JPH0229602A - Imaging element - Google Patents

Imaging element

Info

Publication number
JPH0229602A
JPH0229602A JP17939788A JP17939788A JPH0229602A JP H0229602 A JPH0229602 A JP H0229602A JP 17939788 A JP17939788 A JP 17939788A JP 17939788 A JP17939788 A JP 17939788A JP H0229602 A JPH0229602 A JP H0229602A
Authority
JP
Japan
Prior art keywords
lens
polishing
grinding
cutting
obtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17939788A
Other languages
Japanese (ja)
Inventor
Manabu Takami
学 高見
Akira Akazawa
赤沢 旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP17939788A priority Critical patent/JPH0229602A/en
Publication of JPH0229602A publication Critical patent/JPH0229602A/en
Priority to US07/810,347 priority patent/US5638479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To eliminate the need for polishing without deteriorating optical performance by embedding the ruggedness of the incident and exit surfaces of the imaging element having the rough surface state obtd. by cutting, grinding, etc., thereby smoothing the surface. CONSTITUTION:A solid transparent coating material is provided on the surface in the rough surface state obtd. by cutting or grinding so as to embed the ruggedness of the rough surface, by which the smooth surface equiv. to a polished surface is obtd. without having the need for the polishing treatment by free abrasive grains. The shape accuracy formed by cutting or grinding by the fixed abrasive grains can be maintained as it is in this way and, therefore, the aberrations by the shear droop of the polished surface of a distributed index lens having a flat surface particularly on the lens surface are eliminated and the need for the polishing stage or both the polishing and grinding stage is eliminated and the lens working cost is drastically reduced.

Description

【発明の詳細な説明】 し産業上の利用分野] 本発明は、屈折率分布型レンズ、球面レンズ等の結像素
子の製造における研磨処理の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in polishing processing in the production of imaging elements such as gradient index lenses and spherical lenses.

[従来の技術] 以下、屈折率分布をレンズアレイ(以下中、に「レンズ
アレイ」と呼ぶ)の製造工程を例にとり説明する。
[Prior Art] Hereinafter, the refractive index distribution will be explained using the manufacturing process of a lens array (hereinafter referred to as "lens array") as an example.

第1図に示す゛ようにレンズアレイ1は、カラスロッド
レンズ2の多数本を光軸をモ行にし、−列又は複数列で
密接配列し、ガラス繊維強化グラスチック(F RP 
)等から成る上下板材3及び左右スペーサー材4で挾持
するとともに、間隙に黒色シリコン樹脂等の接着剤5を
充填して固着一体止して構成され、複写機、ファクシミ
リ、光プリンタ等の光学系として広く使用されている。
As shown in FIG. 1, a lens array 1 includes a large number of crow rod lenses 2 arranged closely in one or more rows with the optical axis in a row, and made of glass fiber reinforced plastic (FRP).
), etc., and are sandwiched by upper and lower plates 3 and left and right spacer materials 4, and the gap is filled with an adhesive 5 such as black silicone resin to fix and hold them together. It is widely used as

ロッドレンズ2は、断面内で屈折率が中心軸上で最大で
外周に向けてパラポックに減少する分布を有しており、
両端面(光入出射面)が平行平面であって通常の球面レ
ンズと同様の結像作用を持っている。
The rod lens 2 has a distribution in which the refractive index is maximum on the central axis and decreases parapically toward the outer periphery within the cross section.
Both end surfaces (light input/output surfaces) are parallel planes, and have the same imaging effect as a normal spherical lens.

上記のレンズアレイ1を製作するには、第9図に示ずよ
うにます長尺のロッドレンズ母材をイオン交換処理で製
作し、このロッドレンズ母材の多数本を密接配列して、
長尺の挾持板材3及びスペーサ一部材4を用いて長尺の
レンズアレイ母材lOを製作する。
To manufacture the above lens array 1, as shown in FIG. 9, a long rod lens base material is manufactured by ion exchange treatment, and a large number of rod lens base materials are closely arranged.
A long lens array base material IO is manufactured using a long holding plate material 3 and a spacer member 4.

次に、このレンズアレイ母材10を、ロッドレンズの長
さ方向に一定幅でダイヤモンドホイールカッター6によ
り切断する。
Next, this lens array base material 10 is cut with a diamond wheel cutter 6 at a constant width in the length direction of the rod lens.

