JPH02297865A - Manufacture of gas dispersion type complex electrode - Google Patents

Manufacture of gas dispersion type complex electrode

Info

Publication number
JPH02297865A
JPH02297865A JP1343365A JP34336589A JPH02297865A JP H02297865 A JPH02297865 A JP H02297865A JP 1343365 A JP1343365 A JP 1343365A JP 34336589 A JP34336589 A JP 34336589A JP H02297865 A JPH02297865 A JP H02297865A
Authority
JP
Japan
Prior art keywords
electrode
base material
gas
resin
electrolytic polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1343365A
Other languages
Japanese (ja)
Other versions
JPH0766816B2 (en
Inventor
Yoshinori Kawashima
川島 美紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Publication of JPH02297865A publication Critical patent/JPH02297865A/en
Publication of JPH0766816B2 publication Critical patent/JPH0766816B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To prolong the lifetime of an electrode by electrolytically polymerizing aromatic compounds capable of electrolytic polymerization and/or heterocyclic compounds on a composite material consisting of a resin member having gas penetrativeness and electroconductive base material. CONSTITUTION:Aromatic compounds capable of electrolytic polymerization and/or heterocyclic compounds are electrolytically polymerized on a composite material composed of gas penetrative resin member, consisting of organic metal complex and resin, and electroconductive base material, which is then removed if necessary. The resin member consisting of organic metal complex and resin must admit penetration of the gas utilized in the gas dispersion type complex electrode concerned. Thereby the organic metal complex acts as catalyzer, and the polymer deposited (grown) through electrolytic polymerization acts as an electric conductor in the electrode body, so that the lifetime of the electrode can be prolonged.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、燃料電池、金属/空気電池、炭酸ガスの電解
還元電極、ガスセンサ、湿度センサなどに用いられるガ
ス拡散型複合電極の製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a gas diffusion type composite used in fuel cells, metal/air batteries, carbon dioxide electrolytic reduction electrodes, gas sensors, humidity sensors, etc. The present invention relates to a method for manufacturing an electrode.

(従来の技術) 燃料電池、金属/空気電池、炭酸ガスの電解還元電極、
ガスセンサ、湿度センサなどに用いられるガス拡散型複
合電極の多孔構造の本体としては、従来。
(Prior technology) Fuel cells, metal/air batteries, carbon dioxide electrolytic reduction electrodes,
Conventionally, the porous structure body of gas diffusion type composite electrodes used in gas sensors, humidity sensors, etc.

ガス酸化還元過電圧の低いニッケルタングステン酸。Nickel tungstic acid with low gas redox overpotential.

パラジウムやコバルトで被覆された炭化タングステン、
ペロブスカイト型構造の酸化物、ニッケル、銀。
Tungsten carbide coated with palladium or cobalt,
Oxides with perovskite structure, nickel, silver.

白金、パラジウムなどを触媒として用い、これらの触媒
を活性炭粉末などの導電性粉末に担持させた粉末、およ
び成膜性が比較的低いポリテトラフルオロエチレンなど
の結着剤からなるものを、さらに、金属多孔体、カーボ
ン多孔体、カーボン繊維不織布などの導電性基材と一体
化させたものが用いられている。しかしながら、触媒、
導電性粉末および結着剤からなるこのような組成物は、
多量の導電性粉末を含み、しかも成膜性の低い結着剤を
用いているため。
Using platinum, palladium, etc. as a catalyst, these catalysts are supported on conductive powder such as activated carbon powder, and a binder such as polytetrafluoroethylene, which has relatively low film-forming properties, is further used. Those integrated with a conductive base material such as a metal porous body, a carbon porous body, and a carbon fiber nonwoven fabric are used. However, the catalyst
Such a composition consisting of a conductive powder and a binder is
This is because it contains a large amount of conductive powder and uses a binder with low film-forming properties.

きわめて脆く、亀裂が発生しやすく、電橋寿命が短くな
るという欠点とともに、触媒の欠損を生じるという欠点
があった。また、このような組成物では。
It is extremely brittle, prone to cracking, shortens the life of the bridge, and causes catalyst loss. Also in such compositions.

成形加工性にとぼしいため薄膜化が困難であるとともに
、細孔径の制御が困難なため、電極として用いたときに
、電解液の液もれを生じやすいという欠点があった。
It has poor moldability, making it difficult to form a thin film, and it is also difficult to control the pore diameter, so when used as an electrode, the electrolyte tends to leak.

