JPH02301574A - Heat accumulating enameled substrate and production thereof - Google Patents

Heat accumulating enameled substrate and production thereof

Info

Publication number
JPH02301574A
JPH02301574A JP12322489A JP12322489A JPH02301574A JP H02301574 A JPH02301574 A JP H02301574A JP 12322489 A JP12322489 A JP 12322489A JP 12322489 A JP12322489 A JP 12322489A JP H02301574 A JPH02301574 A JP H02301574A
Authority
JP
Japan
Prior art keywords
substrate
glasses
glass particles
metal substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12322489A
Other languages
Japanese (ja)
Inventor
Masahiro Hiraga
将浩 平賀
Atsushi Nishino
敦 西野
Masaki Ikeda
正樹 池田
Yasuo Mizuno
水野 康男
Ichiro Tanahashi
棚橋 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12322489A priority Critical patent/JPH02301574A/en
Publication of JPH02301574A publication Critical patent/JPH02301574A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/44Manufacturing insulated metal core circuits or other insulated electrically conductive core circuits

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

PURPOSE:To render heat accumulating property to an enameled substrate by coating a metal substrate with two or more kinds of glasses having different compsns. by electrodeposition. CONSTITUTION:A metal substrate 1 is coated with two or more kinds of glasses having different compsns. by electrodeposition to form a first insulating enamel layer 3a and a second insulating enamel layer 3b. Many bubbles generated from a metallic salt are incorporated into the glasses and crystallized glasses are used as the glasses. The metal substrate is immersed in a slurry contg. dispersed particles if the glasses having different compsns. and the same polarity of interfacial kinematic potential and the glass particles are simultaneously electrodeposited on the substrate, dried and sintered to produce an enameled substrate. When this substrate is used as a thermal head, the thermal efficiency can be increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明ζ上 回路基板やサーマルヘッド用基板として用
いる蓄熱性ホーロ基板およびその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention ζ1 relates to a heat storage hollow substrate used as a circuit board or a substrate for a thermal head, and a method for manufacturing the same.

従来の技術 従来のサーマルヘッド用蓄熱性ホーロ基板の製造法を例
に挙げ詳述す4 溶融・冷却して作製したガラスフリットをボールミルで
ミル引きして平均粒径が2〜3μmの電着用スラリーを
作製し このスラリーにホーロ用鋼板などの金属基板を
浸漬し 対極と金属基板間に直流電圧を印加してガラス
フリット粒子を金属基板上に電着すも その後、基板を
充分に乾燥し焼成してホーロ基板を形成すも この方法
で形成したホーロ基板の表面粗度(↓ 中心線平均粗さ
Raで0.05〜0.08μmであり、従来のホーロ基
板(Ra:  0.15〜0.3um)に比べて極めて
平滑性に優れていも 発明が解決しようとする課題 上記従来例によるホーロ基板表面にサーマルヘッドの導
電回路を形成すると、抵抗値のバラツキは小さくなる。
2. Prior Art A conventional method for manufacturing a heat storage hollow substrate for a thermal head will be explained in detail by taking an example. 4 A glass frit produced by melting and cooling is milled with a ball mill to create a slurry for electrodeposition with an average particle size of 2 to 3 μm. A metal substrate such as a steel plate for hollow holes is immersed in this slurry, and a DC voltage is applied between the counter electrode and the metal substrate to electrodeposit glass frit particles onto the metal substrate.Then, the substrate is thoroughly dried and fired. The surface roughness of the hollow substrate formed by this method (↓ Center line average roughness Ra is 0.05 to 0.08 μm, compared to the conventional hollow substrate (Ra: 0.15 to 0.08 μm). Problems to be Solved by the Invention Even though the smoothness is extremely superior compared to that of 3 um), when the conductive circuit of the thermal head is formed on the surface of the hollow substrate according to the conventional example described above, the variation in resistance value becomes smaller.

