JPH02297986A - Formation of uniform beam, and transmission and irradiation devices for uniform beam - Google Patents

Formation of uniform beam, and transmission and irradiation devices for uniform beam

Info

Publication number
JPH02297986A
JPH02297986A JP11818789A JP11818789A JPH02297986A JP H02297986 A JPH02297986 A JP H02297986A JP 11818789 A JP11818789 A JP 11818789A JP 11818789 A JP11818789 A JP 11818789A JP H02297986 A JPH02297986 A JP H02297986A
Authority
JP
Japan
Prior art keywords
laser
prism
workpiece
uniform
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11818789A
Other languages
Japanese (ja)
Inventor
Kozo Adachi
足立 耕造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP11818789A priority Critical patent/JPH02297986A/en
Publication of JPH02297986A publication Critical patent/JPH02297986A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To assure effective laser transmission by making uniform laser beam intensity distribution by a multi-face prism. CONSTITUTION:Laser light emanating from a laser oscillator device 1 is made uniform by a multi-face prism 6 after passing through an exit window 5 and a cylindrical lens 9. Further, the laser light enters an optical fiber 4 for transmission after passing through an aperture 2 and a fiber holder 3. Herein, provided Gaussian distribution laser light enters a two-face prism 6, for example, light beams existent between lines A and B and between lines B and C are refracted inwardly on slanting surfaces 6a, 6b of the prism 6 and made uniform because the characteristics of the surfaces AB and CB are synthesized at a point D separated a distance x therefrom.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はレーザ発生装置で発生したレーザを均一化する
方法並びに均一化したビームの伝送方法および照射装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for uniformizing laser beams generated by a laser generator, a method for transmitting a uniform beam, and an irradiation apparatus.

r従来の技術」 レーザを伝送する場合、第10図に示すように、エキシ
マレーザ装置などのレーザ発生装置(1)で発生したレ
ーザをアパーチャ(2)、ファイバホルダ(3)を介し
て光ファイバ(4)に入射し、この光ファイバ(4)で
目的の位置まで導光する。
4. Prior Art When transmitting a laser, as shown in FIG. (4), and is guided to the target position by this optical fiber (4).

「発明が解決しようとする課題」 しかるに、レーザ発生装!(1)からのレーザを光ファ
イバに入射している段階ではレーザビームの強度分布は
第11図または第12図のように均一化されていない、
このうち、第11図(a)は、光ファイバへの入射端面
を示し、同(b)は横方向(主電極間の放電方向)の分
布、同(c)は縦方向(主電極間の放電と垂直の方向)
の分布である。(b)に示す横方向の分布は略均一であ
るが、(e)に示す縦方向の分布は中心が強く周縁の弱
いガウス分布様(ガウス分布に近似した分布、以下同じ
)をなしている。また、第12図は、第11図同様、(
a)が入射端面、(b)が横方向(主電極間の放電方向
)の分布、(C)が縦方向(主電極間の放電と垂直の方
向)の分布であり、この例では縦横の両方向ともガウス
分布様をなしている。
``Problems to be solved by the invention'' However, a laser generator! At the stage when the laser from (1) is being input into the optical fiber, the intensity distribution of the laser beam is not uniform as shown in FIGS. 11 or 12.
Of these, Figure 11 (a) shows the incident end face to the optical fiber, Figure 11 (b) shows the distribution in the horizontal direction (discharge direction between the main electrodes), and Figure 11 (c) shows the distribution in the vertical direction (discharge direction between the main electrodes). direction perpendicular to the discharge)
distribution. The horizontal distribution shown in (b) is approximately uniform, but the vertical distribution shown in (e) has a Gaussian distribution with a strong center and weak edges (distribution approximating a Gaussian distribution, the same applies hereinafter). . Also, FIG. 12, like FIG. 11, (
a) is the incident end surface, (b) is the distribution in the horizontal direction (discharge direction between the main electrodes), and (C) is the distribution in the vertical direction (direction perpendicular to the discharge between the main electrodes). It has a Gaussian distribution in both directions.