(発明が解決しようとする課題) 本発明者は、導電性粉末を使わず、電解重合可能な芳香
族化合物および(または)複素環化合物を電解重合して
形成させた導電性の重合体を用いることによって、従来
のガス拡散型複合電極の上記の種々の欠点を改良できる
ことを見出し2本発明にいたったもので9本発明は、電
極寿命が長い、触媒の欠損のないガス拡散型複合電極の
製造方法を提供するものである。
(Problems to be Solved by the Invention) The present inventor uses a conductive polymer formed by electrolytically polymerizing an aromatic compound and/or a heterocyclic compound that can be electrolytically polymerized, without using a conductive powder. It was discovered that the above-mentioned drawbacks of conventional gas diffusion type composite electrodes can be improved by this method, which led to the present invention.9 The present invention is to provide a gas diffusion type composite electrode with a long electrode life and no catalyst defects. A manufacturing method is provided.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、有機金属錯体および樹脂からなるガス透過性
を有する樹脂部材と導電性基材とからなる複合材の上記
導電性基材上で、電解重合可能な芳香族化合物および(
または)複素環化合物を電解重合し。
(Means for Solving the Problems) The present invention provides a composite material comprising a gas-permeable resin member made of an organometallic complex and a resin, and a conductive base material, which can be electrolytically polymerized on the conductive base material. Aromatic compounds and (
or) Electrolytic polymerization of heterocyclic compounds.

必要に応じて上記導電性基材を除去することを特徴とす
るガス拡散型複合電極の製造方法である。
This method of manufacturing a gas diffusion type composite electrode is characterized in that the conductive base material is removed if necessary.

本発明において用いられる樹脂としては、ポリテトラ°
フルオロエチレンなどのふっ素糸樹脂、シリコーン樹脂
、ポリサルホンなどのいおう系樹脂、ビニル系樹脂、オ
レフィン系樹脂、フェノール系樹脂などの樹脂をあげる
ことができる。
The resin used in the present invention is polytetra
Examples include resins such as fluorine thread resins such as fluoroethylene, silicone resins, sulfur resins such as polysulfone, vinyl resins, olefin resins, and phenol resins.

本発明においてガス拡散型複合電極の触媒として用いら
れる有機金属錯体としては、フタロシアニン。
In the present invention, the organometallic complex used as a catalyst for the gas diffusion type composite electrode is phthalocyanine.

ナフタロシアニン、ポルフィリン、フエナトポルフィリ
ン、ビスシクロペンタジェニル、カルボニル。
Naphthalocyanine, porphyrin, phenatoporphyrin, biscyclopentagenyl, carbonyl.

ヒドリド、カルベン、カルビン、アセチルアセトン錯塩
、サリチルアミンキレート サリチルアルデヒド錯塩、
エチレンジアミン四節酸塩、グリシンキl/−ト、フェ
ロセンなど、あるいはこれらに、ハロゲン原子、ニトロ
基、スルホン基、スルホン酸塩基。
hydride, carbene, carbine, acetylacetone complex salt, salicylamine chelate salicylaldehyde complex salt,
Ethylenediamine tetranosate, glycine salt, ferrocene, etc., or a halogen atom, a nitro group, a sulfonic group, a sulfonic acid group.

アルキル基、アリル基、水酸基、カルボキシル基などの
原子または置換基が導入された誘導体の、白金。
Platinum is a derivative into which atoms or substituents such as alkyl groups, allyl groups, hydroxyl groups, and carboxyl groups are introduced.

鉄、コバルトニッケル、m、パラジウム、モリブデンな
どの金属の錯体である。
It is a complex of metals such as iron, cobalt nickel, m, palladium, and molybdenum.

また、触媒の有効利用率を向上させるためには。Also, in order to improve the effective utilization rate of the catalyst.

これらの有機金属錯体のうち、用いる樹脂部材と同一・
の溶媒に可溶性のものを用いることが望ましく。
Among these organometallic complexes, the same or
It is desirable to use one that is soluble in the solvent.

例えば、有機金属錯体、溶媒、樹脂の組み合わせとして
は、アセチルアセトン錯塩では、アセトン溶媒。
For example, as a combination of an organometallic complex, a solvent, and a resin, for an acetylacetone complex salt, an acetone solvent is used.

