JPH02298010A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH02298010A
JPH02298010A JP11900189A JP11900189A JPH02298010A JP H02298010 A JPH02298010 A JP H02298010A JP 11900189 A JP11900189 A JP 11900189A JP 11900189 A JP11900189 A JP 11900189A JP H02298010 A JPH02298010 A JP H02298010A
Authority
JP
Japan
Prior art keywords
anode
layer
polymerization
constant current
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11900189A
Other languages
Japanese (ja)
Other versions
JP2836098B2 (en
Inventor
Kenji Kuranuki
健司 倉貫
Junji Ozaki
尾崎 潤二
Yoichi Aoshima
青島 洋一
Yasuhiro Obata
小畑 康弘
Masayuki Taniguchi
雅幸 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1119001A priority Critical patent/JP2836098B2/en
Publication of JPH02298010A publication Critical patent/JPH02298010A/en
Application granted granted Critical
Publication of JP2836098B2 publication Critical patent/JP2836098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To effectively form a polymerization film uniformly and in the same duration, to simplify an apparatus and to reduce production costs by a method wherein a solid electrolyte layer of a conductive high polymer is formed, by an electrolytic polymerization operation, on a metal oxide layer formed on an anodic formation film formed on the surface of a plurality of anode bodies. CONSTITUTION:An anode extraction lead wire 2 composed of aluminum is welded to one part of an anode body 1 composed of a foil of aluminum as a valve metal; an anodic formation film is formed; then, a manganese oxide layer 3 is formed on the anodic formation film. A polymerization tank 5 of a structure where a nickel cathode sheet 4 is spread is filled with a polymerization liquid 6 composed of an aqueous solution of pyrrole as a support electrolyte; ten anode bodies 1 where the manganese oxide layer 3 has been formed are arranged in a row and are immersed in the tank; a constant current is made to flow to the individual anode bodies 1; an electrolytic polymerization operation is executed until the whole surface of the anode bodies 1 is covered completely with a conductive high-polymer film of polypyrrole. A solid electrolyte layer 10 is formed. In addition, its surface is coated respectively with a graphite layer 11 and a silver paint layer 12.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は導電性高分子を固体電解質として用いた固体電
解コンデンサの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a solid electrolytic capacitor using a conductive polymer as a solid electrolyte.

従来の技術 従来、導電性高分子を固体電解質として使用し念固体電
解コンデンサとしては、特開昭82−18415号公報
に示されているよりに、弁金属よりなる陽極体の表面に
形成し九陽極化成皮膜上の陰極を取り出す部分全体に、
二酸化マンガンなどの金属酸化物を形成し、さらにその
上に導電性高分子膜の固体電解質層を形成した構成が知
られている。また特開昭63−154B829号公報に
示され穴ものは、陽極酸化皮膜の絶縁物上に二酸化マン
ガンなどの金属酸化物の半導体層を形成し、これによっ
て陽極体の表面が導電化されて導電性高分子を電解重合
することが可能となるようにしたことが特徴となってい
る。また特開昭64−32619号公報には、導電体を
陽極体に接触あるいは11111以内の距離に配置して
、導電体を陽極として電解重合する方法が示されている
。ま念、電解重合方法としては、陽極体の表面と、七ツ
マ−を含有し之電解液中の陰極の間に定電圧を印加した
状態で重合する、すなわち定電圧重合法が一般的であっ
た。
2. Prior Art Conventionally, a solid electrolytic capacitor using a conductive polymer as a solid electrolyte has been developed using a conductive polymer formed on the surface of an anode body made of a valve metal. The entire area where the cathode is taken out on the anode chemical coating is
A structure is known in which a metal oxide such as manganese dioxide is formed and a solid electrolyte layer of a conductive polymer film is further formed thereon. In addition, the hole type disclosed in JP-A-63-154B829 forms a semiconductor layer of metal oxide such as manganese dioxide on the insulator of the anodic oxide film, thereby making the surface of the anode body electrically conductive. It is characterized by the ability to electrolytically polymerize polymers. Furthermore, Japanese Patent Application Laid-Open No. 64-32619 discloses a method in which a conductor is placed in contact with an anode body or within a distance of 11,111 degrees, and electrolytic polymerization is carried out using the conductor as an anode. By the way, the most common electrolytic polymerization method is the constant voltage polymerization method, in which polymerization is carried out with a constant voltage applied between the surface of the anode body and the cathode in an electrolyte containing 7-mer. Ta.