このような不均一なレーザ強度分布をなしているレーザ
を光ファイバに導光すると、入射強度の強い中心部分が
損傷したり、破損したりする。また、レーザ強度分布が
不均一なまま伝送して被加工物に照射し加工すると、被
加工物に加工むらが生じ加工個所がきれいに仕上らない
という問題があった。
If a laser with such a non-uniform laser intensity distribution is guided into an optical fiber, the central portion where the incident intensity is strong will be damaged or broken. Furthermore, if a workpiece is irradiated and processed with a non-uniform laser intensity distribution transmitted, there is a problem in that uneven processing occurs on the workpiece and the processed area is not finished neatly.

本発明はレーザ発生装置で発生したレーザを均一化する
方法並びに均一化して伝送する装置および均一化したレ
ーザ加工装置を得ることを目的とするものである。
The object of the present invention is to provide a method for uniformizing the laser beam generated by a laser generator, a device for transmitting the uniform laser beam, and a uniform laser processing device.

「課題を解決するための手段」 本発明はレーザの進行方向に対して直角な面内のレーザ
ビーム強度が不均一な分布である場合、例えばレーザビ
ーム強度が縦横のいずれか一方向のみガウス分布様で、
他方向が略均一な分布である場合においては、レーザの
光路中に2面プリズムを介在させ、また、レーザビーム
強度が縦横のいずれもガウス分布様である場合において
は、レーザの光路中に4面プリズムを介在するようにし
たビームの均一化方法である。
"Means for Solving the Problems" The present invention is applicable to cases where the laser beam intensity in a plane perpendicular to the direction of laser movement is non-uniform, for example, the laser beam intensity has a Gaussian distribution only in one of the vertical and horizontal directions. Mr.
If the distribution is approximately uniform in the other direction, a two-sided prism is interposed in the laser optical path, and if the laser beam intensity has a Gaussian distribution both vertically and horizontally, a four-sided prism is inserted in the laser optical path. This is a beam uniformization method using a planar prism.

「作用」 レーザの強度分布が、横方向には略平坦で、縦方向には
ガウス分布様を示しているような場合、多面プリズムは
2つの斜面を形成した2面プリズムが用いられる。この
2面プリズムにガウス分布様のレーザが入射したものと
すると、一方の半分は一方の斜面で一方へ屈折され、ま
た他方の半分は他方の斜面で他方へ屈折される。この結
果、ある距離の点で互いに合成されて略均一化される。
"Operation" When the intensity distribution of the laser is substantially flat in the horizontal direction and exhibits a Gaussian distribution in the vertical direction, a two-sided prism with two slopes is used as the polygonal prism. When a Gaussian distribution-like laser is incident on this difaced prism, one half is refracted in one direction by one slope, and the other half is refracted in the other direction by the other slope. As a result, they are combined with each other at points at a certain distance and are made substantially uniform.

つぎに、レーザの強度分布が縦方向と横方向ともにガウ
ス分布様である場合には、多面プリズムは4つの斜面を
有する4面プリズムが用いられる。
Next, when the intensity distribution of the laser is Gaussian distribution-like in both the vertical and horizontal directions, a four-sided prism having four slopes is used as the polygonal prism.

この4面プリズムによって、縦方向と横方向とも略平均
−化される。
This four-sided prism substantially averages out both the vertical and horizontal directions.

「実施例」 以下、本発明の一実施例を図面に基き説明する。"Example" Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図において、(1)はXeClエキシマレーザ(波
長308nm)などのレーザ発生装置で、このレーザ発
生装置(1)内で発生したレーザは外部の2枚のシリン
ドリカルレンズ(9)により例えばlX1r+++の正
方形に絞られ、均−他用の多面プリズム(6)に入射す
る。この多面プリズム(6)は、レーザがどのような強
度分布をなしているかによってその形状が決定される。
In Fig. 1, (1) is a laser generator such as a XeCl excimer laser (wavelength 308 nm). The light is condensed into a square shape and enters a polygonal prism (6) for equalization. The shape of this polygonal prism (6) is determined by the intensity distribution of the laser.