しかし 印字を行なうとガラスの熱伝導率が大きいため
熱が蓄熱され難く、その結果多くの電力を必要とL ア
ルミナグレーズ基板上に形成したサーマルヘッドに比べ
ると熱効率の悪いものでありへ 課題を解決するための手段 上記従来の問題点を解消するために本発明(友界面動電
位の符号が同一である2つ以上の異なる組成のガラス粒
子を混在させて同時に電着した後、焼成を行うことによ
って、ホーロ層中に多数の結晶を析出させた蓄熱性ホー
ロ基板を製造することを特徴とする。
However, when printing, it is difficult for heat to be stored due to the high thermal conductivity of glass, and as a result, a large amount of electricity is required, and the thermal efficiency is lower than that of a thermal head formed on an alumina glaze substrate.This problem was solved. In order to solve the above-mentioned conventional problems, the present invention (in which glass particles of two or more different compositions with the same sign of the friend surface dynamic potential are mixed and simultaneously electrodeposited and then fired) The method is characterized in that a heat storage hollow substrate having a large number of crystals precipitated in a hollow layer is manufactured.

あるい1上 界面動電位の符号が同一である2つ以上の
異なる組成のガラス粒子と金属塩を混在させて同時に電
着した後、焼成を行って、ホーロ層中に多数の結晶を析
出させ、さらに 金属塩から多数の泡を発生させた蓄熱
性ホーロ基板を製造することを特徴とするものであも 作   用 本発明のホーロ基板6表 2つ以上の異なる組成のガラ
ス粒子を混在させて同時に金属基板上に被覆し 乾燥 
焼成して、数種類の結晶をホーロ層中に析出させること
によって熱伝導率を小さくさせるものであa 一般的く 熱伝導率は単純な結晶構造のものほど大きく
、結晶構造の複雑なもへ あるいは多成分なものほど小
さ1℃ 以上のことより、組成の異なるガラスか収 そ
れぞれ 結晶を数種類析出させることによって、多成分
な結晶構造とじ その結果 熱伝導率を小さくして、サ
ーマルヘッドとしたときの熱効率を良くさせたものであ
ムまf、  2つ以上の異なる組成のガラス粒子を金属
基板上に混在させて同時に電着させるためにζ上それぞ
れのガラス粒子の界面動電位の符号を同一にする必要が
あa 符号が異なるとガラス粒子かの極側とe極側に分
かれて電着してしま(\ 同一の金属基板上に数種類の
ガラス粒子を混在させて電着することが不可能となも 実施例 以上 本発明の実施例について説明す4〈実施例1〉 金属基板を脱脂・水洗・酸洗・水洗・ニッケルメッキ・
水洗して前処理を行った後、平均粒径が7μmの第1表
の組成Aのガラス粒子と組成りのガラス粒子からなるス
ラリー中に浸漬して、対極と金属基板間に直流電圧を印
加して第1表の組成A、  Bのガラス粒子を金属基板
上に同時に150μm電着し丸 その後、乾燥焼成して
絶縁ホーロ基板を形成した 第1表 この基板上に図に示したサーマルヘッドを形成した 図
は本実施例における蓄熱性ホーロ基板を用いたサーマル
ヘッドの断面図で、 lは金属基板2はニッケルメッキ
fi3a、 3bは第1と第2の絶縁ホーロ胤 4は電
機 5は発熱抵抗対 6はオーバーコート層であ4 両
 この実施例の絶縁ホーロ基板では第1の絶縁ホーロ層
3aのみを形成している。
Or 1 above: Two or more glass particles and metal salts of different compositions with the same sign of interfacial potential are mixed and electrodeposited at the same time, and then fired to precipitate a large number of crystals in the hollow layer. The hollow substrate of the present invention is characterized in that it produces a heat storage hollow substrate in which a large number of bubbles are generated from a metal salt. At the same time, coat it on a metal substrate and dry it.
It is a method that reduces thermal conductivity by precipitating several types of crystals in the hollow layer during firing.Generally, the thermal conductivity is higher for those with a simpler crystal structure, and higher for those with a more complex crystal structure. Since the temperature of glass with different compositions is smaller than 1°C, the more components there are, the higher the temperature is. This method improves thermal efficiency, and in order to mix two or more glass particles with different compositions on a metal substrate and simultaneously electrodeposit them, the sign of the interfacial potential of each glass particle is made the same on ζ. If the signs are different, the glass particles will be electrodeposited separately on the pole side and the e pole side (\ It is impossible to mix and electrodeposit several types of glass particles on the same metal substrate) Tonamo Examples and More Examples of the present invention will be explained 4 <Example 1> Metal substrates were degreased, washed with water, pickled, washed with water, nickel plated, etc.
After washing with water and performing pretreatment, it is immersed in a slurry consisting of glass particles of composition A in Table 1 and glass particles of composition with an average particle size of 7 μm, and a DC voltage is applied between the counter electrode and the metal substrate. Glass particles of compositions A and B shown in Table 1 were simultaneously electrodeposited to a thickness of 150 μm on a metal substrate, and then dried and fired to form an insulating hollow substrate. The formed figure is a cross-sectional view of a thermal head using a heat storage hollow substrate in this example, where l is the metal substrate 2 plated with nickel fi3a, 3b is the first and second insulating hollow plate, 4 is an electric device, and 5 is a heating resistor. Pair 6 is an overcoat layer.In the insulating hollow substrate of this embodiment, only the first insulating hollow layer 3a is formed.

