JPH02299162A - Manufacture of positive electrode mix for thermal battery and thermal battery using it - Google Patents

Manufacture of positive electrode mix for thermal battery and thermal battery using it

Info

Publication number
JPH02299162A
JPH02299162A JP1118936A JP11893689A JPH02299162A JP H02299162 A JPH02299162 A JP H02299162A JP 1118936 A JP1118936 A JP 1118936A JP 11893689 A JP11893689 A JP 11893689A JP H02299162 A JPH02299162 A JP H02299162A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
powder
thermal battery
lithium chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1118936A
Other languages
Japanese (ja)
Other versions
JP2751389B2 (en
Inventor
Akinori Awano
粟野 彰規
Hirosuke Yamazaki
博資 山崎
Kazunori Haraguchi
和典 原口
Masanori Fujimoto
冨士本 真紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1118936A priority Critical patent/JP2751389B2/en
Publication of JPH02299162A publication Critical patent/JPH02299162A/en
Application granted granted Critical
Publication of JP2751389B2 publication Critical patent/JP2751389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To manufacture a battery with the high operating voltage by mixing lithium chloride powder, heat-treating it in a high-temperature furnace fed with argon gas, nitrogen gas or mixed gas of them, cooling it in the furnace, crushing it in the dry atmosphere, then forming the positive electrode mix powder into a positive electrode mix layer. CONSTITUTION:Unprocessed iron disulfide powder, potassium chloride-lithium chloride molten salt electrolyte powder and lithium chloride powder are added with an inorganic binder containing an electrolyte as required and mixed and stirred. This mix is heat-treated in a high-temperature furnace fed with argon, nitrogen or the mixed gas of them. It is then cooled in the above furnace. A positive electrode mix processed in the dry atmosphere is crushed. Positive electrode mix powder is manufactured through these processes. The added quantity of lithium chloride is set to the range of 5-15wt.% against iron disulfide.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウム/二硫化鉄系熱電池に関し、詳しくは
高率放電時の正極内部抵抗を小さくして、電池作動電圧
と持続時間の向上を図ったものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a lithium/iron disulfide thermal battery, and more specifically, to a method for improving the battery operating voltage and duration by reducing the internal resistance of the positive electrode during high rate discharge. It is something that

従来の技術 熱電池は常温で不活性であるが、高温に加熱すると活性
となり、外部へ電力を供給し得るようになる電池で貯蔵
形電池の一種である。従って、5〜10年あるいはそれ
以上の貯蔵後においても製造直後と何ら電池特性が変わ
らないので緊急用電源に利用されている。また、高温で
作動させるために電極反応が進み易(、分極も少ないの
で、大電流放電性に優れ、さらに使用希望時には起動信
号を入れると瞬時に電力を取出せる等の特徴を有する。
BACKGROUND TECHNOLOGY A thermal battery is inactive at room temperature, but becomes active when heated to a high temperature and can supply power to the outside, and is a type of storage battery. Therefore, even after storage for 5 to 10 years or more, the battery characteristics remain unchanged from those immediately after manufacture, so they are used as an emergency power source. In addition, since it is operated at high temperatures, electrode reactions progress easily (and there is little polarization, so it has excellent large current discharge properties, and when desired, it has features such as instantaneous power output when a start signal is input.

しかし近年では、ますます大きな出力電流値が望まれて
きており、高率放電時には負極で生成されたリチウムイ
オンの正極への拡散速度が律速となり、正極合剤中で消
費されるリチウムイオンが2不足となる。その結果、素
電池の内部抵抗が増大して、電池作動電圧を低下させる
という短所を有している。
However, in recent years, larger output current values have been desired, and during high-rate discharge, the rate of diffusion of lithium ions generated at the negative electrode to the positive electrode becomes rate-determining, and the number of lithium ions consumed in the positive electrode mixture is reduced to 2. There will be a shortage. As a result, the internal resistance of the unit cell increases, resulting in a decrease in battery operating voltage.

この課題を克服するために従来から進められて来た研究
は、 l)正極合剤中に含まれる塩化カリウムと塩化リチウム
の共融塩の組成を、塩化リチウム側へずらして過剰とし
、正極合剤中のリチウムイオンを、増加させる方法。
In order to overcome this problem, research that has been carried out in the past has focused on l) shifting the composition of the eutectic salt of potassium chloride and lithium chloride contained in the positive electrode mixture to the lithium chloride side to make it excessive; A method to increase lithium ions in a drug.