例えば、レーザの強度分布が第4図の点線で示すように
、横方向には略平坦で、縦方向にはガウス分布様を示し
ているような場合、多面プリズム(6)は第3図に示す
ように2つの斜面(6a) (6b)を形成した2面プ
リズムが用いられる。
For example, when the laser intensity distribution is approximately flat in the horizontal direction and Gaussian distribution in the vertical direction, as shown by the dotted line in Figure 4, the polygonal prism (6) is As shown, a two-sided prism with two slopes (6a) and (6b) is used.

この2面プリズム(6)に第2図に示すようなガウス分
布様のレーザが入射したものとすると、ラインAからラ
インB部分までは2面レンズ(6)の一方の斜面(6a
)で図中下方へ屈折され、またラインCからラインB部
分までは他方の斜面(6b)で図中上方へ屈折される。
Assuming that a laser with a Gaussian distribution as shown in Fig. 2 is incident on this difaced prism (6), from line A to line B, one slope (6a
), and the portion from line C to line B is refracted upward in the figure at the other slope (6b).

この結果、点線で示したAB面特性線とCB面特性線が
略一致した距離Xの点りで互いに合成されて実線のよう
に略均一化される。すなわち、lX1a+mの正方形で
入射したレーザは、0.5Xl+u+の長方形の均一化
されたレーザとなって出力する。この均一化された点り
に相当する位置に直径400μmアパーチャ(2)を介
して直径400μmの光ファイバ(4)の入射端のファ
イバホルダ(3)を位置させる。前記アパーチャ(2)
では0.5X1mmの長方形のレーザを直径400μm
に整形し、直径400μlの光ファイバ(4)に導光さ
れる。
As a result, the AB surface characteristic line and the CB surface characteristic line shown by dotted lines are combined with each other at a point at a distance X that substantially coincides with each other, and are made substantially uniform as shown by the solid line. In other words, a laser beam incident with a square shape of 1X1a+m is output as a uniform laser having a rectangular shape of 0.5X1+u+. A fiber holder (3) at the input end of an optical fiber (4) having a diameter of 400 μm is positioned at a position corresponding to this uniform spot through an aperture (2) having a diameter of 400 μm. Said aperture (2)
Now, we will use a 0.5x1mm rectangular laser with a diameter of 400μm.
The light is guided into an optical fiber (4) with a diameter of 400 μl.

つぎに、レーザの強度分布が第7図の点線で示すように
縦方向と横方向ともにガウス分布様である場合には、多
面プリズム(6)は第6図に示すように4つの斜面(6
a) (6b) (6c) (6d)を有する4面プリ
ズム(6)が用いられる。この4面プリズム(6)によ
って、第5図に示すように、縦方向と横方向とも略均一
化される。すなわち、例えばlX1mmの正方形で入射
したレーザは0.5 X O,5!1mlの均一化され
た正方形のレーザとなって出力する。この均一化された
レーザもアパーチャ(2)により直径400μmに整形
され、直径400μmの光ファイバ(4)に導光される
Next, when the intensity distribution of the laser is Gaussian distribution-like in both the vertical and horizontal directions as shown by the dotted line in FIG. 7, the polygonal prism (6) has four slopes (6
a) A four-sided prism (6) having (6b) (6c) (6d) is used. As shown in FIG. 5, this four-sided prism (6) provides substantially uniformity in both the vertical and horizontal directions. That is, for example, a laser incident in a square of 1×1 mm is output as a uniform square laser of 0.5×O, 5!1 ml. This uniform laser is also shaped into a diameter of 400 μm by an aperture (2) and guided to an optical fiber (4) with a diameter of 400 μm.

つぎに、第8図および第9図は平坦化したレーザを被加
工物(7)に照射する例を示すものである。
Next, FIGS. 8 and 9 show an example in which the workpiece (7) is irradiated with a flattened laser.

このうち第8図はレーザ発生装置(1)で発生したレー
ザを光ファイバ(4)で導光し、先端から被加工物(7
)に照射する場合、光ファイバ(4)の出射側に、レー
ザの強度分布に応じて前記第3図または第6図に示すよ
うな多面プリズム(6)を介在する。
In Fig. 8, the laser generated by the laser generator (1) is guided through an optical fiber (4), and the tip of the laser is guided from the tip to the workpiece (7).
), a polygonal prism (6) as shown in FIG. 3 or FIG. 6 is interposed on the output side of the optical fiber (4) depending on the intensity distribution of the laser.