〈実施例2〉 金属基板を脱脂・水洗・酸洗・水洗・ニッケルメッキ・
水洗して前処理を行った後、平均粒径が7μmの第1表
の組成A、  Bのガラス粒子および炭酸力ルシュウム
粒子からなるスラリー中に浸漬して、対極と金属基板間
に直流電圧を印加して第1表の組成A、  Bのガラス
粒子と炭酸カルシュラム粒子を金属基板上に同時に15
0μm電着し九その後、乾燥 焼成して、炭酸カルシュ
ラムから多数の泡を発生させた第1の絶縁ホーロ層3a
を有する絶縁ホーロ基板を形成し九 この基板上にサー
マルヘッドを形成した 〈実施例3〉 金属基板を脱脂・水洗・酸洗・水洗・ニッケルメッキ・
水洗して前処理を行った後、平均粒径が7μmの第1表
の組成A、  Bのガラス粒子と炭酸力ルシュウム粒子
からなるスラリー中に浸漬して、対極と金属基板間に直
流電圧を印加して第1表の組成A、  Bのガラス粒子
および炭酸力ルシュウム粒子を金属基板上に100μm
電着し九 その後、第1表Bのガラスの軟化点以下の温
度680℃で10分間熱処理して、第1の絶縁ホーロ層
3aを形成し さらに 平均粒径が0.7μmの第1表
の組成A、  Bのガラス粒子からなるスラリーに浸漬
して、ガラス粒子を50μm電着L 乾燥 焼成して第
2の絶縁ホーロ層3bを形成し 蓄熱性ホーロ基板とし
μ さらく その上に実施例Iと同様にサーマルヘッド
の導電回路を形成し九〈実施例4〉 平均粒径が7μmの第1表の組成A、  Bのガラス粒
子と炭酸カルシュラムからなるスラリーに前処理を行っ
た金属基板を浸漬して前記組成A、  Bのガラス粒子
および炭酸力ルシュウム粒子を100μm電着した そ
の後、 680℃で熱処理して第1の絶縁ホーロ層3a
を形成し さら艮 平均0.7μmで、第2表の組成か
らなる第2のガラス粒子のスラリーに浸漬してガラス粒
子を50μm第2表 粒径が電着し 乾燥して、第2表のガラスの作業温度で
・焼成して第2の絶縁ホーロ層3bを形成ヒ蓄熱性ホー
ロ基板を形成し九 その上に実施例1と同様にサーマル
ヘッドの導電回路を形成し丸く比較例1〉 金属基板を脱脂・水洗・酸洗・水洗・ニッケルメッキ・
水洗して前処理を行った眞 平均粒径が7μmのガラス
粒子からなるスラリー中に浸漬して、対極と金属基板間
に直流電圧を印加して第1表の組成Aのガラス粒子を金
属基板上に150μm電着し九 その後、乾燥 焼成し
て蓄熱性ホーロ基板を形成しム さらへ その上に実施
例1と同様にサーマルヘッドの導電回路を形成したく比
較例2〉 金属基板を脱脂・水洗・酸洗・水洗・ニッケルメッキ・
水洗して前処理を行った後、平均粒径が7μmのガラス
粒子からなるスラリー中に浸漬して、対極と金属基板間
に直流電圧を印加して第1表の組成りのガラス粒子を金
属基板上に150μm電着した その後、乾燥 焼成し
て蓄熱性ホーロ基板を形成し九 さらに その上に実施
例1と同様にサーマルヘッドの導電回路を形成したく比
較例3〉 金属基板を脱脂・水洗・酸洗・水洗・ニッケルメッキ・
水洗して前処理を行った後、平均粒径が7μ・mの第1
表の組成Aの第1のガラス粒子からなるスラリー中に浸
漬して、対極と金属基板間に直流電圧を印加して第1の
ガラス粒子を金属基板上に100μm電着し九 その後
、第1表の組成Aのガラスの軟化点以下の温度700℃
で1o分間熱処理し さらに 平均粒径が0.7μmの
第1表の組成Aの第2のガラス粒子からなるスラリーに
浸ン青して、第2のガラス粒子を50μm電着し乾燥 
焼成して絶縁ホーロ基板を形成し丸 さらに その上に
実施例1と同様にサーマルヘッドの導電回路を形成し九 〈比較例4〉 平均粒径が7μmの第1表の組成Aの第1のガラス粒子
からなるスラリーに前処理を行った金属基板を浸漬して
第1のガラス粒子を100μm電着し丸 その後、 7
00℃で熱処理L さら低平均粒径が0.7μmで、第
2表の組成からなる第2のガラス粒子のスラリーに浸漬
してガラス粒子を50μm電着し 乾燥して、第2表の
ガラスの作業温度で焼成し 絶縁ホーロ基板を形成した
その上に実施例1と同様にサーマルヘッドの導電回路を
形成した く比較例5〉 アルミナグレーズ基板上に実施例1と同様にサーマルヘ
ッドの導電回路を形成しに 以上の実施例■〜4、比較例1〜5について、基板表面
上の中心線平均粗さRa、サーマルヘッドの発熱抵抗体
の抵抗値ばらつき、サーマルヘッドの印字濃度(熱効率
)を測定し 比較し九 この結果を第3表、第4表に示
す。
<Example 2> Metal substrate was degreased, washed with water, pickled, washed with water, nickel plated,
After pretreatment by washing with water, the sample was immersed in a slurry consisting of glass particles and Lucium carbonate particles having compositions A and B in Table 1 with an average particle diameter of 7 μm, and a DC voltage was applied between the counter electrode and the metal substrate. By applying an electric current, glass particles and calcium carbonate particles having compositions A and B shown in Table 1 were simultaneously placed on the metal substrate for 15 minutes.
