JPH02144855A - Manufacture of positive electrode mix for thermal battery and thermal battery using same - Google Patents

Manufacture of positive electrode mix for thermal battery and thermal battery using same

Info

Publication number
JPH02144855A
JPH02144855A JP63299841A JP29984188A JPH02144855A JP H02144855 A JPH02144855 A JP H02144855A JP 63299841 A JP63299841 A JP 63299841A JP 29984188 A JP29984188 A JP 29984188A JP H02144855 A JPH02144855 A JP H02144855A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
thermal battery
powder
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63299841A
Other languages
Japanese (ja)
Other versions
JPH0740488B2 (en
Inventor
Hirosuke Yamazaki
博資 山崎
Kazunori Haraguchi
和典 原口
Akinori Awano
粟野 彰規
Masanori Fujimoto
冨士本 真紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63299841A priority Critical patent/JPH0740488B2/en
Publication of JPH02144855A publication Critical patent/JPH02144855A/en
Publication of JPH0740488B2 publication Critical patent/JPH0740488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof

Abstract

PURPOSE:To suppress the temporary spiky high voltage generated at the activation initial stage by mixing the powder of calcium disilicide CaSi2, heat-treating it in a high-temperature furnace fed with the specific mixed gas, then cooling and machining it in the furnace. CONSTITUTION:Unprocessed iron disulfide, a molten salt electrolyte and calcium disilicide are mixed in powder respectively, an inorganic binder containing an electrolyte is added as required, and they are mixed and stirred. This black mix is heat-treated in a high-temperature furnace fed with argon or nitrogen or their mixed gas, then it is cooled in the furnace. The positive electrode black mix powder is obtained through the process to crush the positive electrode black mix processed in the dry atmosphere. A thermal battery easy to manufacture, having a flat discharge curve with the suppressed spike voltage, not affected on the discharge life, and having improved energy density can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウム/二硫化鉄系熱電池のスパイク電圧を
抑制し、放電電圧の平坦化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to suppressing spike voltages and flattening the discharge voltage of lithium/iron disulfide thermal batteries.

従来の技術 熱電池は常温で不活性であるが、高温に加熱すると活性
化して、外部へ電力を供給し得るようになる電池で、貯
蔵型電池の一種である。従って、10年あるいはそれ以
上の貯蔵後においても製造直後と何ら電池特性が変るこ
となく使用できるため、各種緊急用T源に利用されてい
る。また、高温で作動させるために電極反応が進み易い
ので犬電流放電性に優れる、使用希望時には簡71′/
l:操作で起動信号を入れてやると、瞬時に電力を取出
せる等の特徴を有している。一方、使用される機器側の
電圧範囲の制限が厳j〜くなる傾向にあり、出来る限り
作動電圧が平坦であることが望まれている。
BACKGROUND TECHNOLOGY A thermal battery is inactive at room temperature, but becomes activated when heated to a high temperature and can supply power to the outside, and is a type of storage battery. Therefore, even after storage for 10 years or more, the battery characteristics can be used without any change from immediately after manufacture, so they are used in various emergency T sources. In addition, because it operates at high temperatures, the electrode reaction progresses easily, so it has excellent dog current discharge properties.
l: It has features such as being able to instantly draw power when a start signal is input by operation. On the other hand, there is a tendency for the voltage range of the equipment used to be more severely restricted, and it is desired that the operating voltage be as flat as possible.

熱電池においてこの具体的現象は、熱電池へ起動信号を
入れ、発熱剤を燃焼し、素電池を加熱した時、電圧が立
上がシ始めた初期状態に現われる、−次的な高電圧であ
シ、これを一般的にスパイク電圧と称している。すなわ
ち起動信号を加えた後0.5〜2秒間位に生じる瞬時的
なピーク電圧を指し、その後直ぐに安定電圧となる電圧
バタ・−ンとなる現象を言っている。この様な電圧特性
を有する電池を使用して機器設計をすると、電気回路上
の安全を考慮し高耐圧部品を用いねばならないので、機
器が大型化1重量化してしまう。
In thermal batteries, this specific phenomenon occurs when a start signal is input to the thermal battery, the exothermic agent is burned, and the unit cell is heated.The voltage appears in the initial state when the voltage starts to rise. This is generally called a spike voltage. That is, it refers to an instantaneous peak voltage that occurs for about 0.5 to 2 seconds after a starting signal is applied, and then a voltage fluctuation that becomes stable immediately after that. If a device is designed using a battery having such voltage characteristics, high-voltage components must be used in consideration of the safety of the electric circuit, which results in the device becoming larger and heavier.