このとき、多面プリズム(6)から被加工物(7)まで
の距離(X)は第2図または第5図と同様とする。
At this time, the distance (X) from the polygonal prism (6) to the workpiece (7) is the same as in FIG. 2 or FIG. 5.

第9図は、レーザを反射ミラー(8)で反射して被加工
物(7)に照射する場合を示し、この場合には反射ミラ
ー(8)と被加工物(7)との間に多面プリズム(6)
を介在させる。
Figure 9 shows a case where the laser is reflected by a reflecting mirror (8) and irradiated onto the workpiece (7). Prism (6)
intervene.

以上の装置による具体的加工例を説明する。A specific example of processing using the above apparatus will be explained.

レーザ発生装置(1)により例えば、KrFエキシマレ
ーザ(波長248r++++)を発生させ、被加工物(
7)としてポリイミドフィルムに直径50μ閣の孔をあ
ける場合には第9図に示す装置が用いられる。すなわち
、KrFエキシマレーザ(20X 6mm)は石英から
なる30 X 30■の多面プリズム(6)の中央部分
をビームが通過するように配置する。前記多面プリズム
(6)の頂角は166度とすると、ビームが均一化され
る距離(X)は約50mmである。この点でのビームサ
イズは20 X 3mmと最初の大きさの172となる
。前記均一化された距離(X)上に、直径50μ―の多
くの孔のあいたマスクを介在して被加工物である厚さ1
2.5μ朧のポリイミドフィルム(7)を配置する。
For example, a KrF excimer laser (wavelength 248r++++) is generated by the laser generator (1), and the workpiece (
7) In the case of making holes with a diameter of 50 μm in a polyimide film, the apparatus shown in FIG. 9 is used. That is, the KrF excimer laser (20 x 6 mm) is arranged so that the beam passes through the center of a 30 x 30 inch polygonal prism (6) made of quartz. Assuming that the apex angle of the polygonal prism (6) is 166 degrees, the distance (X) over which the beam is made uniform is about 50 mm. The beam size at this point is 20 x 3 mm, which is the initial size of 172 mm. On the uniform distance (X), a mask with many holes of 50μ in diameter is interposed to form a workpiece with a thickness of 1
A 2.5μ hazy polyimide film (7) is placed.

すると、レーザの照射された部分全体において、このポ
リイミドフィルム(7)にはマスクの孔がきれいにパタ
ーン転写されて孔があけられる。
Then, the hole pattern of the mask is clearly transferred to the polyimide film (7) in the entire area irradiated with the laser, and holes are formed.

また、生体組織に照射して治療等を行なう場合には、第
8図に示すように、KrFエキシマレーザを光ファイバ
(4)に導光してその先端で出射し、多面プリズム(6
)で均一化した後、被加工物である生体組織(7)へ照
射する。
In addition, when performing treatment by irradiating living tissue, the KrF excimer laser is guided to an optical fiber (4) and emitted from the tip of the optical fiber (4), as shown in FIG.
), and then irradiates the biological tissue (7) that is the workpiece.