The first insulating hollow layer 3a is electrodeposited to a thickness of 0 μm and then dried and fired to generate a large number of bubbles from calcium carbonate.
A thermal head was formed on this substrate (Example 3) The metal substrate was degreased, washed with water, pickled, washed with water, nickel plated, and
After pretreatment by washing with water, the sample was immersed in a slurry consisting of glass particles and Lucium carbonate particles having compositions A and B in Table 1 with an average particle diameter of 7 μm, and a DC voltage was applied between the counter electrode and the metal substrate. Glass particles and lucium carbonate particles having compositions A and B in Table 1 were applied to a metal substrate with a thickness of 100 μm.
After electrodeposition, the first insulating hollow layer 3a was formed by heat treatment for 10 minutes at a temperature of 680° C. below the softening point of the glass shown in Table 1 B. A second insulating hollow layer 3b was formed by immersing the glass particles in a slurry consisting of glass particles having compositions A and B, and drying and firing the glass particles to a thickness of 50 μm. A conductive circuit for a thermal head was formed in the same manner as in Example 4. A pretreated metal substrate was immersed in a slurry consisting of glass particles having compositions A and B in Table 1 and calcium carbonate having an average particle size of 7 μm. Glass particles and lucium carbonate particles having compositions A and B were electrodeposited to a thickness of 100 μm, and then heat treated at 680° C. to form the first insulating hollow layer 3a.
The glass particles were immersed in a slurry of second glass particles having an average diameter of 0.7 μm and the composition shown in Table 2, and the glass particles were electrodeposited to a particle size of 50 μm. A second insulating hollow layer 3b is formed by firing at the working temperature of glass, and a heat storage hollow substrate is formed.A conductive circuit for a thermal head is formed thereon in the same manner as in Example 1, and a round metal layer is formed.Comparative Example 1> Metal Degrease the board, wash it with water, pickle it, wash it with water, nickel plate it,
Glass particles having composition A in Table 1 were immersed in a slurry of glass particles having an average particle size of 7 μm, and a DC voltage was applied between the counter electrode and the metal substrate. A 150 μm thick metal substrate was electrodeposited on top of the metal substrate, and then dried and fired to form a heat storage hollow substrate.Comparative Example 2: The metal substrate was degreased and a conductive circuit for a thermal head was formed thereon in the same manner as in Example 1. Water washing, pickling, water washing, nickel plating,