発明が解決しようとする課題 しかしながら、このような定電圧重合法では、複数の陽
極体の表面に、電解重合で同時に導電性高分子の重合膜
を形成する場合、陽極体の表面へのマンガン酸化物々ど
の金属酸化物形成時の表面状態のばらつきによジ、陽極
体の表面に生長する重合膜の生長速度に差が生じるため
、複数の陽極体の表面にそ詐ぞれ均一に同じ時間で重合
膜を効果的に形成することはできず、その結果、同一ロ
ットでの歩留−!りが低下するといり課題があった。
Problems to be Solved by the Invention However, in such a constant voltage polymerization method, when polymer films of conductive polymers are simultaneously formed on the surfaces of multiple anode bodies by electrolytic polymerization, manganese oxidation occurs on the surfaces of the anode bodies. Due to variations in the surface condition during the formation of metal oxides, there are differences in the growth rate of the polymer film that grows on the surface of the anode body. It is not possible to effectively form a polymeric film in the same lot, and as a result, the yield in the same lot is -! There was a problem when the rate decreased.

また定電流で電解重合する場合には、−個の陽極体に対
して、それぞ扛−個の定電流電源を持続する必要がある
ため、複数個のコンデンサ素子を同時に作製する場合に
は、電源がコンデンサ素子の数だけ必要となり、その結
果、装置が犬がかジになり、製造コストが高くなるとい
う課題があった。
Furthermore, in the case of electrolytic polymerization using a constant current, it is necessary to maintain - constant current power supplies for - anode bodies, so when producing multiple capacitor elements at the same time, The problem is that a power supply equal to the number of capacitor elements is required, and as a result, the device becomes bulky and the manufacturing cost increases.

本発明はこのような課題を解決した固体電解コンデンサ
の製造方法を提供することを目的とするものである。
An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor that solves these problems.

課題を解決するための手段 上記課題を解決するために本発明は、弁金属よりなる複
数の陽極体の表面に陽極化成皮膜を形成する工程と、前
記陽極化成皮膜上の陰極を取り出す部分全体に、金属酸
化物層を形成する工程と、前記金属酸化物層の上に複素
環式化合物を繰り返し単位とする導電性高分子の固体電
解質層を定電流の電解重合により形成する工程と、グラ
ファイト層、銀ペイント層を順次形成する工程とを備え
之ものである。
Means for Solving the Problems In order to solve the above problems, the present invention includes a step of forming an anode chemical coating on the surface of a plurality of anode bodies made of valve metal, and a step of forming an anode chemical coating on the entire portion of the anode chemical coating from which the cathode is taken out. , a step of forming a metal oxide layer, a step of forming a solid electrolyte layer of a conductive polymer having a repeating unit of a heterocyclic compound on the metal oxide layer by constant current electrolytic polymerization, and a graphite layer. , and steps of sequentially forming silver paint layers.

作用 上記構成によれば、弁金属よりなる複数の陽極体の表面
に形成された陽極化成皮膜の上に形成されるマンガン酸
化物などの金属酸化物層の上に、ビロール、チオフェン
、フランなどの複素31式化合物を繰り返し単位とする
導電性高分子の固体電解質層を定電流の電解重合により
形成する工程を設けているため、複数の陽極体のそれぞ
れに強制的に一定電流が流れるように、印加される電圧
は変化することになジ、その結果、従来のような定電圧
重合法の場合のように、陽極体表面へのマンガン酸化物
などの金属酸化物形成時の表面状態のばらつきが、陽極
体表面に生長する重合膜の生長速度に影響することはな
くなり、これにより、複数の陽極体にそれぞれ均一に同
じ時間で重合膜を効果的に形成することができるため、
同一ロットでの歩留まりが向上する。
Effects According to the above structure, virol, thiophene, furan, etc. are deposited on the metal oxide layer such as manganese oxide formed on the anode chemical conversion film formed on the surface of the plurality of anode bodies made of valve metal. Because we have a step of forming a solid electrolyte layer of conductive polymer whose repeating unit is a complex type 31 compound by constant current electrolytic polymerization, a constant current is forced to flow through each of the plurality of anode bodies. The applied voltage will vary, and as a result, as in the case of conventional constant-voltage polymerization methods, variations in the surface state when metal oxides such as manganese oxide are formed on the anode surface will occur. , it no longer affects the growth rate of the polymer film growing on the surface of the anode body, and as a result, the polymer film can be effectively formed on multiple anode bodies uniformly and in the same amount of time.
Yield in the same lot is improved.