スパイク電圧の発生原因は、正極活物質の二硫化鉄(F
eS2>の粉体表面に僅かなから形成されている酸化物
や硫酸塩の被膜によるものと考えられる。これは硫酸鉄
(FeS04)をポリ硫化アルカリと共に封管中で加熱
反応させてFeS zを生成したり、鉄(F5)粉を亜
硫酸アルカリと共に反応させてFeS2を製造するとき
に、FaS2の表面に酸化鉄、硫酸鉄が形成もしくは残
留するからである。
The cause of the spike voltage is iron disulfide (F) in the positive electrode active material.
This is thought to be due to a small amount of oxide or sulfate coating formed on the powder surface of eS2>. This is because when iron sulfate (FeS04) is heated and reacted with polyalkali sulfide in a sealed tube to produce FeSz, or when iron (F5) powder is reacted with alkali sulfite to produce FeS2, the surface of FaS2 is This is because iron oxide and iron sulfate are formed or remain.

FeS 2に対l−これらの化合物は電位が高く、放電
により表面被膜が破れるとFaS2の安定電圧となる。
1 for FeS 2 - These compounds have a high potential, and when the surface film is broken by discharge, it becomes a stable voltage of FaS 2.

表面被膜層のあるFeS 2と、表面被膜層のない単結
晶Fed2の比較において、前者はスパイク電圧の発生
が見られるが、後者のFaS2は見られない事が証明さ
れている。そこで、従来検討された内容は次の3点であ
った。
In a comparison of FeS2 with a surface coating layer and single crystal Fed2 without a surface coating layer, it has been proven that spike voltage is observed in the former, but not in the latter FaS2. Therefore, the following three points have been considered in the past.

(1)未熟BlfiFeS2に硫化水素ガス(H2S)
を流しなから350℃で加熱反応し、表面不純物をFe
5z化する。
(1) Hydrogen sulfide gas (H2S) on immature BlfiFeS2
The surface impurities were removed by heating at 350°C without flowing
5z version.

(2)FaS(硫化鉄)とLj、2B(硫化リチウム)
を加熱反応により合成させたLizFeS2を用いる。
(2) FaS (iron sulfide) and Lj, 2B (lithium sulfide)
LizFeS2 synthesized by heating reaction is used.

(@ 脱酸化剤として2ケイ化力〜シウム(CaSi2
 )粉末を添加する。
(@ As a deoxidizing agent, 2 silicidation power ~ sium (CaSi2
) Add powder.

発明が解決しようとする課題 上記(1)は、5AND79−0090.19了9に示
す先行技術であり、H2Sガスを流しながら(フローテ
ィング)350℃で30分間電気炉中にて焼成すること
で、FeS2表面のFe 205やFeSO4を純粋な
FeS2に変化させ、電圧上昇要因を除去するものであ
るが、放出する有毒性のあるH2Sガスの後処理装置を
必要とする。(2)は、International 
Powar 5ources Symposium(I
PSS)、P67γ、1986年に示された方法であり
、L工2Sが湿度に対して非常に敏感な性質を有してい
るため、取扱い作業中にLiOHとH7Sに分解しやす
く、悪臭を放ち健康に悪い影響を与える。
Problems to be Solved by the Invention The above (1) is the prior art shown in 5AND79-0090.19Ryo9, which involves firing in an electric furnace at 350°C for 30 minutes while flowing H2S gas (floating). This method converts Fe 205 and FeSO4 on the FeS2 surface into pure FeS2 and removes the voltage increase factor, but requires a post-processing device for the toxic H2S gas released. (2) is International
Power 5 sources Symposium (I
PSS), P67γ, is a method shown in 1986, and because L-2S is very sensitive to humidity, it easily decomposes into LiOH and H7S during handling, giving off a bad odor. have a negative impact on health.

(3)は、同IPSS、1982に記述されているCa
、Si 2扮末をFeS2に対し3〜5重情チ添加した
粉末混合物に、溶融塩電解質粉末、溶融塩−2酸化ケイ
素粉末を加え均一な正極合剤粉末とした後、減圧乾燥を
経て電池に用いられていたが、Cadi 2の添加によ
る容量低下、電圧波形に二段変化が生じるという課VA
があった。
(3) is Ca described in the same IPSS, 1982.
A molten salt electrolyte powder and a molten salt-silicon dioxide powder were added to a powder mixture in which 3 to 5 times of Si2 powder was added to FeS2 to form a uniform positive electrode mixture powder, which was then dried under reduced pressure to form a battery. However, the addition of Cadi 2 causes a decrease in capacity and a two-step change in the voltage waveform.
was there.

本発明は、上記のような従来の課電を解消するため、前
記(3)のCa S 12 の添加方法に着目して正極
容量の低下がなく、かつ電圧波形に優れ、更にスパイク
電圧を極力抑制したリチウム/二硫化鉄系熱電池を実現
させ、合せて正極合剤の容易な処理法を提供することを
目的とする。
In order to solve the conventional electrification problem as described above, the present invention focuses on the Ca S 12 addition method described in (3) above to avoid a decrease in positive electrode capacity, provide an excellent voltage waveform, and further minimize spike voltage. The purpose of this invention is to realize a lithium/iron disulfide-based thermal battery with a reduced amount of heat, and also to provide an easy treatment method for the positive electrode mixture.

課題を解決するだめの手段 この課題を解決するために本発明は、未熟理工硫化鉄と
溶1a塩電解質と2ケイ化カルシウムをそれぞれ粉体で
、必要に応じてこれにさらに電M質を含有した無機バイ
ンダーを加えて混合撹拌する工程と、この合剤をア/l
/ゴン、窒素またはこれらの混合ガスを流通させた高温
炉で加熱処理する工程と、同炉内で冷却する工程と、乾
燥雰囲気中で処理済み正極合剤を粉砕する工程を経て正
極合剤粉末を得るものである。
Means to Solve the Problem In order to solve this problem, the present invention uses powders of immature iron sulfide, molten 1a salt electrolyte, and calcium disilicide, and further contains an electrolyte as needed. The process of adding and stirring the inorganic binder, and adding the mixture to a/l.
The positive electrode mixture powder is produced through a process of heat treatment in a high-temperature furnace in which nitrogen gas, nitrogen, or a mixture thereof is passed through, a cooling process in the same furnace, and a process of pulverizing the treated positive electrode mixture in a dry atmosphere. This is what you get.

なお、電池としては負極にはリチウム又はリチウム合金
を使用し、電解質層に溶融塩電解質を保持させた酸化マ
グネシウム(MgO)の粉末成型体を用い、そして正直
層に本発明の正極合剤を粉末成型層とした3層からなる
素電池と、テルミット反応を利用した発熱剤を組合せて
L i / FeS2 系熱電池に構成する。
As for the battery, lithium or lithium alloy is used for the negative electrode, a molded magnesium oxide (MgO) powder containing a molten salt electrolyte is used for the electrolyte layer, and the positive electrode mixture of the present invention is used as a powder for the straight layer. A unit cell consisting of three layers as molded layers is combined with a heat generating agent utilizing thermite reaction to construct a Li/FeS2 type thermal battery.

作用 この製造法と前記の熱電池を用いれば、従来のようなス
パイク電圧は小さく抑制され、作動電圧が平坦化される
。すなわち、FeS2の表面に形成されていた鉄酸化物
や鉄硫酸塩等の不純物は、熱処理中にCaSi 2  
と反応して被模が除去され、活性なFeS2表面に変る
ためである。Cadi 2 の添加量は出来る限シ少量
で効果を得られるよう量的に制限してスパイク電圧以外
への悪影響が出ないよう配慮を行なう。添加量がFeS
2に対し1.6重量%を越え2.0重量%以上になると
、顕著に二段波の放電カーブが発生し、放電寿命の低下
も表われてくるので、0.2〜1.6重量%の範囲がよ
い。
Effect: By using this manufacturing method and the above-described thermal battery, the spike voltage that occurs in the prior art can be suppressed to a small level, and the operating voltage can be flattened. In other words, impurities such as iron oxide and iron sulfate that were formed on the surface of FeS2 are removed from CaSi2 during heat treatment.
This is because the pattern is removed by reacting with FeS2 and becomes an active FeS2 surface. The amount of Cadi 2 added is quantitatively limited so that the effect can be obtained with as little amount as possible, and care is taken to avoid any adverse effects other than the spike voltage. Addition amount is FeS
If it exceeds 1.6% by weight and exceeds 2.0% by weight, a two-wave discharge curve will occur and the discharge life will be shortened. A range of % is good.

アルゴンや窒素をフローティングして高温焼成炉中で正
極混合物を熱処理すると、不活性雰囲気下でFeS 2
表面の不純物は溶融塩の効果を受けてCaSi2  と
の反応を促進し易くなシ、少ない添加量で処理効果を大
きく出来る。従って、放電寿命への影響も受けることな
く、初期のスパイク電圧のみを取除くことができる。
When the cathode mixture is heat-treated in a high-temperature calcining furnace with floating argon or nitrogen, FeS2 is formed under an inert atmosphere.
Impurities on the surface are affected by the molten salt and do not easily promote the reaction with CaSi2, so the treatment effect can be increased with a small addition amount. Therefore, only the initial spike voltage can be removed without affecting the discharge life.

尚、従来のようにFeS2粉末、電解質粉末。In addition, FeS2 powder and electrolyte powder are used as before.

QaSi 2粉末をただ単に機械的に混合しただけの正
極合剤を用いて、素電池の正極層を形成した場合に比べ
、本発明品を正極層とした場合には、成型密度が高まシ
、素電池の薄形化によって電池のする。
Compared to the case where the positive electrode layer of a unit cell is formed using a positive electrode mixture that is simply mechanically mixed with QaSi 2 powder, when the product of the present invention is used as a positive electrode layer, the molding density is higher and the system is , batteries will become thinner due to the thinner unit cells.

以上のように、製造が容易で、スパイク電圧が抑制され
た平坦な放電カーブが得られ、放電寿命に影響ない、エ
ネルギー密度の改善された熱電池を構成できることとな
る。
As described above, it is possible to construct a thermal battery that is easy to manufacture, has a flat discharge curve with suppressed spike voltage, has no influence on discharge life, and has improved energy density.

実施例 以下に、本発明の実施例を第1図、第2図および第3図
を用いて説明する。
Embodiments Below, embodiments of the present invention will be described with reference to FIGS. 1, 2, and 3.

第1図は正極合剤の製造工程図を示す。図において、F
eS 2粉末を69重量%(以下同じ)、塩化リチウム
−塩化カリウム(LiC1−KCl 、融点362°C
)溶融塩電解質(Xで表示)粉末10%。
FIG. 1 shows a manufacturing process diagram of the positive electrode mixture. In the figure, F
69% by weight of eS2 powder (the same applies hereinafter), lithium chloride-potassium chloride (LiC1-KCl, melting point 362 °C
) Molten salt electrolyte (denoted by X) powder 10%.

LiC3−KC1溶融塩電解質を二酸化ケイ素(SiO
2)バインダーに保持させた粉末(KBで表示)20チ
、CaSi2 の100メツシュパス粉末o、sチをそ
れぞれ秤取し総量I Kfとする。次に、ボールミル容
器に入れ密封し、1時間回転して均一混合粉末を得る。
LiC3-KC1 molten salt electrolyte is made of silicon dioxide (SiO
2) Weigh out 20 pieces of powder (expressed in KB) held in the binder and 100 mesh pass powders o and s of CaSi2 to obtain a total amount of IKf. Next, it is placed in a ball mill container, sealed, and rotated for 1 hour to obtain a uniform mixed powder.

これをパイレックスガラス容器に移し、不活性ガスが流
通するフローティング方式の電気炉中に入れ、アルゴン
(ムτ)ガスを前記合剤1Kg当シロ〜5012/xm
のガス流量で流し続け、電気炉を昇温し電解質の融点以
上の370〜500°C間で1時間保持する。こののち
、Arガスを流し続けながら冷却し、10o′C以下で
容器を引出し、乾燥雰囲気中に移す。この状態では、比
較的くずれ易い塊状となっておシ、乳鉢等で粉砕し50
〜250メツ7ユに整粒して正極合剤とする。尚ここで
、EBを用いたが、E比率を若干増量して除去してもよ
く、またArガスの替シに窒素ガス(N2)又はムrと
N2との混合ガスを流してもよい。
This was transferred to a Pyrex glass container, placed in a floating type electric furnace through which inert gas was circulated, and argon (μτ) gas was added per kg of the mixture to 5012/xm.
Continue to flow the gas at a flow rate of , raise the temperature of the electric furnace, and hold it for 1 hour at 370 to 500°C, which is higher than the melting point of the electrolyte. Thereafter, the container is cooled while continuing to flow Ar gas, and the container is pulled out at 10 o'C or lower and transferred to a dry atmosphere. In this state, it becomes a lump that is relatively easy to break down and is crushed in a mortar or mortar.
The particles are sized to ~250 ml and 7 yu to form a positive electrode mixture. Although EB is used here, it may be removed by increasing the E ratio a little, or nitrogen gas (N2) or a mixed gas of Mr and N2 may be flowed instead of Ar gas.

フローティングガス量は、仕込みtlKfに対し51/
amよシ少ない場合は炉内に空気の混入の心配があって
、FeS2が鉄酸化物を生成する危険があり、一方50
117tin以上では経済的に不利となる。
The amount of floating gas is 51/
If the am is less than
If it is 117 tin or more, it will be economically disadvantageous.

また、高温炉の温度は電解質にLiC$−KC1溶融塩
を用いた場合、370℃下限、500℃上限が特性上好
ましく、370°C以下では温度調整バラツキによって
CaSi2 の効果が小さく、600″C以上ではFe
S2が徐々に分解するので放電特性を劣下させる。
In addition, when using LiC$-KC1 molten salt as the electrolyte, the temperature of the high-temperature furnace is preferably 370°C lower limit and 500°C upper limit from the viewpoint of characteristics. Below 370°C, the effect of CaSi2 is small due to temperature adjustment variations, and 600"C In the above, Fe
Since S2 gradually decomposes, the discharge characteristics deteriorate.

第2図は、本発明の第1図に示した正極合剤層を用いた
素電池の断面図を示す。
FIG. 2 shows a cross-sectional view of a unit cell using the positive electrode mixture layer shown in FIG. 1 of the present invention.

1は正極合剤層であり放電電気量と利用率の関係に応じ
て適量が決定され、規定量秤取し金型内に入れ、低圧の
予備成型ののち、LiC,d−KC150%を含浸処理
したMgOバインダーからなる電解質粉末を定量秤取し
て重ねて入れ、高圧で本成型を行なって電解質層2を形
成すると共に、2層一体ペレットを得る。3は負極カッ
プ、4は負極カップ3の内面に配置した純リチウムと鉄
粉の−体温金層もしくはリチウム・アルミニウム合金と
Eからなる負極活物質層でこの2つを合せ負極5と呼び
、前記ペレットと組合せ素電池とする。
1 is the positive electrode mixture layer, and the appropriate amount is determined according to the relationship between the amount of discharged electricity and the utilization rate, the specified amount is weighed out, placed in a mold, and after preforming at low pressure, it is impregnated with 150% LiC, d-KC. The electrolyte powder made of the treated MgO binder is quantitatively weighed and stacked, and main molding is performed under high pressure to form the electrolyte layer 2 and obtain a two-layer integral pellet. 3 is a negative electrode cup, 4 is a negative electrode active material layer consisting of a temperature gold layer of pure lithium and iron powder or a lithium-aluminum alloy and E arranged on the inner surface of the negative electrode cup 3; these two together are called the negative electrode 5; Combine with pellets to make a unit cell.

第3図は、第1図の製造法を用いた正極合剤、第2図の
素電池を用いた積層型熱電池の縦断面図である。
FIG. 3 is a longitudinal cross-sectional view of a stacked thermal battery using the positive electrode mixture manufactured by the manufacturing method shown in FIG. 1 and the unit cell shown in FIG. 2.

6は第2図の素電池で必要数を直列に積層構成すること
で容易に所望の電圧が得られ、過塩素酸カリウムと鉄粉
との均一混合物からなる発熱剤7と交互に積層する。8
.9は前記積層体の上・下部に配置した蓄熱剤層であり
、例えば硫酸リチウムと塩化ナトリウムの混合塩と5i
02バインダーからなる層で495°Cで凝固潜熱を発
生して素電池スタック温度を長時間保持させ、電池の長
寿命化に不可欠の蓄熱材である。10は点火器でそのリ
ード線は一対の起動用端子11に接続され、この端子よ
りパルス電流を通電すると火炎を発してヒートハツト1
2を燃焼し、その火炎は導火帯13に燃焼伝ばさせる。
A desired voltage can be easily obtained by stacking the necessary number of unit cells 6 in series in FIG. 2, and the exothermic agent 7 made of a homogeneous mixture of potassium perchlorate and iron powder is alternately stacked. 8
.. Reference numeral 9 denotes a heat storage agent layer disposed above and below the laminate, and includes, for example, a mixed salt of lithium sulfate and sodium chloride and 5i.
The layer made of 02 binder generates latent heat of solidification at 495°C, maintains the cell stack temperature for a long time, and is an essential heat storage material for extending battery life. 10 is an igniter whose lead wires are connected to a pair of starting terminals 11, and when a pulse current is applied from these terminals, a flame is emitted and the heat hat 1
2 is combusted, and the flame is transmitted to the fuse cord 13.

1+、1stf、正、負極出力端子でスタックの最上部
と最下部から取出した内部リード線16.17と接続す
る。18は断熱層でMIN−に■と呼ばれる高性能の無
機質断熱材を用いてスタックを包囲した。19は電池蓋
、2oは電池ケースでいずれもステンレス鋼からなり、
それらの嵌合部を溶接密封する。
1+, 1stf, positive and negative output terminals are connected to internal lead wires 16 and 17 taken out from the top and bottom of the stack. 18 is a heat insulating layer, and the stack is surrounded by a high performance inorganic heat insulating material called MIN-. 19 is the battery cover, 2o is the battery case, both of which are made of stainless steel.
The fitting parts are welded and sealed.

本発明を用いた積層型電池は、一対の起動用端子11か
らパルス電流を通電することによシ、点火器10.ヒー
トパッド12.導火帯139発熱剤7の順に燃焼し、素
電池6を加熱して起動する。
The stacked battery using the present invention can be activated by applying a pulse current from a pair of starting terminals 11 to an igniter 10. Heat pad 12. The fuse cord 139 burns in the order of the exothermic agent 7, heating the unit cell 6 and starting it up.

素電池は約500℃に昇温し、LiG/−KC1電解質
が溶融すると、本発明の正極合剤層は放電開始して、ス
パイク電圧の抑制された平坦な出力電圧を供給する。
When the temperature of the unit cell rises to about 500° C. and the LiG/-KC1 electrolyte melts, the positive electrode mixture layer of the present invention starts discharging and supplies a flat output voltage with suppressed spike voltage.

次に本実施例の効果を調べた結果を述べる。第4図は、
素電池直径76H1電池外径95ff、電池高さ90f
Jfの電池形状における10011ム/d電流密度の放
電試験結果を示す。素電池直列数15、平均作動電圧2
V/セルである。
Next, the results of investigating the effects of this example will be described. Figure 4 shows
Cell diameter: 76H1 Battery outer diameter: 95ff, battery height: 90f
The results of a discharge test at a current density of 10011 μm/d in a Jf battery configuration are shown. Number of cells connected in series: 15, average operating voltage: 2
V/cell.

図中ムは、本発明実施例の放電カーブを示し、Cadi
 2 の添加比は0.5%である。Bは従来例1を示し
、CaSi2  無添加、熱処理工程のない粉末混合の
みで作られた正極合剤を用いた電池である。
In the figure, the symbol indicates the discharge curve of the embodiment of the present invention, and Cadi
The addition ratio of 2 is 0.5%. B shows Conventional Example 1, which is a battery using a positive electrode mixture made only by powder mixing without adding CaSi2 and without a heat treatment process.

Cは従来例2を示し、Gas工25チ添加、熱処理工程
のない粉末混合のみで作られた正極合剤を用いた電池で
ある。電池Bは作動直後に生じるスパイク電圧が35V
を示した後急落して約30Vで安定的な電圧を維持、2
5V以上の持続時間は16分以上である。電池Cはスパ
イク電圧が抑制されて32Vとなるが、電圧2段波、電
圧傾斜の増大、持続時間の短縮が生じるという結果であ
った。本発明例人は、スパイク電圧は完壁に取除かれて
いないものの31,5Vと実用的に問題のない値まで改
善され、電圧2段波および持続時間への影響もなく、電
圧の平坦性が改良されるという効果を示した。
C shows Conventional Example 2, which is a battery using a positive electrode mixture made only by powder mixing without addition of 25% gas and no heat treatment process. Battery B has a spike voltage of 35V immediately after activation.
After showing , it suddenly dropped and maintained a stable voltage of about 30V, 2
The duration of 5V or more is 16 minutes or more. In battery C, the spike voltage was suppressed to 32V, but the results were that a two-step voltage wave, an increase in the voltage slope, and a shortening of the duration occurred. Although the spike voltage has not been completely removed, it has been improved to 31.5V, which is a value that does not cause any practical problems, and there is no effect on the voltage two-step wave or duration, and the voltage is flat. It was shown that the effect was improved.

第6図は、本発明の方法を用いて、FeS2 。FIG. 6 shows FeS2 obtained using the method of the present invention.

CaSi2 、E 、 KBの組成を変化し、Cadi
 2の添加比率がスパイク電圧とスタック高さに与える
影響を調べる目的で実施した。従来例1では正極合剤の
充填密度がやや低く層厚みが厚くなるため、16枚の素
電池と16枚の発熱剤からなるスタック高さは47ff
であった。試料風1〜7は熱処理によって正極合剤9粒
子間が固くしまるようになシ充填密度が高まる効果が得
られ、正極合剤層が従来例1よりも薄く成型できるので
、スタック高さは約1.7ff低くなった。また、スパ
イク電圧は従来例1と同組成で熱処理を施した試料風1
は逆に上昇したが、0.1〜6%の範囲で添加した試料
隘2〜12はいずれも低下傾向を示し、特に0.3〜1
.5%の範囲の試料風3〜7はスパイク電圧、スタック
高さの両方の効果も得られ実用的であった。試料隘8〜
12は放電度応に直接関与しないCaSi2 が電池抵
抗として悪効果となり、添加効果よりも作動電圧の低下
、素電池厚みの増加によるスタック高さの増加となって
実用的な範囲でなかった。
By changing the composition of CaSi2, E, KB,
The purpose of this experiment was to investigate the effect of the addition ratio of 2 on spike voltage and stack height. In Conventional Example 1, the packing density of the positive electrode mixture is somewhat low and the layer thickness is thick, so the stack height consisting of 16 unit cells and 16 heat generating materials is 47ff.
Met. For sample winds 1 to 7, the heat treatment made the spaces between the 9 positive electrode mixture particles harden, which had the effect of increasing the packing density, and the positive electrode mixture layer could be formed thinner than in conventional example 1, so the stack height could be reduced. Approximately 1.7ff lower. In addition, the spike voltage was measured using sample wind 1, which had the same composition as conventional example 1 and underwent heat treatment.
On the contrary, sample numbers 2 to 12, in which the concentration was added in the range of 0.1 to 6%, showed a decreasing tendency, especially in the range of 0.3 to 1%.
.. Sample winds 3 to 7 in the range of 5% were practical as they provided both spike voltage and stack height effects. Sample depth 8~
In No. 12, CaSi2, which does not directly affect the degree of discharge, had a negative effect as a battery resistance, and the effect of addition was more than a decrease in operating voltage and an increase in stack height due to an increase in the thickness of the unit cell, which was out of a practical range.

本実施例ではFeS2 、 CaSi2 、 E 、 
KBを同時に混合する例について記述したが、次のよう
な工程を経た場合も同様の効果が得られる。
In this example, FeS2, CaSi2, E,
Although the example in which KB is mixed at the same time has been described, the same effect can be obtained by going through the following steps.

a)FeS2とCaSi2を所望組成で混合し、これを
ムrガスフローティング電気炉で焼成し、冷却後取出し
て、K 、EBを加え再混合したものを、再び人rガス
フローティング電気炉中で焼成。
a) Mix FeS2 and CaSi2 with a desired composition, fire this in a gas floating electric furnace, take it out after cooling, add K and EB, mix it again, and fire it again in a human gas floating electric furnace. .

冷却、粉砕を行なう方法。Method of cooling and crushing.

b) FeS2とCadi2とXの3種類とし、混合、
焼成、冷却、粉砕を行なう方法で、KBを削除した一部
の電解質をEに増量させる。
b) Three types, FeS2, Cadi2 and X, mixed,
A portion of the electrolyte from which KB has been removed is increased to E by firing, cooling, and pulverizing.

発明の効果 以上の説明から明らかなように、2ケイ化カルンウムを
ただ単に正極合剤に粉末状で混ぜ込むだけではなく、粉
末で混合した後、ムrガス、窒素ガス又はこれらの混合
ガスを流通させた高温炉中で加熱処理後、同炉内で冷却
、のち乾燥雰囲気で粉砕した各工程を経た正極合剤粉末
を素電池の正極合剤層に成型して使用し、そして発熱剤
と組合せた本発明の積層型電池は、起動初期に生じる一
次的なスパイク状高電圧が抑制され、作動電圧の平坦化
が得られる。更にCadi z量が0.3−1.5重量
%の範囲の同処理工程を経た正極合剤層、放電持続時間
が同等であり、成型密度が大きくなるのでスタック高さ
が低くなって電池の小型化が図れる。
Effects of the Invention As is clear from the above explanation, carunium disilicide is not simply mixed into the positive electrode mixture in powder form, but after being mixed in powder form, carbon dioxide gas, nitrogen gas, or a mixture thereof is mixed. After being heated in a high-temperature furnace, the positive electrode mixture powder is cooled in the same furnace, and then pulverized in a dry atmosphere.The positive electrode mixture powder is molded into the positive electrode mixture layer of a unit cell and used as a heat generating agent. In the combined stacked battery of the present invention, the temporary spike-like high voltage that occurs at the initial stage of startup is suppressed, and the operating voltage can be flattened. Furthermore, the positive electrode mixture layer that underwent the same treatment process with a Cadiz content in the range of 0.3-1.5% by weight had the same discharge duration and increased molding density, resulting in a lower stack height and improved battery performance. Can be made smaller.

かつ、製造工程も簡単で量産時の不都合も生じないとい
う効果が得られる。
Moreover, the manufacturing process is simple and there are no inconveniences during mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す正極合剤の製造工桿図、
第2図は同合剤を成型し正極合剤層として構成した素電
池の断面図、第3図は第2図の素電池を直列構成した本
発明の積層型熱電池の断面図、第4図は本発明の実施例
および従来例の放電カーブの比較図、第5図は合剤7組
成とスパイク電圧、スタック萬さの特性1頃向図である
。 1・・・・・・正極合剤層、2・・・・・・電解質層、
5・・・・・・負極、8・・・・・・素電池、7・・・
・・・発熱剤。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名第1
図 Ko、p (”)J91i ?ノ ε 5・−1糧 −與 Σ
FIG. 1 is a manufacturing process diagram of a positive electrode mixture showing an example of the present invention;
FIG. 2 is a cross-sectional view of a unit cell formed by molding the same material as a positive electrode mixture layer, FIG. 3 is a cross-sectional view of a laminated thermal battery of the present invention in which the unit cells of FIG. 2 are configured in series, and FIG. The figure is a comparison diagram of the discharge curves of the embodiment of the present invention and the conventional example, and FIG. 5 is a diagram showing the characteristics of mixture 7 composition, spike voltage, and stack strength. 1... Positive electrode mixture layer, 2... Electrolyte layer,
5...Negative electrode, 8...Battery, 7...
...Exothermic agent. Name of agent: Patent attorney Shigetaka Awano and 1 other person 1st
Figure Ko, p ('') J91i?ノ ε 5・-1 與 Σ

Claims (5)