After pretreatment by washing with water, the glass particles having the composition shown in Table 1 were immersed in a slurry made of glass particles with an average particle size of 7 μm, and a DC voltage was applied between the counter electrode and the metal substrate to remove the glass particles having the composition shown in Table 1. A 150 μm thick metal substrate was electrodeposited on the substrate, and then dried and fired to form a heat-storage hollow substrate.Comparative Example 3: The metal substrate was degreased and washed with water.・Pickling・Water washing・Nickel plating・
After washing with water and pre-treatment, the first powder with an average particle size of 7 μm
The first glass particles were immersed in a slurry consisting of the first glass particles having the composition A shown in the table, and a DC voltage was applied between the counter electrode and the metal substrate to electrodeposit the first glass particles to a thickness of 100 μm on the metal substrate. Temperature 700℃ below the softening point of glass with composition A in the table
Then, it was immersed in a slurry consisting of second glass particles of composition A in Table 1 with an average particle size of 0.7 μm, electrodeposited with second glass particles of 50 μm, and dried.
An insulating hollow substrate was formed by firing, and a conductive circuit for a thermal head was formed thereon in the same manner as in Example 1. The pretreated metal substrate was immersed in a slurry made of glass particles, and the first glass particles were electrodeposited to a thickness of 100 μm. Then, 7
Heat treated at 00° C. Further, 50 μm of glass particles were electrodeposited by dipping in a slurry of second glass particles having a lower average particle size of 0.7 μm and the composition shown in Table 2, and dried to form the glass shown in Table 2. Comparative Example 5 A conductive circuit for a thermal head was formed on an alumina glaze substrate in the same manner as in Example 1.Comparative Example 5 For the above Examples 1 to 4 and Comparative Examples 1 to 5, the center line average roughness Ra on the substrate surface, the resistance value variation of the heating resistor of the thermal head, and the printing density (thermal efficiency) of the thermal head were determined. The results are shown in Tables 3 and 4.