切断されたレンズアレイ1の多数本を、レンズ端面が上
下になるようにして積層するとともにホルダ7で保持し
、レンズ面を両面ラッピング装置8でダイヤベレットを
用いて荒削りする。
A large number of cut lens arrays 1 are stacked with the lens end faces facing up and down and held in a holder 7, and the lens surfaces are rough-cut using a diamond pellet by a double-sided lapping device 8.

次いでラップ砥粒による仕上削りを行なった後、ジルコ
ニア等の遊離砥粒研磨剤を用いて鏡面仕上げ研磨してい
る。
Next, finish polishing is performed using lap abrasive grains, and then mirror finish polishing is performed using a free abrasive polishing agent such as zirconia.

[発明が解決しようとする問題点1 上述した従来の方法では、ガラス製のロッドレンズ2と
、周囲の樹脂材料3.4.5との間で被加工性に差異が
あり、このため遊離砥粒による研磨でガラスよりも樹脂
材の方がより速く1iJle:され、この他研磨布の弾
力性の影響もあって、第9図に示すように研磨後の1コ
ツトレンズ2の端面の周縁は、完全な直角面とならずR
形状となるいわゆる面ダレを生じる。このような面タレ
があると、レンズの結像距離のずれ及び非点収差が発生
ずる。
[Problem to be Solved by the Invention 1] In the conventional method described above, there is a difference in workability between the glass rod lens 2 and the surrounding resin material 3.4.5. Resin material is polished faster than glass by grain polishing, and due to the influence of the elasticity of the polishing cloth, as shown in FIG. R is not a perfect right angle surface
This causes so-called surface sag, which becomes the shape. Such surface sagging causes a shift in the imaging distance of the lens and astigmatism.

また切断、荒削り、ラップ、仕上げ研磨と多くの加]二
工程を必要とし、砥粒等の費用が嵩むという問題がある
Furthermore, it requires two processes, including cutting, rough cutting, lapping, and final polishing, and there is a problem in that the cost of abrasive grains and the like increases.

さらに、レンズガラス表面の耐候性、特にオゾン雰囲気
での耐久性が悪いといった問題もある。
Furthermore, there is a problem that the weather resistance of the lens glass surface is poor, especially in an ozone atmosphere.

[問題点を解決するためのf段] 少なくとも遊離砥粒による研磨処理を省略し、切断ない
しは研削で得られる粗面状態の表面に、固体透明被覆材
を粗面凹凸を埋めるように設けて研磨面と同等の平滑な
表面とする。
[Step F to solve the problem] At least the polishing process using free abrasive grains is omitted, and a solid transparent coating material is provided on the rough surface obtained by cutting or grinding to fill in the rough surface irregularities and polished. The surface should be as smooth as the surface.

[作用J 被覆材の屈折率が素子のそれとほぼ一致していれば、粗
面による乱反射を生じることなく、平滑な研磨面と同様
に光線が直進入射する。したがって光学性能の劣化を伴
なうことなく研磨加工を省略することができる。
[Operation J] If the refractive index of the covering material substantially matches that of the element, light rays will enter directly as if on a smooth polished surface without causing diffuse reflection due to the rough surface. Therefore, polishing can be omitted without deteriorating optical performance.

[実施例] 第2図において20は、先に第8図(イ)に示したダイ
ヤモンドホイールカッター6による長尺レンズアレイ母
材lOからの切り出し後のレンズアレイ1の表面を示し
ている。
[Example] In FIG. 2, reference numeral 20 indicates the surface of the lens array 1 after being cut out from the long lens array base material IO using the diamond wheel cutter 6 previously shown in FIG. 8(A).

図示のように、アレイ中のロッドレンズ2の両端面(光
入出射面)は、fiMJな凹凸を有する粗面20となっ
ている。
As shown in the figure, both end surfaces (light input/output surfaces) of the rod lenses 2 in the array are rough surfaces 20 having fiMJ irregularities.

この粗面凹凸の高さは、砥粒の粒度によるが、一般にダ
イヤモンドホイールによる切断面は0.5μm〜・5μ
m程度である。
The height of this rough surface unevenness depends on the grain size of the abrasive grains, but generally the cut surface with a diamond wheel is 0.5 μm to 5 μm.
It is about m.

上記の切断処理の後、研削及び研磨を行なうかわりに、
第3図に拡大して示すように、赦低限上記凹凸20を埋
める厚みで、固体透明材料から成る被覆層9を設けるこ
とにより表面を平滑化する。
Instead of grinding and polishing after the above cutting process,
As shown in an enlarged view in FIG. 3, the surface is smoothed by providing a coating layer 9 made of a solid transparent material with a thickness that fills the above-mentioned unevenness 20.

この被覆層9としては、アクリル系、エポキシ系等の各
種合成樹脂、あるいはゾルゲルガラス等の無機材料が使
用できる。
As the coating layer 9, various synthetic resins such as acrylic and epoxy resins, or inorganic materials such as sol-gel glass can be used.

また皮膜形成方法としては、液状の被膜形成材料を浸漬
、スプレー塗布等周知の方法で塗布[7た後、加熱、紫
外線照射(UV樹脂の場合)などにより硬化させる方法
をとることができる。
The film can be formed by applying a liquid film-forming material by a well-known method such as dipping or spray coating [7], and then curing it by heating, ultraviolet irradiation (in the case of UV resin), etc.

なお透明被覆層9は、レンズ2の端面に施されていれば
よいが、レンズアレイlでは被覆処理の作業性を考慮す
ると、周囲のレンズ挾持板材3、スペーサ一部材4、充
填接着材5も含めたレンズアレイの端面全体にわたり被
覆層9を施すのが都合が良い。
Note that the transparent coating layer 9 may be applied to the end face of the lens 2, but in consideration of the workability of the coating process for the lens array l, the surrounding lens holding plate material 3, spacer member 4, and filling adhesive material 5 may also be applied. It is convenient to apply the coating layer 9 over the entire end face of the included lens array.

本発明による効果を晃るために以下の実験を行なった。The following experiments were carried out to examine the effects of the present invention.

断面内における平均屈折率か1.62のロッドレンズ2
を製作し、このロッドレンズ2の光入出射端面を神々の
表面粗さに研削、研磨加工し、屈折率の異なるマツチン
グオイルに端面を浸した状態で光学性能を測定した。そ
の結果を第4図に示す。図中のN2は各マツチングオイ
ルの屈折率であり、グラフの横軸は空間周波数W (j
 D 10n+)を表し、たて軸はM ’[” F (
Modulation TransferFIJnCt
iOn)を表わしている。
Rod lens 2 with an average refractive index of 1.62 in the cross section
The light input/output end face of this rod lens 2 was ground and polished to divine surface roughness, and the optical performance was measured with the end face immersed in matching oils with different refractive indexes. The results are shown in FIG. N2 in the figure is the refractive index of each matching oil, and the horizontal axis of the graph is the spatial frequency W (j
D 10n+), and the vertical axis represents M'[”F (
Modulation TransferFIJnCt
iOn).

グラフ中の曲線aは面粗さR□x=0.1μln以下の
面(研磨面)、bはJIS粒度600番の砥粒での研削
で得られた面粗さrt1ax= o 、 sμmの面、
CはJIS粒度400番の砥粒での研削で得られた面粗
さR□x=2.2μmの面、dはJIS粒歿325番の
砥粒での研削で得られた面■さRlax−3,2μmの
面である。
Curve a in the graph is a surface with surface roughness R□x=0.1μln or less (polished surface), and b is a surface with surface roughness rt1ax=o, sμm obtained by grinding with abrasive grains of JIS grain size No. 600. ,
C is a surface with a surface roughness R x = 2.2 μm obtained by grinding with an abrasive grain of JIS grain size No. 400, and d is a surface roughness R lax obtained by grinding with an abrasive grain of JIS grain size No. 325. -3.2 μm surface.

同図から、被覆層の屈折率N2が、レンズの周辺と中心
との間の範囲にあるか、又はこの範囲から外れていても
レンズ面の面粗さR11axが1μm以下であれば、研
磨品と同等の光学性能が得られることがわかる。′&た
被覆層の屈折率が、レンズの周辺と中心の平均値になっ
ていれば、研磨品よりも高周波域での解像力の改善が望
める。
From the same figure, if the refractive index N2 of the coating layer is within the range between the periphery and the center of the lens, or even if it is out of this range but the surface roughness R11ax of the lens surface is 1 μm or less, the polished product It can be seen that the same optical performance can be obtained. If the refractive index of the coating layer is the average value between the periphery and the center of the lens, it can be expected that the resolving power in the high frequency range will be improved compared to a polished product.

以上、本発明をレンズアレイについて説明したか、第5
図に示すように単一のロッドレンズ2に対しても適用で
きることは言うまでもない。
Above, the present invention has been explained with respect to a lens array.
It goes without saying that the present invention can also be applied to a single rod lens 2 as shown in the figure.

また屈折率分布型レンズに限らず、第6図に示すように
球面レンズ12に対しても適用できる。
Further, the present invention is not limited to a gradient index lens, but can also be applied to a spherical lens 12 as shown in FIG.

さらに、レンズ基材の面粗さと被覆材の屈折率を適当に
選択することにより、レンズ基材と被覆材との界面での
光の散乱をコントロールできるため、低周波特性を意図
的に悪くしたソフトフォーカスレンズの製作も可能であ
る。
Furthermore, by appropriately selecting the surface roughness of the lens base material and the refractive index of the coating material, it is possible to control the scattering of light at the interface between the lens base material and the coating material. It is also possible to produce soft focus lenses.

また、第7図のようにガラス母材を研削して球面レンズ
12を製作し、被覆層9を非球面金型を用いた樹脂材の
モールディングで付着形成することにより、非球面レン
ズ13を製作することもできる。
Further, as shown in FIG. 7, a spherical lens 12 is manufactured by grinding a glass base material, and an aspherical lens 13 is manufactured by attaching and forming a coating layer 9 by molding a resin material using an aspherical mold. You can also.

上記方法によれば、非球面金型によるガラスのプレス成
形に比べて熱的制約が小さいため、製作も容易で高精度
を得やすく、また樹脂材でレンズ全体をモールディング
成形する方法に比べて、レンズの熱的性能劣化が小さい
According to the above method, the thermal constraints are smaller than press molding of glass using an aspherical mold, so it is easier to manufacture and achieve high precision, and compared to the method of molding the entire lens with resin material. Thermal performance deterioration of the lens is small.

さらに、モールディングの際にレンズ周辺にマウント枠
を設けることもできる。
Furthermore, a mount frame can be provided around the lens during molding.

本発明に係る被覆層として、透明着色樹脂、防熱樹脂、
電導樹脂等を用いることにより、研磨加二[の代用に加
えて種々の機能を兼用させることができる。
As the coating layer according to the present invention, transparent colored resin, heat-resistant resin,
By using a conductive resin or the like, it can serve various functions in addition to being used as a substitute for polishing.

[発明の効果] 本発明によれば、固定砥粒による切断又は研削加工で生
成された形状精度をそのまま保持できるので、特にレン
ズ面が平坦面である屈折率分布型レンズにおいて、研磨
面ダレによる収差が改善され、研磨加工工程又は研削加
工と研磨加工の両工程を省略することができ、レンズ加
工費用の大幅な費用節減を図ることができる。
[Effects of the Invention] According to the present invention, the shape accuracy generated by cutting or grinding using fixed abrasive grains can be maintained as is, so that it is possible to maintain the shape accuracy as is due to sagging of the polished surface, especially in a gradient index lens where the lens surface is a flat surface. Aberrations are improved, a polishing process or both grinding and polishing processes can be omitted, and lens processing costs can be significantly reduced.

またレンズ母材の削り代を小さくできるので、材料歩留
を大幅に向上させることができる。
Furthermore, since the amount of machining of the lens base material can be reduced, the material yield can be significantly improved.