ポリビニルハロゲン化合物および(または)ポリスチレ
ン樹脂の組み合わせ、サリチルアミンキレートでは、ジ
メチルホルムアミドおよび(または)ピリジン溶媒、ポ
リビニルアルコールおよび(または)ポリアセチレンお
よび(または)ポリビニルハロゲン化物樹脂の組み合わ
せ、サリチルアルデヒド錯塩では、クロロホルム溶媒、
ポリビニルアセテートおよび(または)ポリビニルスル
ホキシド樹脂の組み合わせ、フェロセンでは、ベンゼン
溶媒、ポリビニルアセテートおよび(または)ポリスチ
レン樹脂の組み合わせ、ポルフィリン、フタロシアニン
などのスルホン酸塩誘導体、カルボキシル誘導体では、
ジメチルホルムアミドまたはジメチルスルホキシド溶媒
、ポリビニルアルコールおよび(または)ポリビニルハ
ロゲン化物および(または)ポリアクロニトリルブタジ
ェンスチレンおよび(または)ポリアクリロニトリルお
よび(または)ポリアセチレン樹脂等を挙げることがで
きるが、これらに限定されるものではない。
Combinations of polyvinyl halogen compounds and/or polystyrene resins, dimethylformamide and/or pyridine solvents for salicylamine chelates, combinations of polyvinyl alcohol and/or polyacetylene and/or polyvinyl halide resins, chloroform for salicylaldehyde complexes solvent,
Combinations of polyvinyl acetate and (or) polyvinyl sulfoxide resins, for ferrocene, benzene solvents, combinations of polyvinyl acetate and (or) polystyrene resins, sulfonate derivatives such as porphyrins, phthalocyanines, and carboxyl derivatives.
Examples include, but are not limited to, dimethylformamide or dimethyl sulfoxide solvents, polyvinyl alcohol and/or polyvinyl halides and/or polyacronitrile butadiene styrene and/or polyacrylonitrile and/or polyacetylene resins. It's not something you can do.

上記有機金属錯体と樹脂とからなる樹脂部材は。A resin member made of the above-mentioned organometallic complex and resin.

本発明にかかわるガス拡散型複合電極において利用され
るガスを透過する性質を有するものでなければならない
。例えば、ガスが酸素である場合に、樹脂部材の酸素透
過係数は、lXl0一番’  (co+’(STP)c
m−cs+−”s−暴(cmHg) −’ )以上、好
ましくはlXl0−”(cs+’(STP)cm−c+
s−” s−’(cmHg)−’1以上である。
It must have the property of permeating the gas used in the gas diffusion type composite electrode according to the present invention. For example, when the gas is oxygen, the oxygen permeability coefficient of the resin member is lXl0'(co+'(STP)c
m−cs+−”s−(cmHg)−′) or higher, preferably lXl0−”(cs+′(STP)cm−c+
s-"s-'(cmHg)-' is 1 or more.

本発明において電解重合の電極として用いられる導電性
基材としては、白金、ニッケル、 !M、 S!、金。
In the present invention, the conductive base material used as an electrode for electrolytic polymerization includes platinum, nickel, ! M, S! ,Money.

パラジウムなどの金属材料、およびグラジ−カーボンな
どの炭素質材料からなるものの他、インジウムトリオキ
シドなどを蒸着させた透明電極(ITOガラスなど)を
用いることができる。導電性基材の形状としては、特に
限定はなく、線状、板状、棒状。
In addition to those made of metal materials such as palladium and carbonaceous materials such as grady carbon, transparent electrodes (such as ITO glass) on which indium trioxide or the like is vapor-deposited can be used. The shape of the conductive base material is not particularly limited, and may be linear, plate-like, or rod-like.

球状、メツシュ状、ペーパー状、クロス状などのものを
用いることができる。
A spherical, mesh-like, paper-like, cross-like shape, etc. can be used.

本発明において複合材は上記樹脂部材と導電性基材とか
らなる。複合材は、■上記有機金属錯体および樹脂を、
テトラヒドロフランなどのエーテル系溶媒、ジアミノジ
フェニルメタンなどのアミン系溶媒。
In the present invention, the composite material consists of the above resin member and a conductive base material. The composite material consists of ■the above organometallic complex and resin,
Ether solvents such as tetrahydrofuran, amine solvents such as diaminodiphenylmethane.

アセトン、メチルエチルケトンなどのケトン系溶媒。Ketone solvents such as acetone and methyl ethyl ketone.

フェノール、トルエン、キシレンなどの芳香族系溶媒、
シクロヘキセンなどの脂肪族化合物系溶媒など適切な有
機溶媒に溶解(溶融溶解を含む)または分散させた塗布
剤を、上記導電性基材上に塗布し、乾燥させる。■上記
有機金属錯体および樹脂の混合物を押出成形、射出成形
、加圧成形など適切な方法により成形し、得られた成形
物と上記導電性基材とを。
Aromatic solvents such as phenol, toluene, xylene,
A coating agent dissolved (including melting) or dispersed in a suitable organic solvent such as an aliphatic compound solvent such as cyclohexene is applied onto the conductive substrate and dried. (2) Molding the mixture of the above-mentioned organometallic complex and resin by an appropriate method such as extrusion molding, injection molding, or pressure molding, and combining the obtained molded product with the above-mentioned conductive base material.

熱圧着するか導電性接着剤を用いて接着する。■上記有
機金属錯体および樹脂の混合物を、上記導電性基材上に
粉体塗装または押出しコーティングする。
Adhere by heat compression or conductive adhesive. (2) The mixture of the organometallic complex and resin is powder coated or extrusion coated onto the conductive substrate.

■上記有機金属錯体および樹脂の混合物を押出成形。■Extrusion molding of the mixture of the above organometallic complex and resin.