第3表 第4表 2つの異なる組成のガラスを同時に電着被覆して形成し
た実施例1°のホーロ基板(よ アルミナグレーズと同
等な熱効率を示しており、比較例1.2の1つの組成か
らなるホーロ基板より優れた熱効率を示していることが
わかム また 2つの異なる組成のガラスと炭酸力ルシ
ュウムから発生した泡を多数有する実施例2は最も熱効
率が良t、X。
Table 3 Table 4 Example 1 hollow substrate formed by simultaneously electrodepositing glasses with two different compositions (showing thermal efficiency equivalent to that of alumina glaze, one composition of Comparative Example 1.2) Furthermore, Example 2, which has a large number of bubbles generated from two different compositions of glass and lucium carbonate, has the highest thermal efficiency.

しかし この基板は表面粗さが大きいので抵抗値バラツ
キも大きくなっていも これに対して実施例3、4は2
層構造で、泡の多い層と少ない層に分け、表面粗さを小
さくしているので、実施例1より抵抗値バラツキは小さ
くなっている力<、熱効率悪くなっていも 以上のように2つ以上の異なる組成のガラスを混在させ
て電着被覆し 焼成して形成したホーロ基板は熱効率に
優れていることがわかa さらく金属塩から発生した泡
を多数有するホーロ基板(L極めて蓄熱性に優れている
ことがわかも本発明に適用される金属塩は水に不溶解の
炭酸塩が最も適しており、水に溶解する金属塩はスラリ
ー中に小量存在する水に溶解してガスが発生難くなるの
で適さなt℃ 発明の効果 以上の説明から明らかなように本発明は金属基板に2つ
以上の組成の異なるガラス粒子を混在させて電着して、
乾燥 焼成してホーロ基板を形成したものであり、この
ようにすることによって、ホーロ基板に蓄熱性をもたせ
、サーマルヘッドとしたときの熱効率を向上させること
ができる。
However, since this board has a large surface roughness, the resistance value variation is also large.
The layered structure is divided into a layer with many bubbles and a layer with few bubbles, and the surface roughness is reduced, so the resistance value variation is smaller than in Example 1. It can be seen that the hollow substrate formed by electrodepositing and firing a mixture of glasses with different compositions as mentioned above has excellent thermal efficiency. The most suitable metal salt to be applied to the present invention is a carbonate that is insoluble in water, and the metal salt that is soluble in water is dissolved in a small amount of water present in the slurry to form a gas. Advantages of the Invention As is clear from the above explanation, the present invention involves electrodepositing a mixture of two or more glass particles with different compositions on a metal substrate.
A hollow substrate is formed by drying and firing, and by doing so, the hollow substrate can have heat storage properties and improve thermal efficiency when used as a thermal head.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例における蓄熱性ホーロ基板を使用
したサーマルヘッドの断面構成図であム191.金属基
板 3a、、、第1の絶縁ホーロ凰3b、、、第2の絶
縁ホーロ凰 代理人の氏名 弁理士 粟野重孝 はか1名1−m−金
 凰 蚤 仮 3a−9−躬1の!l!キ踪ホー0層 36−  第2の絶縁ボーロ層
Figure 191 is a cross-sectional configuration diagram of a thermal head using a heat storage hollow substrate according to an embodiment of the present invention. Metal substrate 3a,..., first insulating hollow phosphor 3b,..., second insulating hollow 凑 Agent's name Patent attorney Shigetaka Awano Haka 1 person 1-m-Kin 凰 Flea Temporary 3a-9-躬1! l! Kishuho 0 layer 36- Second insulating boro layer