【特許請求の範囲】[Claims] (1)リチウム又はリチウム合金を用いた負極、溶融塩
を用いた電解質層、二硫化鉄を用いた正極を有する熱電
池において、少なくとも二硫化鉄と溶融塩と2ケイ化カ
ルシウムを含む正極合剤を均質に混合撹拌する工程と、
アルゴン、窒素またはそれらの混合ガスを流通させた高
温炉中で加熱処理する工程と、同炉内で冷却する工程と
を経た後、乾燥雰囲気中で粉砕する工程とからなる熱電
池用正極合剤の製造法。
(1) In a thermal battery having a negative electrode using lithium or a lithium alloy, an electrolyte layer using a molten salt, and a positive electrode using iron disulfide, a positive electrode mixture containing at least iron disulfide, a molten salt, and calcium disilicide. a step of homogeneously mixing and stirring the
A positive electrode mixture for thermal batteries that consists of a process of heat treatment in a high-temperature furnace through which argon, nitrogen, or a mixture thereof is passed through, a process of cooling in the same furnace, and a process of pulverizing in a dry atmosphere. manufacturing method.
(2)2ケイ化カルシウムの添加量が、二硫化鉄に対し
て0.30重量%以上、1.50重量%以下の範囲であ
る特許請求の範囲第1項記載の熱電池用正極合剤の製造
法。
(2) The positive electrode mixture for thermal batteries according to claim 1, wherein the amount of calcium disilicide added is in the range of 0.30% by weight or more and 1.50% by weight or less based on iron disulfide. manufacturing method.
(3)流通ガス量は、正極合剤の仕込み量1Kgに対し
て、5〜50l/minの流量である特許請求の範囲第
1項記載の熱電池用正極合剤の製造法。
(3) The method for producing a positive electrode mixture for a thermal battery according to claim 1, wherein the flow rate of gas is 5 to 50 l/min per 1 kg of charged positive electrode mixture.
(4)熱処理温度が370〜500℃の範囲である特許
請求の範囲第1項記載の熱電池用正極合剤の製造法。
(4) The method for producing a positive electrode mixture for a thermal battery according to claim 1, wherein the heat treatment temperature is in the range of 370 to 500°C.
(5)特許請求の範囲第1項記載の熱電池用正極合剤粉
末を一定量秤取し、金型内で加圧成型した正極合剤層を
正極に用いた熱電池。
(5) A thermal battery using a positive electrode mixture layer obtained by weighing out a certain amount of the positive electrode mixture powder for a thermal battery according to claim 1 and molding the mixture under pressure in a mold as a positive electrode.
JP63299841A 1988-11-28 1988-11-28 Method for producing positive electrode mixture for thermal battery and thermal battery using the same Expired - Lifetime JPH0740488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63299841A JPH0740488B2 (en) 1988-11-28 1988-11-28 Method for producing positive electrode mixture for thermal battery and thermal battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63299841A JPH0740488B2 (en) 1988-11-28 1988-11-28 Method for producing positive electrode mixture for thermal battery and thermal battery using the same

Publications (2)

Publication Number Publication Date
JPH02144855A true JPH02144855A (en) 1990-06-04
JPH0740488B2 JPH0740488B2 (en) 1995-05-01

Family

ID=17877574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63299841A Expired - Lifetime JPH0740488B2 (en) 1988-11-28 1988-11-28 Method for producing positive electrode mixture for thermal battery and thermal battery using the same

Country Status (1)

Country Link
JP (1) JPH0740488B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124274B2 (en) 2003-11-21 2012-02-28 Eveready Battery Company, Inc. High discharge capacity lithium battery
CN108349740A (en) * 2015-10-29 2018-07-31 株式会社丰田自动织机 The manufacturing method of silicon materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124274B2 (en) 2003-11-21 2012-02-28 Eveready Battery Company, Inc. High discharge capacity lithium battery
CN108349740A (en) * 2015-10-29 2018-07-31 株式会社丰田自动织机 The manufacturing method of silicon materials

Also Published As

Publication number Publication date
JPH0740488B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
JP3453099B2 (en) Method for producing lithium secondary battery
JP2006066173A (en) Current collector for lead-acid storage battery and lead-acid storage battery
JP2004265685A (en) Manufacturing method of lithium ion conductive sulfide glass and glass ceramic and all solid type battery using the glass ceramic
KR101043309B1 (en) Cathodal pellet for thermal battery, method for fablicatign the same, and thermal battery having the same
JP5006548B2 (en) Thermal battery
JPH02144855A (en) Manufacture of positive electrode mix for thermal battery and thermal battery using same
JP2751390B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
JP2751389B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
JP2006236990A (en) Thermal cell
JP2847983B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same
JP2808627B2 (en) Thermal battery
JP2010061941A (en) Coin type lithium secondary battery
JP2563386B2 (en) Method for manufacturing negative electrode for thermal battery
JPH04155768A (en) Manufacture of thermobattery electrolyte and thermobattery using same
JPH02295066A (en) Manufacture of positive active material for thermal battery and thermal battery using this material
JPH05179372A (en) Production of hydrogen occluding alloy powder
JPH05242896A (en) Positive electrode active material for thermal cell, manufacture thereof and thermal cell using it
JPH04280070A (en) Manufacture of positive electrode active material for thermal battery, and thermal battery using same
JPH0461756A (en) Manufacture of ni-h storage battery
JPH04280072A (en) Manufacture of positive electrode active material for thermal battery, and thermal battery using same
JPH02299160A (en) Thermal battery
JPH02284360A (en) Manufacture of thermo-battery and positive-electrode active material for thermo-battery
JPH04282569A (en) Manufacture for metal hydride storage battery
JPH02284359A (en) Manufacture of thermo-battery and positive-electrode active material for thermo-battery
JPS60117566A (en) Molten carbonate fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 14