2)正極合剤に酸化リチウムを添加し、正極中のリチウ
ムイオンを増加させる方法があった。
2) There was a method of adding lithium oxide to the positive electrode mixture to increase the number of lithium ions in the positive electrode.

発明が解決しようとする課題 上記1)は、溶融塩中の塩化リチウムが増加し、従って
リチウムイオンも増加するが、溶融塩の融点が高くなり
、放電する場合電池の作動温度を高くする必要がある。
Problem to be Solved by the Invention The above problem 1) is that the amount of lithium chloride in the molten salt increases, and therefore the number of lithium ions increases, but the melting point of the molten salt increases, and the operating temperature of the battery needs to be raised when discharging. be.

このため規定電圧に到達する時間、いわゆる立上り時間
が遅れるという欠点がでてくる。さらに積層電池とした
場合、発熱剤の増加、保温層の増加が必要となるため、
電池が大型化してしまう。また2)は酸化リチウムの溶
融塩に対する溶解度が小さいために所望とするリチウム
イオン量の増加とならないので、添加効果が小さい。
This results in a disadvantage that the time required to reach the specified voltage, so-called rise time, is delayed. Furthermore, when making a laminated battery, an increase in heat generating agent and an increase in heat insulation layer are required.
The battery becomes larger. Further, in 2), since the solubility of lithium oxide in the molten salt is low, the desired amount of lithium ions cannot be increased, so the effect of addition is small.

本発明は、上記のような従来の課題を解消するため、塩
化リチウムの添加方法に着目して、高率放電時の正極の
内部抵抗を小さくし、作動電圧を向上させたリチウム/
二硫化鉄系熱電池を実現させることを目的とする。
In order to solve the above-mentioned conventional problems, the present invention focuses on the method of adding lithium chloride to reduce the internal resistance of the positive electrode during high rate discharge and improve the operating voltage.
The aim is to realize iron disulfide-based thermal batteries.

課題を解決するための手段 この課題を解決するために本発明は、未処理の二疏化鉄
と塩化カリウム−塩化リチウム溶融塩電解質と塩化リチ
ウムをそれぞれ粉体で、また、必要に応じて電解質を含
有した無機バインダーを加えて混合撹拌する工程と、こ
の合剤をアルゴン。
Means for Solving the Problems In order to solve the problems, the present invention provides powders of untreated iron disulfide, a potassium chloride-lithium chloride molten salt electrolyte, and lithium chloride, respectively, and, if necessary, an electrolyte. The process of adding and stirring an inorganic binder containing

窒素またはこの混合ガスを流通させた高温炉中で加熱処
理する工程と、同炉内で冷却する工程と、乾燥雰囲気中
で処理済み正極合剤を粉砕する工程を経て正極合剤粉末
を製造するものである。
A positive electrode mixture powder is produced through a process of heat treatment in a high-temperature furnace through which nitrogen or a mixed gas thereof is circulated, a cooling process in the same furnace, and a process of pulverizing the treated positive electrode mixture in a dry atmosphere. It is something.

そして、負極にリチウムまたはリチウム合金を使用し、
電解質層に塩化カリウム−塩化リチウム溶融塩電解質を
保持させた酸化マグネシウム(MgO)の粉末成型体を
用い、正極層に前記の正極合剤を粉末成型層とした3層
からなる素電池と、テルミット反応を利用した発熱剤と
を組合せLi/FeS2系熱電池を構成する。
Then, using lithium or lithium alloy for the negative electrode,
A unit cell consisting of three layers, using a molded powder of magnesium oxide (MgO) holding a potassium chloride-lithium chloride molten salt electrolyte in the electrolyte layer, and a molded powder layer of the above-mentioned positive electrode mixture in the positive electrode layer, and thermite. In combination with a heat generating agent that utilizes a reaction, a Li/FeS2-based thermal battery is constructed.

作用 この製造法と熱電池を用いれば、従来のようなハイレー
ト負荷時の電池内部抵抗の増大は抑制され、作動電圧も
向上する。すなわちハイレート負荷時に正極内でリチウ
ムイオンが多量に消費されるが、本発明によれば正極合
剤内には塩化リチウムが添加されているため従来の電池
に比ベリチウムイオン量が多く、正極反応に対するリチ
ウムイオンの供給が円滑に行なわれる。
Effect: By using this manufacturing method and a thermal battery, the increase in battery internal resistance during high-rate loads as in conventional batteries is suppressed, and the operating voltage is also improved. In other words, a large amount of lithium ions are consumed in the positive electrode during high-rate loading, but according to the present invention, lithium chloride is added to the positive electrode mixture, so the amount of lithium ions is large compared to conventional batteries, and the positive electrode reaction is Lithium ions are supplied smoothly.