また定電流の電解重合は定電流素子全使用するため、一
つの定電圧電源に定電流素子をそれぞれ並列に接続する
だけで個別に定電流を得ることができ、その結果、定電
流電源を複数個接続する必要はなくなるため、装置が簡
略化され、製造コストを低減することができる。
In addition, constant current electrolytic polymerization uses all constant current elements, so it is possible to obtain a constant current individually by simply connecting each constant current element in parallel to one constant voltage power supply.As a result, multiple constant current power supplies can be used Since there is no need for individual connections, the device can be simplified and manufacturing costs can be reduced.

実施例 以下、本発明の一実施例を添付図面にもとづいて説明す
る。
Embodiment Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings.

第1図は本発明の実施例に使用した陽極体素子の構造を
斜視図で示し友ものである。
FIG. 1 is a perspective view showing the structure of an anode body element used in an embodiment of the present invention.

まず、塩酸などで電解エツチングされた弁金属であるア
ルミニウム箔からなる7wX10■の陽極体1の一部に
、アルミニウムよりなる陽極引出しリード線2を°溶接
し、アジピン酸アンモニウム3%の水溶液中で70Vの
定電圧化成によって陽極化成皮膜を形成し念。
First, an anode lead wire 2 made of aluminum is welded to a part of a 7w x 10cm anode body 1 made of aluminum foil, which is a valve metal electrolytically etched with hydrochloric acid, etc., and placed in an aqueous solution of 3% ammonium adipate. The anodic chemical coating was formed using 70V constant voltage chemical conversion.

次に、30wt%の酢酸マンガン水溶液に前記陽極体1
を浸漬し、166℃で10分間熱分解して、前記陽極化
底皮膜上にマンガン酸化物層3f:形成し、さらに熱分
解反応で破壊された化成皮膜欠陥部を修復するtめに、
再びアジピン酸アンモニウム3%の化成液中で50Vf
t印加して再化成を行った。そして陽極体1の表面に形
成されたマンガン酸化物層3のX線回折による結晶構造
を解析し念結果、大部分は酢酸マンガンが熱分解せずに
残存してい九が、形成され念マンガン酸化物は主にMn
20. 、 MnOであることが分かつ九。
Next, the anode body 1 was added to a 30 wt% manganese acetate aqueous solution.
in order to form a manganese oxide layer 3f on the anodized bottom film by immersing it in water and pyrolyzing it at 166°C for 10 minutes, and repairing the defective part of the chemical conversion film destroyed by the pyrolysis reaction.
Again at 50Vf in a chemical solution containing 3% ammonium adipate.
Reconstitution was performed by applying t. The crystal structure of the manganese oxide layer 3 formed on the surface of the anode body 1 was analyzed by X-ray diffraction, and it was found that most of the manganese acetate remained without being thermally decomposed. Mainly Mn
20. , which was found to be MnO.