Claims (1)

【特許請求の範囲】 (1)2つ以上の異なる組成のガラスを混在させて金属
基板上に電着被覆してなることを特徴とする蓄熱性ホー
ロ基板。 (2)2つ以上の異なる組成のガラスを混在させて金属
基板上に電着被覆してなり、かつガラスに金属塩から発
生した多数の泡を有することを特徴とする蓄熱性ホーロ
基板。 (3)2つ以上のガラスが結晶化ガラスである請求項1
又は2記載の畜熱性ホーロ基板。(4)金属塩が水に不
溶解である請求項2記載の畜熱性ホーロ基板。 (5)界面動電位の極性が同一である2つ以上の異なる
組成のガラス粒子を分散させたスラリーに金属基板を入
れ、上記ガラス粒子を同時に金属基板上に電着し、乾燥
、焼成して製造することを特徴とする蓄熱性ホーロ基板
の製造法。 (6)界面動電位の極性が同一である2つ以上の異なる
組成のガラス粒子を分散させたスラリーに金属塩を添加
し、上記ガラス粒子と金属塩を同時に金属基板上に電着
し、乾燥、焼成して製造することを特徴とする蓄熱性ホ
ーロ基板の製造法。 (7)2つ以上のガラスが結晶化ガラスである請求項5
又は6記載の蓄熱性ホーロ基板の製造法。 (8)金属塩が水に不溶解である請求項6記載の蓄熱性
ホーロ基板の製造法。
[Scope of Claims] (1) A heat storage hollow substrate characterized by being formed by electrodepositing a mixture of two or more glasses of different compositions on a metal substrate. (2) A heat-storage hollow substrate characterized by comprising two or more glasses of different compositions mixed and electrodeposited on a metal substrate, and having a large number of bubbles generated from metal salts on the glass. (3) Claim 1 wherein the two or more glasses are crystallized glass
Or the heat-storing hollow substrate according to 2. (4) The heat-accumulating hollow substrate according to claim 2, wherein the metal salt is insoluble in water. (5) A metal substrate is placed in a slurry in which glass particles of two or more different compositions with the same polarity of interfacial potential are dispersed, and the glass particles are simultaneously electrodeposited onto the metal substrate, dried, and fired. A method for manufacturing a heat storage hollow substrate. (6) A metal salt is added to a slurry in which two or more glass particles of different compositions with the same polarity of interfacial potential are dispersed, and the glass particles and metal salt are simultaneously electrodeposited onto a metal substrate and dried. A method for producing a heat-storage hollow substrate, characterized in that it is produced by firing. (7) Claim 5, wherein the two or more glasses are crystallized glass.
Or the method for producing a heat storage hollow substrate according to 6. (8) The method for producing a heat storage hollow substrate according to claim 6, wherein the metal salt is insoluble in water.
JP12322489A 1989-05-17 1989-05-17 Heat accumulating enameled substrate and production thereof Pending JPH02301574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12322489A JPH02301574A (en) 1989-05-17 1989-05-17 Heat accumulating enameled substrate and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12322489A JPH02301574A (en) 1989-05-17 1989-05-17 Heat accumulating enameled substrate and production thereof

Publications (1)

Publication Number Publication Date
JPH02301574A true JPH02301574A (en) 1990-12-13

Family

ID=14855277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12322489A Pending JPH02301574A (en) 1989-05-17 1989-05-17 Heat accumulating enameled substrate and production thereof

Country Status (1)

Country Link
JP (1) JPH02301574A (en)

Similar Documents

Publication Publication Date Title
JPS59500869A (en) Metallizing solutions and methods
KR890000696A (en) Electrolytic cathode and its manufacturing method
JPS6289369A (en) Photovoltaic device
WO2023201600A1 (en) Preparation method for feconicuzn high entropy alloy and feconicuzn high entropy alloy
JPH02301574A (en) Heat accumulating enameled substrate and production thereof
JPH0250993B2 (en)
US1776603A (en) Tin-coated chromium iron alloy and method of making the same
US3676314A (en) Method of electrodepositing vitreous coatings atop a multiapertured substrate
JP2729835B2 (en) Method for forming ceramic film on aluminum substrate surface
US2819207A (en) Process for enameling steel
JPS6317597A (en) Printed circuit copper foil and manufacture of the same
JPH02236287A (en) Regenerative enamel base plate and production thereof
JP2512062B2 (en) Glass ceramic substrate manufacturing method
JPH02159383A (en) Electroless gold plating
JP2734654B2 (en) Manufacturing method of hollow substrate and thermal head and motor bearing using the hollow substrate
JPH01141834A (en) Insulating enameled substrate
JPS62226695A (en) Manufacture of circuit board
JPH02267286A (en) Enameled substrate
JPH01272783A (en) Enameled base plate and production thereof
JP2779953B2 (en) Method for forming ceramic film on aluminum substrate surface
US3790451A (en) Electrodeposition of copper from sulfur-free cyanide electrolytes using periodic reverse current
KR100440677B1 (en) Sn multilayer plated Nd-Fe-B magnet having superior corrosion resistance
JPH0243379A (en) Insulating enamel substrate and production thereof
US3034921A (en) Metal coating and method of making the same
JPH0347977A (en) Production of circuit parts