以上のように、製造容易で、電池内部抵抗が小さいため
高い作動電圧を得る熱電池が提供できる。
As described above, it is possible to provide a thermal battery that is easy to manufacture and has a high operating voltage because the internal resistance of the battery is small.

実施例 以下に、本発明の実施例を第1図、第2図および第3図
を用いて説明する。
Embodiments Below, embodiments of the present invention will be described with reference to FIGS. 1, 2, and 3.

第1図は正極合剤の製造工程図を示す。図においてFe
S2粉末を66重量%(以下同じ)、塩化リチウム−塩
化カリウム(L ice −KCi! )溶融塩電解質
(Eで表示)粉末12%、Lice−KC4’溶融塩電
解質を二酸化ケイ素(SiCh)バインダーに保持させ
た粉末(EBで表示)7%、LiCeの100メツシュ
パス粉末15%をそれぞれ秤取する。Liceの添加量
は、添加したt、iceの一部が溶融塩にとけて、その
融点が600℃でもLiCeの固体が存在する量で、5
%〜20%とする。第1図においては、これら4種全て
をボールミル容器に入れて密封し、回転させ均一混合粉
末を得る。これを、パイレックスガラス容器に移し、不
活性ガス例えばアルゴンガスが流れるフローティング式
電気炉中に入れる。アルゴンガスは、前述の合剤1kg
当り5〜50f! /m i nのガス流量で流し続け
る。5e/min以下では空気の流入による酸化が起り
、50e/min以上では不経済である。電気炉を昇温
し、電解質の融点以上とし、500℃上限が特性上好ま
しいので370〜500℃間で1時間保持する。その後
、゛アルゴンガスを流し続けながら冷却し、100℃以
下で容器を引出し、乾燥雰囲気中に移す。この状態で乳
鉢等で粉砕し50〜250メツシユに整粒して正極合剤
とする。尚ここではEBを用いたがE比率を若干増量し
てバインダーを除去してもよ(、またアルゴンガスの替
りに窒素ガス(N2)又はArとN2の混合ガスを流し
てもよい。
FIG. 1 shows a manufacturing process diagram of the positive electrode mixture. In the figure, Fe
66% by weight of S2 powder (the same applies hereinafter), 12% of lithium chloride-potassium chloride (Lice-KCi!) molten salt electrolyte (indicated by E) powder, and 12% of Lice-KC4' molten salt electrolyte as silicon dioxide (SiCh) binder. Weigh out 7% of the retained powder (indicated by EB) and 15% of the 100 mesh pass powder of LiCe. The amount of Lice to be added is such that a portion of the added t and ice is dissolved in the molten salt and solid LiCe is present even if the melting point is 600°C.
% to 20%. In FIG. 1, all four types are placed in a ball mill container, sealed, and rotated to obtain a uniform mixed powder. This is transferred to a Pyrex glass container and placed in a floating electric furnace flowing with an inert gas, such as argon gas. Argon gas is 1 kg of the above-mentioned mixture.
5~50f hit! Continue to flow the gas at a gas flow rate of /min. If it is less than 5e/min, oxidation will occur due to the inflow of air, and if it is more than 50e/min, it is uneconomical. The electric furnace is heated to a temperature higher than the melting point of the electrolyte, and since the upper limit of 500°C is preferable in terms of characteristics, the temperature is maintained between 370 and 500°C for 1 hour. Thereafter, the container is cooled while continuing to flow argon gas, and the container is pulled out at 100° C. or lower and transferred to a dry atmosphere. In this state, it is crushed in a mortar or the like and sized to a size of 50 to 250 meshes to obtain a positive electrode mixture. Although EB was used here, the binder may be removed by slightly increasing the E ratio (also, nitrogen gas (N2) or a mixed gas of Ar and N2 may be flowed instead of argon gas.

第2図は、本発明の正極合剤層を用いた素電池の断面図
を示す。
FIG. 2 shows a cross-sectional view of a unit cell using the positive electrode mixture layer of the present invention.