射出成形、加圧成形など適切な方法により成形し。Molded using appropriate methods such as injection molding and pressure molding.

得られた成形物上に、蒸着により導電性基材を設ける。A conductive base material is provided on the obtained molded article by vapor deposition.

などの方法により作ることができる。得られるガス拡散
型複合電極の性能の面からは、これらの方法のなかでも
、特に5■上上記機金属錯体および樹脂を適切な有機溶
媒に溶解(溶融溶解を含む)または分散、さらに好まし
くは溶解(溶融溶解を含む)させた塗布剤を、上記導電
性基材上に塗布し、乾燥させる方法により複合材を作る
ことが好ましい。
It can be made by methods such as From the viewpoint of the performance of the resulting gas diffusion type composite electrode, among these methods, particularly 5. above, dissolving (including melting) or dispersing the above-mentioned metal complex and resin in an appropriate organic solvent, more preferably It is preferable to make a composite material by applying a dissolved (including melting) coating agent onto the conductive substrate and drying it.

このようにして得られた複合材の導電性基材上で。On the conductive substrate of the composite thus obtained.

電解重合可能な芳香族化合物および(または)複素環化
合物が電解重合される。電解重合可能な芳香族化合物ま
たは複素環化合物としては、アズレン、ピレン、トリフ
ェニレン、アニリン、ビロール、チオフェン、3−メチ
ルチオフェン、フラン、ピペラジン。
Electropolymerizable aromatic and/or heterocyclic compounds are electropolymerized. Examples of electropolymerizable aromatic compounds or heterocyclic compounds include azulene, pyrene, triphenylene, aniline, virol, thiophene, 3-methylthiophene, furan, and piperazine.

イソチアナ°フテンなどをあげることができる。Examples include isothiana phthene.

これら電解重合可能な芳香族化合物および(または)複
素環化合物1通電させるための電解質、および有機溶媒
からなる溶液中に、上記複合材を対向電極とともに入れ
2通電させることにより、複合材の導電性基材上で、す
なわち、導電性基材の樹脂部材で覆われた部分の上、樹
脂部材中で、また、導電性基村上に樹脂部材で覆われて
いない部分がある場合には、この樹脂部材で覆われてい
ない部分の上で。
By placing the composite material together with a counter electrode in a solution consisting of an electrolyte for energizing these electrolytically polymerizable aromatic compounds and/or heterocyclic compounds, and an organic solvent and energizing them, the conductivity of the composite material can be improved. On the base material, that is, on the part of the conductive base material covered with the resin member, in the resin member, or on the conductive base layer, if there is a part not covered with the resin member, this resin On parts not covered by parts.

それぞれ電解重合がおこり1重合体が堆積(生長)する
。電解重合は、少なくとも、導電性基材の樹脂部材で覆
われた部分の上、樹脂部材中だけでおこればよく、電解
重合による重合体の形成効率の面から。
Electrolytic polymerization occurs in each case, and one polymer is deposited (grown). Electrolytic polymerization only needs to be carried out on at least the portion of the conductive base material covered with the resin member, from the viewpoint of the efficiency of forming a polymer by electrolytic polymerization.

導電性基材上の樹脂部材で覆われていない部分を剥離可
能なまたは不可能な絶縁材料で覆ってから、電解重合を
行なうことが好ましい。
It is preferable to perform electrolytic polymerization after covering the portions of the conductive substrate that are not covered with the resin member with an insulating material that may or may not be peeled.

上記電解質を構成するカチオンとしては、アルカリ金属
イオン、アルカリ土類金属イオン、第4フルキルアンモ
ニウムイオン、第4アルキルホスホニウムイオン、第4
アルキルアルセニウムイオン、第4スルホニウムイオン
、あるいはこれらの置換体などがあり、アニオンとして
は、スルホン酸イオン、硝酸イオン、過塩素酸イオン、
カルボン酸イオン、テトラフルオロはう酸イオン、ヘキ
サフルオロりん酸イオン、あるいはこれらの置換体があ
る。これらのカチオンおよびアニオンから構成される電
解質のうち、有機溶媒への溶解性などの面から、特に、
テトラブチルアンモニウムバークロレート、テトラエチ
ルアンモニウムバークロレート、テトラブチルアンモニ
ウムテトラフルオロはう酸塩、テトラフルオロはう酸ナ
トリウムなどを用いることが好ましい。電解重合の際に
用いられる有機溶媒としては、アセトニトリル、ベンジ
ルニトリル、ベンゾニトリルナトのニトリル類、ジメチ
ルホルムアミド、ジメチルアセトアミド、N−メチルア
セトアミドなどのアミド類2エチレンジアミン、ヘキサ
メチルホスホルアミド。
The cations constituting the electrolyte include alkali metal ions, alkaline earth metal ions, quaternary flukylammonium ions, quaternary alkylphosphonium ions, quaternary
There are alkyl arsenium ions, quaternary sulfonium ions, and substituted products thereof, and anions include sulfonate ions, nitrate ions, perchlorate ions,
These include carboxylate ions, tetrafluorophosphate ions, hexafluorophosphate ions, or substituted products thereof. Among these electrolytes composed of cations and anions, in terms of solubility in organic solvents, in particular,
It is preferable to use tetrabutylammonium verchlorate, tetraethylammonium verchlorate, tetrabutylammonium tetrafluorobolate, sodium tetrafluorobolate, and the like. Examples of organic solvents used during electrolytic polymerization include acetonitrile, benzylnitrile, benzonitrile natriles, amides such as dimethylformamide, dimethylacetamide, and N-methylacetamide, diethylenediamine, and hexamethylphosphoramide.