このようにして作製した陽極体素子を第2図に示すよつ
な構造の重合装置音用いて、10個同時に導電性高分子
の電解重合を行う九。すなわち、ポリアセタール樹脂製
の容器にニッケル陰極板4を敷き詰めた構造の重合槽6
中に、支持電解質としてトリイソプロピルナフタレンス
ルフオン酸ナトリウム0.1モル/リットル、ポリアク
リル酸Q、2wt%、モノマーとしてビロール0.9モ
ル/リットルの水溶液からなる重合液6を満九し、そし
てこの重合液e中にマンガン酸化物層3を形成した陽極
体1を10個−列に並べて浸漬し友。そして、この陽極
体1の表面のマンガン酸化物層3に軽く接触させるよう
に配置したステンレス電極Tに、定電流素子8(石塚電
子株式会社製定電流ダイオード)をそれぞれ−個ずつス
テンレス電極7と直列に接続し、かつ定電流素子8同志
は並列になるようにして、ニッケル陰極板4との間に定
電圧電源9を接続した回路を構成した。
Using a polymerization apparatus having the structure shown in FIG. 2, 10 of the anode elements thus produced were simultaneously subjected to electrolytic polymerization of conductive polymers. That is, a polymerization tank 6 has a structure in which a container made of polyacetal resin is lined with nickel cathode plates 4.
Inside, a polymerization solution 6 consisting of an aqueous solution of 0.1 mol/liter of sodium triisopropylnaphthalene sulfonate as a supporting electrolyte, 2 wt % of polyacrylic acid Q, and 0.9 mol/liter of virol as a monomer, and Ten anode bodies 1 having manganese oxide layers 3 formed thereon were lined up in rows and immersed in this polymerization liquid e. Then, constant current elements 8 (constant current diodes manufactured by Ishizuka Electronics Co., Ltd.) are connected in series with the stainless steel electrodes 7 to the stainless steel electrodes T arranged so as to lightly contact the manganese oxide layer 3 on the surface of the anode body 1. A circuit was constructed in which a constant voltage power source 9 was connected between the nickel cathode plate 4 and the constant current elements 8 in parallel.

第3図はこの重合装置の回路を示す回路図である。この
回路に電源電圧1oVを印加することにより、各陽極体
1には定電流が流れ、陽極体1の表面全体にポリピロー
ルの導電性高分子膜が完全に覆いつくすまで電解重合し
て、固体電解質層10を形成した。
FIG. 3 is a circuit diagram showing the circuit of this polymerization apparatus. By applying a power supply voltage of 1oV to this circuit, a constant current flows through each anode body 1, and electrolytic polymerization occurs until the conductive polymer film of polypyrrole completely covers the entire surface of the anode body 1, resulting in a solid electrolyte. Layer 10 was formed.

さらに、この導電性高分子膜の固体電解質層1oの上に
、グラファイト層11.銀ペイント層12をそれぞn塗
布し、かつ乾燥することによって順次形成し、さらに銀
ペイント、層12の上にリード線を半田付けすることに
より陰極リード線を引き出した。
Further, on the solid electrolyte layer 1o of this conductive polymer membrane, a graphite layer 11. Silver paint layers 12 were sequentially formed by applying and drying them, and the cathode lead wires were drawn out by soldering the lead wires onto the silver paint layers 12.

第4図は本発明の実施例の固体電解コンデンサ素子の構
成を示す断面図である。
FIG. 4 is a sectional view showing the structure of a solid electrolytic capacitor element according to an embodiment of the present invention.

第2図および第3図に示した重合装置の定を流累子8の
定格値を、11ム(実施例1)、21ム(実施例2)、
61ム(実施例3)、1011ム(実施例4)、151
1ム(実施例5)と6水準の電流値で検討し、それぞれ
固体電解コンデンサ素子を作製し友。また、定電流素子
8を挿入せずに両極間に2vの定電圧を印加して、定電
圧重合で固体電解コンデンサ素子を作製したものを比較
例とした。
The values of the polymerization apparatus shown in FIGS. 2 and 3 are 11 mm (Example 1), 21 mm (Example 2),
61mu (Example 3), 1011mu (Example 4), 151mu
1 μm (Example 5) and 6 levels of current values, and solid electrolytic capacitor elements were fabricated for each. In addition, as a comparative example, a solid electrolytic capacitor element was manufactured by constant voltage polymerization by applying a constant voltage of 2 V between the two electrodes without inserting the constant current element 8.

このようにして形成し次固体電解コンデンサ素子を20
Vで2時間エージング処理し友後、定格電圧の初期特性
を測定した。重合に要した時間と固体電解コンデンサの
初期特性を第1表に示す。
After forming the solid electrolytic capacitor element in this way, 20
After aging at V for 2 hours, the initial characteristics at rated voltage were measured. Table 1 shows the time required for polymerization and the initial characteristics of the solid electrolytic capacitor.