「発明の効果」 本発明は上述のように多面プリズムによりレーザビーム
強度分布を均一化するようにしたので、光ファイバで導
光する際、部分的な損傷や破損がなく、効率よくレーザ
伝送ができる。また、被加工物に照射する際にもビーム
強度分布を整形してから照射するので、均一できれいな
加工ができる。
"Effects of the Invention" As described above, the present invention uses a polygonal prism to make the laser beam intensity distribution uniform, so when guiding light through an optical fiber, there is no local damage or breakage, and laser transmission is efficient. can. Furthermore, since the beam intensity distribution is shaped before irradiating the workpiece, uniform and clean processing can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるレーザ伝送装置の説明図、第2図
は2面プリズムによる均一化の説明図、第3図は2面プ
リズムの斜視図、第4図はレーザの強度分布図、第5図
は4面プリズムによる均一化の説明図、第6図は4面プ
リズムの斜視図、第7図はレーザの強度分布図、第8図
はレーザ照射装置の説明図、第9図はレーザ照射装置の
他の例の説明図、第10図は従来のレーザ伝送装置の説
明図、第11図および第12図はレーザの強度分布図で
ある。 (1)・・・レーザ発生装置、(2)・・・アパーチャ
、(3)・・・ファイバホルダ、(4)・・・光ファイ
バ、(5)・・・出射窓、(6)・・・多面プリズム、
(7)・・・被加工物、(8)・・・反射ミラー、(9
)・・・シリンドリカルレンズ。 出願人  浜松ホトニクス株式会社 第  1   図 第2図 種万回 第  5   図 領万問 第  8  図 第  9  図 第10図
Fig. 1 is an explanatory diagram of a laser transmission device according to the present invention, Fig. 2 is an explanatory diagram of uniformization using a dihedral prism, Fig. 3 is a perspective view of the dihedral prism, and Fig. 4 is a laser intensity distribution diagram. Figure 5 is an illustration of uniformity using a four-sided prism, Figure 6 is a perspective view of a four-sided prism, Figure 7 is a laser intensity distribution diagram, Figure 8 is an illustration of a laser irradiation device, and Figure 9 is a diagram of a laser beam. FIG. 10 is an explanatory diagram of another example of the irradiation device, FIG. 10 is an explanatory diagram of a conventional laser transmission device, and FIGS. 11 and 12 are laser intensity distribution diagrams. (1)... Laser generator, (2)... Aperture, (3)... Fiber holder, (4)... Optical fiber, (5)... Exit window, (6)...・Multi-sided prism,
(7)...Workpiece, (8)...Reflection mirror, (9
)...Cylindrical lens. Applicant Hamamatsu Photonics Co., Ltd. Figure 1 Figure 2 Types of Questions Number 5 Figures of Questions Number 8 Figure 9 Figure 10

Claims (6)

【特許請求の範囲】[Claims] (1)レーザの進行方向に対して直角な面内のレーザビ
ーム強度が不均一な分布である場合において、レーザの
光路中に多面プリズムを介在して整形するようにしたビ
ームの均一化方法。
(1) A method for making the beam uniform by interposing a polygonal prism in the laser optical path when the laser beam intensity in a plane perpendicular to the laser traveling direction is unevenly distributed.
(2)レーザビーム強度が縦横のいずれか一方向のみガ
ウス分布様で、他方向が略均一な分布である場合におい
て、レーザの光路中に2面プリズムを介在するようにし
た請求項(1)記載のビームの均一化方法。
(2) In the case where the laser beam intensity has a Gaussian distribution in either the vertical or horizontal direction and a substantially uniform distribution in the other direction, a dihedral prism is interposed in the optical path of the laser (claim (1)) Described beam homogenization method.
(3)レーザビーム強度が縦横のいずれもガウス分布様
である場合において、レーザの光路中に4面プリズムを
介在するようにした請求項(1)記載のビームの均一化
方法。
(3) The beam uniformization method according to claim (1), wherein a four-sided prism is interposed in the optical path of the laser when the laser beam intensity has a Gaussian distribution both vertically and horizontally.
(4)レーザ発生装置で発生したレーザを光ファイバで
伝送するようにした装置において、前記光ファイバのレ
ーザ入射側に多面プリズムを配置してなることを特徴と
する均一化したビームの伝送装置。
(4) A device for transmitting a laser generated by a laser generator through an optical fiber, characterized in that a polygonal prism is arranged on the laser incidence side of the optical fiber.
(5)レーザ発生装置で発生したレーザを光ファイバで
伝送して被加工物に照射し加工する装置において、前記
光ファイバのレーザ出射側と前記被加工物との間に多面
プリズムを配置してなることを特徴とする均一化したビ
ームの照射装置。
(5) In a device that transmits a laser generated by a laser generator through an optical fiber to irradiate and process a workpiece, a polygonal prism is disposed between the laser emission side of the optical fiber and the workpiece. A uniform beam irradiation device characterized by:
(6)レーザ発生装置で発生したレーザをミラーを介し
て被加工物に照射し加工する装置において、前記ミラー
と前記被加工物との間に多面プリズムを配置してなるこ
とを特徴とする均一化したビームの照射装置。
(6) A device for processing a workpiece by irradiating a laser generated by a laser generator through a mirror onto a workpiece, characterized in that a multifaceted prism is disposed between the mirror and the workpiece. A beam irradiation device.
JP11818789A 1989-05-11 1989-05-11 Formation of uniform beam, and transmission and irradiation devices for uniform beam Pending JPH02297986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11818789A JPH02297986A (en) 1989-05-11 1989-05-11 Formation of uniform beam, and transmission and irradiation devices for uniform beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11818789A JPH02297986A (en) 1989-05-11 1989-05-11 Formation of uniform beam, and transmission and irradiation devices for uniform beam