図中、1は正極合剤層であり、放電電気量と利用率の関
係に応じて適量が決定され、規定量秤取して金型内に入
れ、低圧の予備成型ののち、LiCe−KO250%を
含浸処理したMgOバインダーからなる電解質粉末を定
量秤取して重ねて入れ、高圧成型を行なって電解質層2
を形成すると共に、二層一体ペレットを得る。3は負極
カップ、4は負極カップ3の内面に配置した純リチウム
と鉄粉の一体混合層もしくはリチウム・アルミニウム合
金とEからなる負極活物質層で、この2つを合せ負極5
と呼び、前記ペレットと組合せて素電池とする。
In the figure, 1 is a positive electrode mixture layer, and the appropriate amount is determined according to the relationship between the amount of discharged electricity and the utilization rate.The specified amount is weighed out and put into a mold, and after preforming at low pressure, LiCe-KO250 Electrolyte powder consisting of an MgO binder impregnated with a
At the same time, a two-layer integral pellet is obtained. 3 is a negative electrode cup, 4 is an integral mixed layer of pure lithium and iron powder arranged on the inner surface of the negative electrode cup 3, or a negative electrode active material layer made of lithium-aluminum alloy and E, and these two are combined to form a negative electrode 5.
It is called ``cell'' and is combined with the pellets to form a unit cell.

第3図は、第1図の製造法による正極合剤を用いて構成
された第2図の素電池で組立てられた積層型熱電池の縦
断面図である。
FIG. 3 is a longitudinal cross-sectional view of a stacked thermal battery assembled from the unit cells of FIG. 2 constructed using the positive electrode mixture produced by the manufacturing method of FIG. 1.

図中、6は第2図の素電池で必要数を直列に積層構成す
ることで、容易に所望の電圧が得られ、過塩素酸カリウ
ムと鉄粉との均一混合物からなる発熱剤7と交互に積層
する。8,9は、前記積層体の上・下部に配置した蓄熱
剤層であり、例えば硫酸リチウムと塩化ナトリウムの混
合塩と5i02バインダーからなる層で、495℃で凝
固潜熱を発生して前記積層体の温度を長時間保持させる
In the figure, 6 is the unit cell shown in Figure 2, and by stacking the necessary number of cells in series, the desired voltage can be easily obtained. layered on. Reference numerals 8 and 9 indicate heat storage agent layers disposed above and below the laminate, which are, for example, layers made of a mixed salt of lithium sulfate and sodium chloride and a 5i02 binder, which generate latent heat of solidification at 495°C to cool the laminate. temperature is maintained for a long time.

これは電池の長寿命化に不可欠の蓄熱剤である。This is a heat storage agent that is essential for extending battery life.

10は点火器でそのリード線は一対の起動用端子11に
接続され、この端子よりパルス電流を通電すると、火炎
を発してヒートパッド12を燃焼させ、その火炎は導火
帯13に燃焼伝ばさせる。14゜15は正、負極出力端
子で積層体の最上部と最下部から取出した内部リード線
16.17と接続する。18は断熱層でMin−にと呼
ばれる高性能の無機質断熱材を用いてスタックを包囲し
た。19は電池蓋、20は電池ケースでいずれもステン
レス鋼からなり、それらの嵌合部を溶接密封する。
Reference numeral 10 denotes an igniter whose lead wires are connected to a pair of starting terminals 11, and when a pulse current is applied from these terminals, a flame is emitted to burn the heat pad 12, and the flame is combusted and transmitted to the fuse cord 13. let Reference numerals 14 and 15 denote positive and negative output terminals, which are connected to internal lead wires 16 and 17 taken out from the top and bottom of the stack. 18 is a heat insulating layer that surrounds the stack using a high performance inorganic heat insulating material called Min-ni. 19 is a battery cover, and 20 is a battery case, both of which are made of stainless steel, and their fitting portions are sealed by welding.

本発明を用いた積層型熱電池は、一対の起動用端子11
からパルス電流を通電することより、点火器10.ヒー
トパッド12.導火帯132発熱剤7の順に燃焼し、素
電池dを加熱して起動する。
The stacked thermal battery using the present invention has a pair of starting terminals 11.
By applying a pulse current from the igniter 10. Heat pad 12. The fuse 132 burns in the order of the exothermic agent 7, heating the unit cell d and starting it up.

素電池は約500℃に昇温し、L i Ce −KCe
電解質が溶融すると、本発明の正極合剤層は放電を開始
して、高率放電時にも作動電圧の高い出力電圧を供給す
る。
The temperature of the unit cell is raised to approximately 500°C, and L i Ce -KCe
When the electrolyte melts, the positive electrode mixture layer of the present invention starts discharging and supplies an output voltage with a high operating voltage even during high rate discharge.

次に本実施例の効果を調べた結果を述べる。第4図は素
電池の直径45 wm 、電池外径49 wa 、電池
高さ35mの電池形状における1 000 m A /
 c+J電流密度の放電試験結果を示す。素電池直列数
は15、平均作動電圧2V/セルである。
Next, the results of investigating the effects of this example will be described. Figure 4 shows the 1 000 m A /
The results of a discharge test at c+J current density are shown. The number of cells connected in series is 15, and the average operating voltage is 2V/cell.

図中Aは本発明の実施例による放電カーブを示し、Li
ceの添加比率15%である。Bは従来例1を示し、塩
化リチウム無添加の正極合剤を用いた電池である。Cは
従来例2を示し、酸化リチウム添加による正極合剤を用
いた電池である。初期の電池作動電圧を拡大して比べる
と電池Bは平均作動電圧27.6Vを示し、電池Aの2
7.9Vよりも0.3v低いものである。又電池Cは、
作動電圧が平坦なものであるが、電圧レベルが26.9
VとAよりも1v低いものである。
A in the figure shows a discharge curve according to an embodiment of the present invention, and Li
The addition ratio of ce is 15%. B shows Conventional Example 1, which is a battery using a positive electrode mixture to which lithium chloride is not added. C indicates Conventional Example 2, which is a battery using a positive electrode mixture containing lithium oxide. When we zoom in and compare the initial battery operating voltages, battery B shows an average operating voltage of 27.6V, and battery A's average operating voltage is 27.6V.
This is 0.3v lower than 7.9V. Also, battery C is
Although the operating voltage is flat, the voltage level is 26.9
It is 1v lower than V and A.

本発明Aは、放電電流密度500mA/c+J以上で、
27.9Vと高い電池作動電圧を示し、素電池内部抵抗
の小さなものが得られるという効果を発揮していた。
Invention A has a discharge current density of 500 mA/c+J or more,
It exhibited a high battery operating voltage of 27.9V, and was effective in providing a unit cell with low internal resistance.

発明の効果 以上の説明から明らかなように、塩化リチウムを、粉末
で混合した後、アルゴンガス、窒素ガス又は、これらの
混合ガスを流通させた高温炉中で加熱処理後、同炉内で
冷却し、そののち乾燥雰囲気で粋砕する各工程を経た正
極合剤粉末を素電池の正極合剤層に成型して使用し、こ
れと発熱剤と組合せた本発明の積層型電池は、高率放電
において、電池作動電圧が高(なり、内部抵抗は小さく
5なる。
Effects of the Invention As is clear from the above explanation, lithium chloride is mixed in powder form, heat-treated in a high-temperature furnace through which argon gas, nitrogen gas, or a mixture thereof is circulated, and then cooled in the same furnace. The stacked battery of the present invention, in which the positive electrode mixture powder, which has undergone various steps of crushing in a dry atmosphere, is molded into the positive electrode mixture layer of a unit cell, and is combined with a heat generating agent, has a high efficiency. During discharge, the battery operating voltage becomes high (and the internal resistance becomes small).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における正極合剤の製造工程図
、第2図は同合剤を成型して正極合剤層を構成した素電
池の断面図、第3図は第2図の素電池を直列構成した積
層型熱電池の断面図、第4図は本発明の実施例および従
来例の放電カーブの比較図である。 1・・・・・・正極合剤層、2・・・・・・電解質層、
5・・・・・・負極、6・・・・・・素電池、7・・・
・・・発熱剤。 第1図 2−・電解V値 5−1礒 11kg−−一素震え 7−・−一讐詞 8−  よ舒を号訓層 9−−−T−静音整斉l4 (6−、へ+に巻 f4−赴勧府搗チ f2−一−ヒートハ17V イs−,−@ χご91F 14−一一正躇巳77を品) 第  3  σζ                 
     I5−、−肯稀出力め俤÷f6・・−;E二
3を甑ンヤ唱舒す−ドオ艶才とf7−−−喚Iトf内(
やリー譬艮( f8−−一断聚甚 第  4  図                  
      4−一膳!!月〕*Mテづ列(丁、2ら一
咲来例 C・−・4貴巳−ルミ4ツリ
Figure 1 is a manufacturing process diagram of the positive electrode mixture in an example of the present invention, Figure 2 is a cross-sectional view of a unit cell in which the positive electrode mixture layer is formed by molding the mixture, and Figure 3 is the same as that shown in Figure 2. FIG. 4 is a cross-sectional view of a stacked thermal battery in which unit cells are arranged in series, and is a comparison diagram of discharge curves of an embodiment of the present invention and a conventional example. 1... Positive electrode mixture layer, 2... Electrolyte layer,
5...Negative electrode, 6...Battery, 7...
...Exothermic agent. Fig. 1 2--Electrolytic V value 5-1 Height 11 kg--One tremor 7--One enemy 8- Yoshu wo training layer 9---T-Silent alignment 14 (6-, to + Niharamaki f4-Gokanfu Bukichi f2-1-Hitoha 17V Is-,-@χGo91F 14-Ichiichi Masami 77 item) 3rd σζ
I5-, - affirmative output Me 5 ÷ f6...-; Singing E23 - Doo sensai and f7--- Calling I to f (
Ya Li Fang (f8--Ichidanjujin Fig. 4)
4-One meal! ! Month] *M tezu row (Ding, 2 and 1 blooming example C... 4 Takami - Rumi 4 trees

Claims (5)

【特許請求の範囲】[Claims] (1)リチウムまたはリチウム合金からなる負極、塩化
カリウム−塩化リチウム溶融塩からなる電解質層、二硫
化鉄からなる正極を有する熱電池において、二硫化鉄と
溶融塩と塩化リチウムを少なくとも含む正極合剤を均質
に混合撹拌する工程と、アルゴン、窒素またはこの混合
ガスを流通させた高温炉中で加熱処理する工程と、同炉
内で冷却する工程とを経た後、乾燥雰囲気中で粉砕する
工程とからなる熱電池用正極合剤の製造法。
(1) In a thermal battery having a negative electrode made of lithium or a lithium alloy, an electrolyte layer made of potassium chloride-lithium chloride molten salt, and a positive electrode made of iron disulfide, a positive electrode mixture containing at least iron disulfide, a molten salt, and lithium chloride. After passing through a step of homogeneously mixing and stirring, a step of heat treatment in a high-temperature furnace through which argon, nitrogen, or a mixed gas of these is circulated, and a step of cooling in the same furnace, a step of pulverizing in a dry atmosphere. A method for producing a positive electrode mixture for thermal batteries consisting of:
(2)塩化リチウム添加量が二硫化鉄に対して5重量%
以上15重量%以下の範囲である特許請求の範囲第1項
記載の熱電池用正極合剤の製造法。
(2) Addition amount of lithium chloride is 5% by weight based on iron disulfide
The method for producing a positive electrode mixture for a thermal battery according to claim 1, wherein the content is in the range of 15% by weight or less.
(3)流通ガス量が、正極合剤の仕込み量1kgに対し
て5〜50l/minの流量である特許請求の範囲第1
項記載の熱電池用正極合剤の製造法。
(3) Claim 1, wherein the flow rate of gas is 5 to 50 l/min per 1 kg of positive electrode mixture.
A method for producing a positive electrode mixture for a thermal battery as described in .
(4)熱処理温度が370〜500℃の範囲である特許
請求の範囲第1項記載の熱電池用正極合剤の製造法。
(4) The method for producing a positive electrode mixture for a thermal battery according to claim 1, wherein the heat treatment temperature is in the range of 370 to 500°C.
(5)特許請求の範囲第1項記載の熱電池用正極合剤粉
末からなる正極合剤層を素電池に用いた熱電池。
(5) A thermal battery in which a positive electrode mixture layer made of the positive electrode mixture powder for thermal batteries according to claim 1 is used in a unit cell.
JP1118936A 1989-05-12 1989-05-12 Method for producing positive electrode mixture for thermal battery and thermal battery using the same Expired - Lifetime JP2751389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1118936A JP2751389B2 (en) 1989-05-12 1989-05-12 Method for producing positive electrode mixture for thermal battery and thermal battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1118936A JP2751389B2 (en) 1989-05-12 1989-05-12 Method for producing positive electrode mixture for thermal battery and thermal battery using the same

Publications (2)

Publication Number Publication Date
JPH02299162A true JPH02299162A (en) 1990-12-11
JP2751389B2 JP2751389B2 (en) 1998-05-18

Family

ID=14748895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1118936A Expired - Lifetime JP2751389B2 (en) 1989-05-12 1989-05-12 Method for producing positive electrode mixture for thermal battery and thermal battery using the same

Country Status (1)

Country Link
JP (1) JP2751389B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523100A (en) * 2009-04-06 2012-09-27 イーグルピッチャー テクノロジーズ,エルエルシー Thermal battery cathode material and battery containing the same
CN106450366A (en) * 2016-10-19 2017-02-22 上海空间电源研究所 Ultra-thin unit cell for thermal battery and preparation method thereof
CN110534697A (en) * 2019-09-11 2019-12-03 中国工程物理研究院电子工程研究所 A kind of single cell of thermo battery and preparation method thereof
CN111916749A (en) * 2020-08-17 2020-11-10 贵州梅岭电源有限公司 Heating anode integrated material for thermal battery and preparation method thereof
CN113851630A (en) * 2021-10-18 2021-12-28 中国电子科技集团公司第十八研究所 Oxide composite positive electrode material for small high-voltage thermal battery and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102327542B1 (en) * 2021-08-31 2021-11-17 국방과학연구소 Cathode for thermal battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523100A (en) * 2009-04-06 2012-09-27 イーグルピッチャー テクノロジーズ,エルエルシー Thermal battery cathode material and battery containing the same
CN106450366A (en) * 2016-10-19 2017-02-22 上海空间电源研究所 Ultra-thin unit cell for thermal battery and preparation method thereof
CN110534697A (en) * 2019-09-11 2019-12-03 中国工程物理研究院电子工程研究所 A kind of single cell of thermo battery and preparation method thereof
CN110534697B (en) * 2019-09-11 2022-03-01 中国工程物理研究院电子工程研究所 Thermal battery single battery and preparation method thereof
CN111916749A (en) * 2020-08-17 2020-11-10 贵州梅岭电源有限公司 Heating anode integrated material for thermal battery and preparation method thereof
CN113851630A (en) * 2021-10-18 2021-12-28 中国电子科技集团公司第十八研究所 Oxide composite positive electrode material for small high-voltage thermal battery and preparation method thereof

Also Published As

Publication number Publication date
JP2751389B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
CN100588009C (en) Positive electrode active materials and preparation method thereof and this rechargeable nonaqueous electrolytic battery of being used for rechargeable nonaqueous electrolytic battery
US7824802B2 (en) Method of preparing a composite cathode active material for rechargeable electrochemical cell
WO2020151143A1 (en) Prelithiation material, preparation method thereof, and lithium battery
JPH02299162A (en) Manufacture of positive electrode mix for thermal battery and thermal battery using it
KR101043309B1 (en) Cathodal pellet for thermal battery, method for fablicatign the same, and thermal battery having the same
CN107749469A (en) The negative material and preparation method of a kind of lithium battery carbonitride carried titanium dioxide
JP2006236990A (en) Thermal cell
JP2751390B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
CN108011093A (en) Lithium occlusion releasable material, electrode, the manufacture method of lithium rechargeable battery and lithium occlusion releasable material
JPH02144855A (en) Manufacture of positive electrode mix for thermal battery and thermal battery using same
JP2808627B2 (en) Thermal battery
CN112831687A (en) Lead-containing oxide powder and product thereof
JP2653065B2 (en) Stacked thermal battery
JP2563386B2 (en) Method for manufacturing negative electrode for thermal battery
JP2847983B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same
KR102567538B1 (en) Anode electrode of thermal battery and method of fabricating the same
JP2979207B2 (en) Method of manufacturing negative electrode for thermal battery and laminated thermal battery using the negative electrode
JPH02295066A (en) Manufacture of positive active material for thermal battery and thermal battery using this material
JP2847982B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same
CN109643791A (en) Anode material for lithium-ion batteries, preparation method and lithium ion battery
JPH04155768A (en) Manufacture of thermobattery electrolyte and thermobattery using same
JPH02299160A (en) Thermal battery
JPH02284359A (en) Manufacture of thermo-battery and positive-electrode active material for thermo-battery
JPH0461756A (en) Manufacture of ni-h storage battery
JPH05242896A (en) Positive electrode active material for thermal cell, manufacture thereof and thermal cell using it

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12