(以 下 余 白) 使用したアルミニウム電極箔の電解液中での容量は6.
8μFである几め、容量達成率は41.2%〜91.2
%となる。
(Left below) The capacity of the aluminum electrode foil used in the electrolyte was 6.
8 μF, capacity achievement rate is 41.2% to 91.2
%.

第1表より明らかなよりに、定電流素子8の定格が10
mA以下の実施例1〜4では重合時の歩留まりがいずれ
の場合も100%となジ、比較例の定電圧重合に比べ、
重合時での重合膜被覆不良発生が完全に無くなっている
ことが分かる。またこの場合には容量達成率も76.4
%以上であった。
As is clear from Table 1, the rating of constant current element 8 is 10
In Examples 1 to 4 below mA, the yield during polymerization was 100% in all cases, compared to the constant voltage polymerization of the comparative example.
It can be seen that the occurrence of poor polymer film coating during polymerization is completely eliminated. In this case, the capacity achievement rate is also 76.4.
% or more.

ま九、定電流素子8の定格が大きい程重合時間は短くな
る傾向にあるが、容量達成率は低下し、かつtanδも
増大する傾向が認められ、実施例6の1511ムでは著
しく容量達成率が低下する傾向を示し之。これは、重合
時の電流が大きいと導電性高分子の生長速度が著しく速
くなるために、緻密な重合膜を生成せず、陽極体1のエ
ツチングビット中に均一に生長しないで、表面上をいち
早く覆ってしまうために起こっていると推定される。
(9) The higher the rating of the constant current element 8, the shorter the polymerization time, but the capacity achievement rate decreased and the tan δ also tended to increase. shows a tendency to decrease. This is because when the current during polymerization is large, the growth rate of the conductive polymer becomes extremely fast, so a dense polymer film is not formed, the etching bit of the anode body 1 is not uniformly grown, and the conductive polymer does not grow uniformly on the surface. It is presumed that this is happening to cover it quickly.

従うて、定電流で重合する場合には101ム以下の比較
的小さな電流で電解重合することが必要である。
Therefore, when polymerizing with a constant current, it is necessary to perform electrolytic polymerization with a relatively small current of 101 μm or less.

なお、上記実施例ではマンガン酸化物層3の炸裂に酢酸
マンガン水溶g!を使用し九個で説明したが、そのほか
、硝酸マンガンや硫酸マンガンなどのマンガン塩を使用
しても、同様にマンガン酸化物層3を形成することがで
きる。また導電性高分子の七ツマ−としてビロール、支
持電解質としてトリイソプロピルナフタレンスルフオン
酸ナトリウム等を使用した例で説明し九が、モノマーに
チオフェンやフランまたはその誘導体を、支持電解質と
してその他の塩を使用し九場合も同様の傾向となる。
In addition, in the above embodiment, the manganese acetate aqueous solution g! The manganese oxide layer 3 can be similarly formed using manganese salts such as manganese nitrate and manganese sulfate. In addition, an example in which virol is used as a conductive polymer and sodium triisopropylnaphthalene sulfonate is used as a supporting electrolyte is used. A similar trend is observed when using nine.

発明の効果 上記実施例の説明から明らかなように本発明によれば、
複数の陽極体に同時に電解重合により導電性高分子の固
体電解質層を形成する場合、重合工程のばらつきがなく
なジ、その結果、この重合工程での歩留まりが著しく向
上するだけでなく、装置の簡略化により製造コストを低
減することができるという効果を有するものである。
Effects of the Invention As is clear from the description of the above embodiments, according to the present invention,
When forming conductive polymer solid electrolyte layers on multiple anode bodies simultaneously by electrolytic polymerization, there is no variation in the polymerization process, and as a result, not only the yield in this polymerization process is significantly improved, but also the equipment This simplification has the effect of reducing manufacturing costs.