Publications (1)

Publication Number Publication Date
JPH02297986A true JPH02297986A (en) 1990-12-10

Family

ID=14730308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11818789A Pending JPH02297986A (en) 1989-05-11 1989-05-11 Formation of uniform beam, and transmission and irradiation devices for uniform beam

Country Status (1)

Country Link
JP (1) JPH02297986A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6179830B1 (en) 1996-07-24 2001-01-30 J. Morita Manufacturing Corporation Laser probe
JP2008134468A (en) * 2006-11-28 2008-06-12 Ricoh Opt Ind Co Ltd Condensing optical system and optical processing device
JP2014096580A (en) * 2012-10-17 2014-05-22 Christie Digital Systems Canada Inc Optical module interlock system
CN109521573A (en) * 2019-01-02 2019-03-26 苏州天准科技股份有限公司 The linear laser hot spot longitudinal light method of 3d linear laser scanning survey equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6179830B1 (en) 1996-07-24 2001-01-30 J. Morita Manufacturing Corporation Laser probe
DE19731730C2 (en) * 1996-07-24 2002-11-07 Morita Mfg J laser probe
JP2008134468A (en) * 2006-11-28 2008-06-12 Ricoh Opt Ind Co Ltd Condensing optical system and optical processing device
JP2014096580A (en) * 2012-10-17 2014-05-22 Christie Digital Systems Canada Inc Optical module interlock system
CN109521573A (en) * 2019-01-02 2019-03-26 苏州天准科技股份有限公司 The linear laser hot spot longitudinal light method of 3d linear laser scanning survey equipment

Similar Documents

Publication Publication Date Title
JP3178524B2 (en) Laser marking method and apparatus and marked member
US4749840A (en) Intense laser irradiation using reflective optics
US4475027A (en) Optical beam homogenizer
JPS6237350A (en) Surface heat treating apparatus
TW200405046A (en) Method of severing an optical fiber using a laser beam
KR100834468B1 (en) Laser Annealing Method and Apparatus
JPH02297986A (en) Formation of uniform beam, and transmission and irradiation devices for uniform beam
JPH08338962A (en) Beam homogenizer and laser machining device
JPH11347766A (en) Laser drilling equipment and its method
JPH05224206A (en) Orientation treatment device and method for oriented film for liquid crystal
JPH0645272A (en) Laser annealing apparatus
JP2507222B2 (en) Multi-axis beam laser processing machine
US20060243714A1 (en) Selective processing of laminated target by laser
JPH0498214A (en) Device for irradiating with laser beam
JPH04100685A (en) Pattern removing method for thin-film body
JP2599508B2 (en) Opaque processing method and apparatus
JPH03193289A (en) Laser beam machine
JPH02299791A (en) Workpiece irradiating method with laser beam
JPH0619111B2 (en) Laser scanning device
JPH03210987A (en) Optical treating device
JP3213884B2 (en) Laser drilling equipment
JPS62168688A (en) Laser beam machining device
JP3021330B2 (en) Groove processing method for LCD color filter
JPH03184687A (en) Laser beam machining apparatus
JPH11226772A (en) Laser beam machining method and its device