さらに、被覆層として耐候性に優れた材質のものを用い
ることによって、レンズガラス表面をオゾン、湿気から
遮断でき耐候性が向上するとともに、被覆層は基材のm
細凹凸面に接して設けられているので、平滑な研磨面上
に設けた場合に比べて膜の接着強度が高く剥離し誼い。
Furthermore, by using a material with excellent weather resistance for the coating layer, the lens glass surface can be shielded from ozone and moisture, improving weather resistance.
Since the film is provided in contact with a finely uneven surface, the adhesive strength of the film is higher than when it is provided on a smooth polished surface, and peeling and deterioration occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は結像素子の一例としてのレンズアレイを示す斜
視図、第2図は粗面状態のレンズアレイ表面に被覆層を
設けた構造を示す断面図、第3図は要部拡大断面図、第
4図は被覆層の屈折率を種々変えてレンズアレイの解像
力を測定した結果を示すM i’ r”−空間周波数特
性線図、第5図はlit −の屈折率分布型レンズに本
発明を適用した例を示す断面図、第6図は球面レンズに
本発明を適用した例を示す断面図、第7図は本発明を非
球面レンズに適用した例を示す断面図、第8図(イ)は
レンズアレイの切断工程を示す斜視図、第8図(ロ)は
レンズアレイの研削、研磨工程を示ずa!1面図、第9
図は従来の研磨工程で生じるレンズの面ダレを示す断面
図である。 1・・・レンズアレイ、2・・・屈折率分布型ロッドレ
ンズ、3・・・挾持板、4・・・スペーサー 5・・・
充填接着剤、6・・・ホイールカッター、9・・・透明
被覆層、10・・・レンズアレイ母材、12・・・球面
レンズ、13・・・非球面レンズ、20・・・粗面。 第 図 第 図 第 図 第 図 第 図 第 図 第 図 )−−−一ロ 第 図 第9 図 手続補正書 7゜ 補正の内容 昭和63年 8月 2日 1)明細書第2頁第6行に「パラポック」とあるのを「
バラポリツク」と補正する。 明細書第2頁第10行ないし第11行に「第9図に2゜ 特願昭  −号 昭和63年7月19日提出の特許願 発明の名称 結像素子 示すように」とあるのを削除する。 3)明細書第2頁第14行に「・ −・を用いて長尺の」 3゜ 補正をする者 とあるのをr− ・・を用いて第8図に示すような長 4、 事件との関係 特許出願人 住所  大阪府大阪市東区道峰町4丁目8番地名称  
(400)日本板硝子株式会社代表者 中島達二
Fig. 1 is a perspective view showing a lens array as an example of an imaging element, Fig. 2 is a sectional view showing a structure in which a coating layer is provided on the surface of the lens array in a rough state, and Fig. 3 is an enlarged sectional view of main parts. , Fig. 4 is a M i'r''-spatial frequency characteristic diagram showing the results of measuring the resolving power of the lens array with various refractive indexes of the coating layer, and Fig. 5 is a M i'r''-spatial frequency characteristic diagram showing the results of measuring the resolving power of the lens array with various refractive indexes of the coating layer. 6 is a sectional view showing an example in which the invention is applied to a spherical lens; FIG. 7 is a sectional view showing an example in which the invention is applied to an aspherical lens; FIG. 8 is a sectional view showing an example in which the invention is applied to an aspherical lens. (A) is a perspective view showing the cutting process of the lens array, Figure 8 (B) shows the grinding and polishing process of the lens array;
The figure is a cross-sectional view showing surface sagging of a lens that occurs during a conventional polishing process. 1... Lens array, 2... Gradient index rod lens, 3... Holding plate, 4... Spacer 5...
Filling adhesive, 6... Wheel cutter, 9... Transparent coating layer, 10... Lens array base material, 12... Spherical lens, 13... Aspherical lens, 20... Rough surface. (Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. 9). ``parapok'' is written as ``
"Baraporitsuku," he corrected. On page 2 of the specification, lines 10 to 11, there is a statement that says, ``Figure 9 shows the name of the patented invention filed on July 19, 1988, 2゜Patent Application No. 1988.'' delete. 3) In the 14th line of page 2 of the specification, the person who makes the 3゜ amendment using ``--'' is replaced with ``r-...'' to create a long 4-degree case as shown in Figure 8. Relationship with Patent applicant address 4-8 Domine-cho, Higashi-ku, Osaka-shi, Osaka Name
(400) Tatsuji Nakajima, Representative of Nippon Sheet Glass Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 切断、研削等によって得られた粗面状態の結像素子の光
入出射面を、凹凸を埋めて平滑化するように固体透明材
料で被覆して成る結像素子。
An imaging element in which the light input/output surface of the imaging element, which has a rough surface obtained by cutting, grinding, etc., is coated with a solid transparent material so as to fill in the unevenness and smooth the surface.
JP17939788A 1988-07-19 1988-07-19 Imaging element Pending JPH0229602A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17939788A JPH0229602A (en) 1988-07-19 1988-07-19 Imaging element
US07/810,347 US5638479A (en) 1988-07-19 1991-12-17 Optical part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17939788A JPH0229602A (en) 1988-07-19 1988-07-19 Imaging element