すなわち、定電流素子による定電流重合工程を設けてい
る之め、複数の陽極体のそれぞれに強制的に一定電流が
流れるように、印加される電圧は変化することになり、
その結果、従来のような定電圧重合法の場合のように、
陽極体表面へのマンガン酸化物などの金属酸化物形成時
の表面状態のばらつきが、陽極体表面に生長する重合膜
の生長速度に影響することはなくなり、これにより、複
数の陽極体にそれぞれ均一に同じ時間で重合膜を効果的
に形成することができる。
In other words, since a constant current polymerization step using a constant current element is provided, the applied voltage changes so that a constant current is forced to flow through each of the plurality of anode bodies.
As a result, as in the case of conventional constant voltage polymerization method,
Variations in the surface condition when metal oxides such as manganese oxide are formed on the anode body surface no longer affect the growth rate of the polymer film that grows on the anode body surface, and as a result, each anode body can be uniformly coated on each anode body. A polymeric film can be effectively formed in the same amount of time.

ま比定電流の電解重合は定電流素子を使用するため、一
つの定電圧電源に定電流素子をそれぞれ並列に・接続す
るだけで個別に定電流を得ることができ、その結果、定
電流電源を複数個接続する必要はなくなる念め、装置が
簡略化され、製造コストを低減することができる。
Since constant current electrolytic polymerization uses constant current elements, it is possible to obtain a constant current individually by simply connecting each constant current element in parallel to one constant voltage power supply. Since there is no need to connect multiple devices, the device is simplified and manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で用いた陽極体の構造を示す斜
視図、第2図は本発明の実施例で使用し九重合装置の構
造を示す斜視図2第3図は第2図に示し九重合装置の回
路図、第4図は本発明の実施例の固体電解コンデンサ素
子の構成を示す断面図である。 1・・・・・・陽極体、3・・・・・・マンガン酸化物
層(金属酸化物層)、8・・・・・・定電流素子、9・
・・・・・定電圧電源%10・・・・・・固体電解質層
、11・・・・・・グラファイト層、12・・・・・・
銀ペイント層。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名第1
図      /−75J径イネ 第 2 図           U一定1代素子7 
   °゛−* t % t n。 8 ・定1テ罠素子 q・一定を五1m 第 3 因
FIG. 1 is a perspective view showing the structure of an anode body used in an example of the present invention, FIG. 2 is a perspective view showing the structure of a nine-polymerization apparatus used in an example of the present invention, and FIG. 4 is a circuit diagram of a nine-polymerization apparatus shown in FIG. 1... Anode body, 3... Manganese oxide layer (metal oxide layer), 8... Constant current element, 9...
... Constant voltage power supply %10 ... Solid electrolyte layer, 11 ... Graphite layer, 12 ...
Silver paint layer. Name of agent: Patent attorney Shigetaka Awano and 1 other person 1st
Figure /-75J diameter rice Figure 2 U constant 1st generation element 7
°゛−*t%tn. 8 ・Constant 1 Te trap element q ・Constant 51m 3rd factor

Claims (5)

【特許請求の範囲】[Claims] (1)弁金属よりなる複数の陽極体の表面に陽極化成皮
膜を形成する工程と、前記陽極化成皮膜上の陰極を取り
出す部分全体に、金属酸化物層を形成する工程と、前記
金属酸化物層の上に複素環式化合物を繰り返し単位とす
る導電性高分子の固体電解質層を定電流の電解重合によ
り形成する工程と、グラファイト層、銀ペイント層を順
次形成する工程とを備えた固体電解コンデンサの製造方
法。
(1) A step of forming an anode chemical conversion film on the surface of a plurality of anode bodies made of valve metal, a step of forming a metal oxide layer on the entire portion of the anode chemical conversion film from which the cathode is taken out, and a step of forming a metal oxide layer on the entire portion of the anode chemical conversion film from which the cathode is extracted; A solid electrolyte comprising a step of forming a solid electrolyte layer of a conductive polymer having a repeating unit of a heterocyclic compound on the layer by constant current electrolytic polymerization, and a step of sequentially forming a graphite layer and a silver paint layer. Method of manufacturing capacitors.
(2)金属酸化物層はマンガン酸化物を主成分として含
有するものであることを特徴とする特許請求の範囲第1
項記載の固体電解コンデンサの製造方法。
(2) Claim 1, characterized in that the metal oxide layer contains manganese oxide as a main component.
1. Method for manufacturing a solid electrolytic capacitor as described in .
(3)定電流の電解重合は、一つの陽極体に対して一つ
以上の定電流素子を直列に接続し、複数の陽極体に同時
に導電性高分子の固体電解質層を形成することを特徴と
する特許請求の範囲第1項記載の固体電解コンデンサの
製造方法。
(3) Constant current electrolytic polymerization is characterized by connecting one or more constant current elements in series to one anode body to simultaneously form a solid electrolyte layer of conductive polymer on multiple anode bodies. A method for manufacturing a solid electrolytic capacitor according to claim 1.
(4)複素環式化合物がピロール,チオフェン,フラン
のいずれか、またはそれらの誘導体である特許請求の範
囲第1項記載の固体電解コンデンサの製造方法。
(4) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the heterocyclic compound is pyrrole, thiophene, furan, or a derivative thereof.
(5)一つの陽極体に対して一つ以上の定電流素子を直
列に接続する定電流の電解重合において、電流容量の合
計を10mA以下とした特許請求の範囲第3項記載の固
体電解コンデンサの製造方法。
(5) The solid electrolytic capacitor according to claim 3, in which the total current capacity is 10 mA or less in constant current electrolytic polymerization in which one or more constant current elements are connected in series to one anode body. manufacturing method.
JP1119001A 1989-05-12 1989-05-12 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP2836098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1119001A JP2836098B2 (en) 1989-05-12 1989-05-12 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1119001A JP2836098B2 (en) 1989-05-12 1989-05-12 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH02298010A true JPH02298010A (en) 1990-12-10
JP2836098B2 JP2836098B2 (en) 1998-12-14

