものを使用したケース(比較例5)、
全配合原料の揮発分が20重量%未満(比較例6)および
22重量%超(比較例7)のケース、中揮発分不活性炭素
物質と低揮発分不活性炭素物質の重量比が0.5未満(比
較例8)及び3.0超(比較例9)のケースでは落下強度
およびドラム強度が低く、粒度の細いものしか得られな
かった。
However, the case where the content of 0.3 mm or less as the low volatile inert carbon material is about 70% by weight is used (Comparative Example 5),
Volatile content of all blended raw materials is less than 20% by weight (Comparative Example 6) and
Drops in the case of more than 22% by weight (Comparative Example 7), the case where the weight ratio of the medium volatile inert carbon material to the low volatile inert carbon material is less than 0.5 (Comparative Example 8) and more than 3.0 (Comparative Example 9). The strength and drum strength were low, and only fine particles were obtained.

実施例によって明らかな如く、大粒度で高品質の製錬用
コークスを高稼働率で、生産性よく製造するためには、
低揮発分不活性炭素物質の粒度、中揮発分不活性炭素物
質と低揮発分不活性炭素物質との配合重量比、全配合原
料の揮発分などを適正範囲に制御することが重要であ
る。
As is clear from the examples, in order to produce a large grain size and high quality smelting coke with a high operating rate and high productivity,
It is important to control the particle size of the low volatile content inert carbon material, the blending weight ratio of the medium volatile content inert carbon material and the low volatile content inert carbon material, and the volatile content of all the blended raw materials within an appropriate range.

〔発明の効果〕 本発明では、コークスの原料の適正な選定、配合比及び
粒度と全配合原料の揮発分範囲の設定を行うことによ
り、室式コークス炉を用いて、フリュー温度1,200℃以
上の温度、従って高稼働率操業下で、大粒度、高品質の
製錬用コークスを高生産性で製造可能ならしめたもので
あり、品質上、経済上の効果は極めて大きい。
[Effect of the invention] In the present invention, by appropriately selecting the raw material of the coke, setting the mixing ratio and particle size and the range of the volatile content of all the mixed raw materials, using a room-type coke oven, a flue temperature of 1,200 ° C or more is used. It is a product that can produce smelting coke with a large grain size and high quality with high productivity under the operation of temperature and therefore high utilization rate, and the effect on quality and economy is extremely large.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】粘結炭およびピッチ類に、中揮発分不活性
炭素物質と低揮発分不活性炭素物質とからなり、両者の
配合重量比が0.5〜3である不活性炭素物質を25〜55重
量%配合してなるコークス製造原料であって、該低揮発
分不活性炭素物質は粒度が0.3mm以下の含有量が90重量
%以上であり、且つ全配合原料の揮発分を20〜23重量%
の範囲内に調整した原料を、室式コークス炉でフリュー
温度1,200℃以上で乾留することを特徴とするコークス
の製造方法。
1. An inert carbon substance comprising a medium volatile inert carbon substance and a low volatile inert carbon substance in a coking coal and pitches, and a compounding weight ratio of the two is 25 to 25. 55 wt% blended coke producing raw material, the low volatile inert carbon material has a particle size of 0.3 mm or less content of 90 wt% or more, and the total volatile content of the blended raw material 20 ~ 23 weight%
The method for producing coke, wherein the raw material adjusted to within the range is dried and distilled in a room-type coke oven at a flue temperature of 1,200 ° C or higher.
JP1372690A 1990-01-25 1990-01-25 Coke production method Expired - Lifetime JPH07103374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1372690A JPH07103374B2 (en) 1990-01-25 1990-01-25 Coke production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1372690A JPH07103374B2 (en) 1990-01-25 1990-01-25 Coke production method

Publications (2)

Publication Number Publication Date
JPH03220291A JPH03220291A (en) 1991-09-27
JPH07103374B2 true JPH07103374B2 (en) 1995-11-08

Family

ID=11841250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1372690A Expired - Lifetime JPH07103374B2 (en) 1990-01-25 1990-01-25 Coke production method

Country Status (1)

Country Link
JP (1) JPH07103374B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826184A (en) * 2020-08-03 2020-10-27 攀钢集团研究院有限公司 Coal blending method for producing high-quality coke by geological age

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111548810A (en) * 2020-05-29 2020-08-18 山西沁新能源集团股份有限公司 Coke and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826184A (en) * 2020-08-03 2020-10-27 攀钢集团研究院有限公司 Coal blending method for producing high-quality coke by geological age

Also Published As

Publication number Publication date
JPH03220291A (en) 1991-09-27

Similar Documents

Publication Publication Date Title
JP3027084B2 (en) Method for producing molded coke for metallurgy
JP4757956B2 (en) Method for producing blast furnace coke
JPH07103374B2 (en) Coke production method
JPH0714804B2 (en) Method for producing high-density isotropic carbon material
JPH05230558A (en) Production of sintered ore
JPH0259196B2 (en)
US3197395A (en) Carbon electrodes
JP4107038B2 (en) Process for producing calcined coke
JP2937659B2 (en) Coke production method
JP3278190B2 (en) Method for producing isotropic high-density graphite material
JP3395604B2 (en) Method for charging dry coal into coke oven
JP4099920B2 (en) Method for producing highly reactive coke
JPS6047095A (en) Preparation of coke for metallurgy
JP3810592B2 (en) Method for producing metallurgical coke
JP3620386B2 (en) Coke oven charging coal
JP3296011B2 (en) Needle coke manufacturing method
JPS6246593B2 (en)
JP2001323281A (en) Method for producing coke
JPH02127495A (en) Production of lumpy coke
JPH06264069A (en) Production of coke
JPS6124326B2 (en)
JPH05139833A (en) Production of high-density carbon material
JP2002121567A (en) Process for manufacturing coke for blast furnace using weak caking coal
JPH06313171A (en) Production of high-reactivity coke
JPH0292815A (en) Production of activated coke