ピリジンなどのアミン類、テトラヒドロフラン、ジオキ
サン、 1.2−ジメトキシエタンなどのエーテル類。
Amines such as pyridine, ethers such as tetrahydrofuran, dioxane, and 1,2-dimethoxyethane.

酢酸、無水酢酸などのカルボン酸類、メタノール。Carboxylic acids such as acetic acid and acetic anhydride, methanol.

エタノールなどのアルコール類、ジメチルスルホキシド
、スルホラン、ジメチルスルホンなどのいおう化合物、
プロピレンカーボネート、ニトロメタン。
Alcohols such as ethanol, sulfur compounds such as dimethyl sulfoxide, sulfolane, dimethyl sulfone,
Propylene carbonate, nitromethane.

塩化メチレン、アセトンなどを用いることができる。Methylene chloride, acetone, etc. can be used.

電離係数を考慮するなら、これらの有機溶媒のうちでも
、特に、メタノール、エタノール、アセトニトリル2 
ジメチルホルムアミド、ジメチルスルホキシド、テトラ
ヒドロフラン、プロピレンカーボネート。
Considering the ionization coefficient, among these organic solvents, methanol, ethanol, acetonitrile 2
Dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, propylene carbonate.

ニトロメタンなどを用いることが好ましい。It is preferable to use nitromethane or the like.

電解重合時の通電量は3通常、0.1〜100C/cm
”であるが1通電量を1〜10C/cm2に設定するな
ら、電解重合によって堆積(生長)する重合体の表面を
平滑とすることができ、導電性の高いガス拡散型複合電
極を得ることができる。このようにして電解重合を行な
い、必要に応じて上記導電性基材が除去され、ガス拡散
型複合電極が得られる。
The amount of current applied during electrolytic polymerization is usually 0.1 to 100 C/cm.
However, if the amount of current applied per unit is set to 1 to 10 C/cm2, the surface of the polymer deposited (grown) by electrolytic polymerization can be made smooth, and a highly conductive gas diffusion type composite electrode can be obtained. Electrolytic polymerization is carried out in this manner, and the conductive base material is removed if necessary, to obtain a gas diffusion type composite electrode.

導電性基材を除去しない場合には、用いる導電性基材を
、軽量のものとする。薄膜のものとする。あるいは成形
性の良好なものとすることによって、それぞれ1.得ら
れるガス拡散型複合電極の軽量化、薄膜化、あるいは易
成形性化が可能である。また、導電性基材を除去するこ
とによって、さらに軽量化・薄膜化をはかることができ
るとともに、成形などの加工をより容易に行なうことが
できる。
When the conductive base material is not removed, the conductive base material used is lightweight. It shall be a thin film. Or, by making it good in moldability, each of the following 1. The resulting gas diffusion type composite electrode can be made lighter, thinner, or easier to form. Furthermore, by removing the conductive base material, it is possible to further reduce the weight and thickness of the film, and it is also possible to perform processing such as molding more easily.

(作用) 本発明において導電性基材は電解重合時の電極として作
用する。
(Function) In the present invention, the conductive substrate acts as an electrode during electrolytic polymerization.

本発明により得られたガス拡散型複合電極において、有
機金属錯体は触媒として作用し、電解重合によって堆積
(生長)した重合体は電極本体における導電体として作
用する。また、導電性基材を除去しない場合には、導電
性基材もまた電極本体における導電体として作用する。
In the gas diffusion type composite electrode obtained by the present invention, the organometallic complex acts as a catalyst, and the polymer deposited (grown) by electrolytic polymerization acts as a conductor in the electrode body. In addition, if the conductive base material is not removed, the conductive base material also acts as a conductor in the electrode body.

(実施例) 以下、実施例により本発明をより詳細に説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.

なお2例中1部とは重量部を表わす。Note that in the two examples, 1 part represents part by weight.

実施例1゜ ポリサルホン50部およびジメチルホルムアミド200
部からなる溶液250部にコバルトフタロシアニン25
部を分散させて得られた分散液をITOガラス上に塗布
し、120℃で2時間乾燥し、複合材を得た。得られた
複合材を電極として用い、対向電極として白金板を用い
て、アセトニトリル100部、ピロール0.7部および
テトラブチルアンモニウムバークロレート3.5部から
なる電解質含有溶液中で1通電量が3C/Cmzに達す
るまで電解重合を行ない、つぎにITOガラスを剥離さ
せ、アセトニトリルで十分洗浄し、80℃で5時間乾燥
し、厚さ20μmの薄膜状の電極を得た。得られた電極
中には、ポリピロールが3重量%含まれていた。
Example 1 50 parts of polysulfone and 200 parts of dimethylformamide
250 parts of a solution consisting of 25 parts of cobalt phthalocyanine
The resulting dispersion was applied onto ITO glass and dried at 120° C. for 2 hours to obtain a composite material. Using the obtained composite material as an electrode and a platinum plate as a counter electrode, the amount of current applied per 3C in an electrolyte-containing solution consisting of 100 parts of acetonitrile, 0.7 parts of pyrrole, and 3.5 parts of tetrabutylammonium verchlorate. Electrolytic polymerization was performed until /Cmz was reached, and then the ITO glass was peeled off, thoroughly washed with acetonitrile, and dried at 80° C. for 5 hours to obtain a thin film electrode with a thickness of 20 μm. The obtained electrode contained 3% by weight of polypyrrole.

このようにして得られた電極を用い、電解液として水酸
化カリウム1規定水溶液を、対向電極として白金板をそ
れぞれ用い、酸素ガス圧を1 atm+  酸素ガス供
給速度をl OOmj!/分、設定電流密度を0゜1m
A/am”として酸素半電池を組み立て、電極電位を測
定したところ、電極電位は一〇、 39 Vであった。
Using the electrode thus obtained, using a 1N aqueous solution of potassium hydroxide as the electrolyte and a platinum plate as the counter electrode, the oxygen gas pressure was set to 1 atm+ and the oxygen gas supply rate was set to l OOmj! /min, set current density to 0゜1m
When an oxygen half cell was assembled and the electrode potential was measured, the electrode potential was 10.39 V.

測定開始後1ooo時間以上経過しても、電極電位に変
化はなく、電解液の液もれも生じなかった。なお、この
際、参照電極としてはHg / Hg O電極を用いた
Even after more than 100 hours had passed after the start of the measurement, there was no change in the electrode potential and no leakage of the electrolyte solution occurred. Note that at this time, a Hg/HgO electrode was used as a reference electrode.

比較例1゜ ポリサルホン50部およびジメチルホルムアミド200
部からなる溶液250部に、コバルトフタロシアニン2
5部およびカーボンブランク2.25部を分散させて得
られた分散液を、乾燥膜厚20μmとなるようにITO
ガラス上に塗布し、120℃で2時間乾燥した後、IT
Oガラスを剥離させ、薄膜状の電極を得た。得られた電
極を用い、実施例1と同様にして、酸素半電池を組み立
てようとしたが、電極電位は−1,0V以下であり、酸
素半電池としての実用性はないことがわかった。
Comparative Example 1 50 parts of polysulfone and 200 parts of dimethylformamide
Cobalt phthalocyanine 250 parts
A dispersion obtained by dispersing 5 parts of carbon blank and 2.25 parts of carbon blank was mixed with ITO to give a dry film thickness of 20 μm.
After coating on glass and drying at 120°C for 2 hours, IT
The O glass was peeled off to obtain a thin film electrode. An attempt was made to assemble an oxygen half cell using the obtained electrode in the same manner as in Example 1, but the electrode potential was -1.0 V or less, and it was found that it was not practical as an oxygen half cell.

比較例2゜ ポリサルホン50部およびジメチルホルムアミド200
部からなる溶液250部に、コバルトフタロシアニン2
5部およびカーボンブラック50部を分散させて得られ
た分散液を、乾燥膜厚20μmとなるようにITOガラ
ス上に塗布し、120℃で2時間乾燥した後、ITOガ
ラスを剥離させ、薄膜状の電極を得た。得られた電極を
用い、実施例1と同様にして、酸素半電池を組み立て、
電極電位を測定したところ、電極電位は一〇、 39 
Vであったが、測定開始後100時間で電解液の液もれ
が生じ、電極電位も−1,Ovとなった。
Comparative Example 2 50 parts of polysulfone and 200 parts of dimethylformamide
Cobalt phthalocyanine 250 parts
A dispersion obtained by dispersing 5 parts of carbon black and 50 parts of carbon black was applied onto ITO glass to a dry film thickness of 20 μm, and after drying at 120°C for 2 hours, the ITO glass was peeled off to form a thin film. electrodes were obtained. Using the obtained electrode, assemble an oxygen half cell in the same manner as in Example 1,
When the electrode potential was measured, the electrode potential was 10.39
However, 100 hours after the start of the measurement, leakage of the electrolytic solution occurred, and the electrode potential also became -1.Ov.