Family

ID=14750542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1119001A Expired - Fee Related JP2836098B2 (en) 1989-05-12 1989-05-12 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2836098B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG84567A1 (en) * 1999-02-17 2001-11-20 Matsushita Electric Ind Co Ltd Method of manufacturing solid electrolytic capacitor, and apparatus of manufacturing the same
WO2005006360A3 (en) * 2003-07-10 2005-03-31 Showa Denko Kk Jig for producing capacitor, production method for capacitor and capacitor
WO2006028286A1 (en) * 2004-09-09 2006-03-16 Showa Denko K.K. Reaction vessel for manufacturing capacitor element, method for manufacturing capacitor element, capacitor element, and capacitor
WO2006049317A1 (en) * 2004-11-04 2006-05-11 Showa Denko K.K. Capacitor manufacturing jig, capacitor manufacturing device, and capacitor manufacturing method
WO2011077950A1 (en) * 2009-12-21 2011-06-30 昭和電工株式会社 Reaction container for manufacturing capacitor element, and method for manufacturing capacitor element
WO2012035899A1 (en) 2010-09-17 2012-03-22 昭和電工株式会社 Solid electrolytic capacitor element, method for producing same, and tool for producing said solid electrolytic capacitor element
US8559163B2 (en) 2004-09-09 2013-10-15 Showa Denko K. K. Reaction vessel for producing capacitor element, production method for capacitor element, capacitor element and capacitor
JP2014053387A (en) * 2012-09-05 2014-03-20 Nippon Chemicon Corp Manufacturing method of solid electrolytic capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146328U (en) * 1981-03-09 1982-09-14
JPS63158829A (en) * 1986-12-23 1988-07-01 日本カ−リツト株式会社 Solid electrolytic capacitor
JPS63252415A (en) * 1987-04-01 1988-10-19 日通工株式会社 Array type solid electrolytic capacitor
JPS6433736U (en) * 1987-08-24 1989-03-02

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146328U (en) * 1981-03-09 1982-09-14
JPS63158829A (en) * 1986-12-23 1988-07-01 日本カ−リツト株式会社 Solid electrolytic capacitor
JPS63252415A (en) * 1987-04-01 1988-10-19 日通工株式会社 Array type solid electrolytic capacitor
JPS6433736U (en) * 1987-08-24 1989-03-02