Publications (1)

Publication Number Publication Date
JPH0229602A true JPH0229602A (en) 1990-01-31

Family

ID=16065152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17939788A Pending JPH0229602A (en) 1988-07-19 1988-07-19 Imaging element

Country Status (1)

Country Link
JP (1) JPH0229602A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566601U (en) * 1992-02-17 1993-09-03 日本板硝子株式会社 Lens array with channel type cover
JP2006218603A (en) * 2005-02-14 2006-08-24 Olympus Corp Rod-shaped worked body, its working device and its working method
JP2007052361A (en) * 2005-08-19 2007-03-01 Mitsubishi Rayon Co Ltd Cutting apparatus for rod lens array original plate
JP2007136704A (en) * 2005-11-15 2007-06-07 Fuji Xerox Co Ltd Optical writing head, image forming apparatus, and method for manufacturing optical writing head
JP2016133704A (en) * 2015-01-21 2016-07-25 三菱レイヨン株式会社 Rod lens array and non-zoom imaging optical system using the same
WO2024095915A1 (en) * 2022-10-31 2024-05-10 日本板硝子株式会社 Lens assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114423A (en) * 1974-02-23 1975-09-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114423A (en) * 1974-02-23 1975-09-08

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566601U (en) * 1992-02-17 1993-09-03 日本板硝子株式会社 Lens array with channel type cover
JP2006218603A (en) * 2005-02-14 2006-08-24 Olympus Corp Rod-shaped worked body, its working device and its working method
JP2007052361A (en) * 2005-08-19 2007-03-01 Mitsubishi Rayon Co Ltd Cutting apparatus for rod lens array original plate
JP2007136704A (en) * 2005-11-15 2007-06-07 Fuji Xerox Co Ltd Optical writing head, image forming apparatus, and method for manufacturing optical writing head
JP2016133704A (en) * 2015-01-21 2016-07-25 三菱レイヨン株式会社 Rod lens array and non-zoom imaging optical system using the same
WO2024095915A1 (en) * 2022-10-31 2024-05-10 日本板硝子株式会社 Lens assembly

Similar Documents

Publication Publication Date Title
US4268134A (en) Lightweight laminated photochromic lenses
CN101874222B (en) Polarized lens and method of making polarized lens
JP2006139276A (en) Curved optical device and method of fabrication
EP0936495A1 (en) Liquid-crystal display device
JP2017516155A (en) Creation of eyewear and lenses using multilayer additive technology
US5269867A (en) Method for producing optical device
JPH0764033B2 (en) Junction type optical member and manufacturing method thereof
MXPA06007894A (en) Microlens arrays.
JPH0229602A (en) Imaging element
GB2098349A (en) Telescope reflector
WO1997035216A1 (en) Coated film for applying to light transmitting articles
CN110716248B (en) Processing technology of multi-column multi-row equivalent negative refractive index flat lens
JPH07191207A (en) Reflection type composite optical element
WO2020006780A1 (en) Processing technology for single-column and multi-row equivalent negative refractive index plate lens
US2420270A (en) Laminated optical filter
JPH0659104A (en) Production of aspherical optical element
JPH0971439A (en) Aspheric optical element and its production
JP3847825B2 (en) Manufacturing method of optical transmitter array
JP3111677B2 (en) Manufacturing method of aspherical optical element
JPH04504087A (en) How to make high quality plastic lenses for eyeglasses
CN113825627B (en) Process for automatically gluing photochromic lenses and polarized photochromic lenses, system for performing said process and lenses obtained with said process
JPH04166802A (en) Work method for light transmitter array
JPH01281408A (en) Light transmission body
JP4009287B2 (en) Manufacturing method of resin optical transmitter array
JP2002228804A (en) Method for manufacturing optical element, optical element by the same, display element and display device having the optical element, and imaging device and image pickup unit having the optical element