実施例2゜ カーボンペーパーに、実施例1において用いた分散液を
含浸させ、120℃で5時間乾燥させ、得られた含浸乾
燥物を一方の電極とし、対向電極として白金板を用い、
実施例1と同様に電解重合し、厚さ400μmの電極を
得た。得られた電極を用い、実施例1と同様にして、酸
素半電池を組み立て、電極電位を測定したところ、電極
電位は一〇、 39 Vであり、測定開始後3000時
間以上経過しても、電極電位に変化はなく、電解液の液
もれも生じなかった。
Example 2 Carbon paper was impregnated with the dispersion used in Example 1 and dried at 120°C for 5 hours, the resulting impregnated dry product was used as one electrode, and a platinum plate was used as the counter electrode,
Electrolytic polymerization was carried out in the same manner as in Example 1 to obtain an electrode with a thickness of 400 μm. Using the obtained electrode, an oxygen half cell was assembled in the same manner as in Example 1, and the electrode potential was measured. The electrode potential was 10.39 V, and even after more than 3000 hours had passed since the start of the measurement, There was no change in the electrode potential, and no electrolyte leakage occurred.

実施例3゜ ポリアクリろニトリルブタジェンメチレフ10部。Example 3゜ 10 parts of polyacrylonitrile butadiene methyleph.

ジメチルホルムアミド90部からなる溶液100部に、
コバルトフタロシアニントリスルホン酸ナトリウム5部
を溶解させて得られた混合溶液をITOガラス上に塗布
し、100℃で2時間乾燥し、複合材を得た。得られた
複合材を電極どして用い、対向電極として白金板を用い
て、実施例1と同様にして酸素半電池を組み立て電極電
位を測定したところ、電極電位は−0,24Vに向上し
た。
In 100 parts of a solution consisting of 90 parts of dimethylformamide,
A mixed solution obtained by dissolving 5 parts of sodium cobalt phthalocyanine trisulfonate was applied onto ITO glass and dried at 100° C. for 2 hours to obtain a composite material. Using the obtained composite material as an electrode and a platinum plate as a counter electrode, an oxygen half cell was assembled in the same manner as in Example 1, and the electrode potential was measured, and the electrode potential was improved to -0.24V. .

〔発明の効果〕〔Effect of the invention〕

いガス拡散型複合電極が得られるようになった。 It is now possible to obtain a gas diffusion type composite electrode.

また1本発明において、導電性基材を除去しない場合に
は、用いる導電性基材を、軽量のものとする。
Furthermore, in the present invention, when the conductive base material is not removed, the conductive base material used is lightweight.

薄膜のものとする。あるいは成形性の良好なものとする
ことによって、それぞれ、得られるガス拡散型複合電橋
の軽量化、薄膜化、あるいは易成形性化が可能である。
It shall be a thin film. Alternatively, by providing good moldability, the resulting gas diffusion type composite electrical bridge can be made lighter, thinner, or easier to mold.

また、導電性基材を除去することによって、さらに軽量
化・薄膜化をはかることができるとともに、成形などの
加工もより容易に行なうことができる。
Furthermore, by removing the conductive base material, it is possible to further reduce the weight and thickness of the film, and it is also possible to perform processing such as molding more easily.

Claims (1)

【特許請求の範囲】 1、有機金属錯体および樹脂からなるガス透過性を有す
る樹脂部材と導電性基材とからなる複合材の上記導電性
基材上で、電解重合可能な芳香族化合物および(または
)複素環化合物を電解重合し、必要に応じて上記導電性
基材を除去することを特徴とするガス拡散型複合電極の
製造方法。 2、有機金属錯体および樹脂からなるガス透過性を有す
る樹脂部材が同一溶媒に可溶性であることを特徴とする
請求項1記載のガス拡散型複合電極の製造方法。
[Scope of Claims] 1. An electrolytically polymerizable aromatic compound and ( or) A method for producing a gas diffusion type composite electrode, which comprises electrolytically polymerizing a heterocyclic compound and removing the conductive base material as required. 2. The method for manufacturing a gas diffusion type composite electrode according to claim 1, wherein the resin member having gas permeability made of the organometallic complex and the resin is soluble in the same solvent.
JP1343365A 1989-01-13 1989-12-29 Method for manufacturing gas diffusion type composite electrode Expired - Lifetime JPH0766816B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP741289 1989-01-13
JP1-7412 1989-01-13

Publications (2)

Publication Number Publication Date
JPH02297865A true JPH02297865A (en) 1990-12-10
JPH0766816B2 JPH0766816B2 (en) 1995-07-19

Family

ID=11665150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1343365A Expired - Lifetime JPH0766816B2 (en) 1989-01-13 1989-12-29 Method for manufacturing gas diffusion type composite electrode

Country Status (1)

Country Link
JP (1) JPH0766816B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521469A (en) * 2003-03-28 2006-09-21 アルケマ Method for forming a metal oxide film on a conductive substrate, the resulting active cathode and its use in the electrolysis of aqueous alkali metal chloride solutions
JP2006344525A (en) * 2005-06-09 2006-12-21 Toyota Motor Corp Gas diffuser, its manufacturing method and fuel cell
JP2008509520A (en) * 2004-08-05 2008-03-27 ゼネラル・モーターズ・コーポレーション Increasing the hydrophilicity of carbon fiber paper by electropolymerization.
JP2018052068A (en) * 2016-09-30 2018-04-05 三菱ケミカル株式会社 Laminate film and manufacturing method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624898A (en) * 1985-07-01 1987-01-10 Agency Of Ind Science & Technol Production of electrically conductive polymer film containing particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624898A (en) * 1985-07-01 1987-01-10 Agency Of Ind Science & Technol Production of electrically conductive polymer film containing particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521469A (en) * 2003-03-28 2006-09-21 アルケマ Method for forming a metal oxide film on a conductive substrate, the resulting active cathode and its use in the electrolysis of aqueous alkali metal chloride solutions
JP2008509520A (en) * 2004-08-05 2008-03-27 ゼネラル・モーターズ・コーポレーション Increasing the hydrophilicity of carbon fiber paper by electropolymerization.
JP2006344525A (en) * 2005-06-09 2006-12-21 Toyota Motor Corp Gas diffuser, its manufacturing method and fuel cell
JP2018052068A (en) * 2016-09-30 2018-04-05 三菱ケミカル株式会社 Laminate film and manufacturing method therefor

Also Published As

Publication number Publication date
JPH0766816B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
JP7235666B2 (en) Carbon dioxide reduction device and porous electrode
JP6616479B2 (en) Gelled ionic liquid film coated surface and use thereof
RU2374722C2 (en) Processing methods for manufacturing membrane electrode units of solid acid fuel elements
Li et al. Suppressing shuttle effect using Janus cation exchange membrane for high-performance lithium–sulfur battery separator
WO2006085574A1 (en) Catalytic electrode for dye sensitized solar cell and dye sensitized solar cell including the same
ITPD20080188A1 (en) "HAZELNUT-SHELL" ELECTROCATALIZERS BASED ON MONO / MULTI-METAL CARBONITRURES FOR LOW TEMPERATURE FUEL CELLS (PEMFC, DMFC, AFC AND PAFC) AND ELECTROLYZERS
KR101102982B1 (en) Conducting polymer/transition metal oxide/carbon nanotube nanocomposite and preparation of the same
CN113054207B (en) Preparation method of metal salt assisted rapid growth metal organic framework derivative
Drillet et al. Activity and long-term stability of PEDOT as Pt catalyst support for the DMFC anode
JP2009299111A (en) Electrode catalyst for generating oxygen, electrode for generating oxygen and water electrolysis apparatus
Yao et al. Cyclopentadithiophene–terephthalic acid copolymers: synthesis via direct arylation and saponification and applications in Si-based lithium-ion batteries
Liu et al. Improving charge transfer in metal–organic frameworks through open site functionalization and porosity selection for Li–S batteries
CN114783782B (en) Three-dimensional graphene-metal organic frame electrode for 3D printing, and preparation method and application thereof
Liu et al. Purification of lutetium diphthalocyanine and electrochromism of its Langmuir-Blodgett films
Ma et al. Metal–organic gels and their derived materials for electrochemical applications
JP2003142168A (en) Solid dye sensitized solar cell with its hole conveying layer formed from highpolymer solid electrolyte and its counter electrode formed from electron conductive material and material consisting of highpolymer electrolyte
JP2007324080A (en) Electrolyte-catalyst composite electrode for dye-sensitized solar battery, its manufacturing method, and dye-sensitized solar battery comprising the same
KR101061934B1 (en) Proton conductors, single ion conductors and their manufacturing methods and electrochemical capacitors
JPH02297865A (en) Manufacture of gas dispersion type complex electrode
Drillet et al. New composite DMFC anode with PEDOT as a mixed conductor and catalyst support
Liu et al. Role of organic components in electrocatalysis for renewable energy storage
Dong et al. Progress and prospect of organic electrocatalysts in lithium− sulfur batteries
EP0376689A2 (en) Polymeric films of metalloporphyrins as conductive materials for electrocatalysis
JP7232500B2 (en) Hybrid material production method, hybrid material, electrode production method, electrode, and electrochemical device
JP2006310384A (en) Process for producing porous electrode, porous electrode, and electrochemical device