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG84567A1 (en) * 1999-02-17 2001-11-20 Matsushita Electric Ind Co Ltd Method of manufacturing solid electrolytic capacitor, and apparatus of manufacturing the same
WO2005006360A3 (en) * 2003-07-10 2005-03-31 Showa Denko Kk Jig for producing capacitor, production method for capacitor and capacitor
JP2005244154A (en) * 2003-07-10 2005-09-08 Showa Denko Kk Fixture for use in capacitor manufacture, method for manufacturing capacitor, and capacitor
US7819928B2 (en) 2003-07-10 2010-10-26 Showa Denko K.K. Jig for producing capacitor, production method for capacitor and capacitor
JP2010245555A (en) * 2003-07-10 2010-10-28 Showa Denko Kk Production method of capacitor
JP4717824B2 (en) * 2004-09-09 2011-07-06 昭和電工株式会社 Reaction vessel for manufacturing capacitor element, method for manufacturing capacitor element, capacitor element and capacitor
WO2006028286A1 (en) * 2004-09-09 2006-03-16 Showa Denko K.K. Reaction vessel for manufacturing capacitor element, method for manufacturing capacitor element, capacitor element, and capacitor
US8559163B2 (en) 2004-09-09 2013-10-15 Showa Denko K. K. Reaction vessel for producing capacitor element, production method for capacitor element, capacitor element and capacitor
JPWO2006028286A1 (en) * 2004-09-09 2008-05-08 昭和電工株式会社 Reaction vessel for manufacturing capacitor element, method for manufacturing capacitor element, capacitor element and capacitor
US7837185B2 (en) 2004-11-04 2010-11-23 Showa Denko K.K. Jig for producing capacitors, apparatus for producing capacitors and method for producing capacitors
WO2006049317A1 (en) * 2004-11-04 2006-05-11 Showa Denko K.K. Capacitor manufacturing jig, capacitor manufacturing device, and capacitor manufacturing method
WO2011077950A1 (en) * 2009-12-21 2011-06-30 昭和電工株式会社 Reaction container for manufacturing capacitor element, and method for manufacturing capacitor element
JP4778126B2 (en) * 2009-12-21 2011-09-21 昭和電工株式会社 Reaction vessel for manufacturing capacitor element and method for manufacturing capacitor element
US8792225B2 (en) 2009-12-21 2014-07-29 Showa Denko K.K. Partitioned reaction container for manufacturing capacitor element including openable and closable passage
WO2012035899A1 (en) 2010-09-17 2012-03-22 昭和電工株式会社 Solid electrolytic capacitor element, method for producing same, and tool for producing said solid electrolytic capacitor element
US9224538B2 (en) 2010-09-17 2015-12-29 Showa Denko K.K. Solid electrolytic capacitor element, method for producing same, and tool for producing said solid electrolytic capacitor element
JP2014053387A (en) * 2012-09-05 2014-03-20 Nippon Chemicon Corp Manufacturing method of solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2836098B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
US4943892A (en) Solid electrolytic capacitor and method for manufacturing the same
US5369547A (en) Capacitor
JP3906043B2 (en) Manufacturing method of solid electrolytic capacitor
US20090027834A1 (en) Solid electrolyte capacitor
JPH02298010A (en) Manufacture of solid electrolytic capacitor
EP0477584B1 (en) Process for manufacturing a solid state electrolytic capacitor
US5189770A (en) Method of making solid electrolyte capacitor
US20020191371A1 (en) Edge formation process for aluminum solid electrolytic capacitor
US8559163B2 (en) Reaction vessel for producing capacitor element, production method for capacitor element, capacitor element and capacitor
JPH0682592B2 (en) Method for manufacturing solid electrolytic capacitor
JP2005159154A (en) Manufacturing method of solid electrolytic capacitor
JP2668975B2 (en) Method for manufacturing solid electrolytic capacitor
US20060084768A1 (en) Method and apparatus for producing conductive polymer
JPH0434915A (en) Manufacture of solid electrolytic capacitor
JP2007103468A (en) Electrolytic capacitor and manufacturing method thereof
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JPH0266922A (en) Manufacture of solid electrolytic capacitor
JPH0312450B2 (en)
JPH04137517A (en) Manufacture of solid electrolytic capacitor
JPH02132815A (en) Solid electrolytic capacitor and manufacture thereof
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0748454B2 (en) Method for manufacturing solid electrolytic capacitor
JPH02298011A (en) Solid electrolytic capacitor
JPH01310529A (en) Manufacture of solid electrolyte capacitor
JPH03285321A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees