JPH02290929A - Vacuum refining method for molten metal - Google Patents

Vacuum refining method for molten metal

Info

Publication number
JPH02290929A
JPH02290929A JP10717889A JP10717889A JPH02290929A JP H02290929 A JPH02290929 A JP H02290929A JP 10717889 A JP10717889 A JP 10717889A JP 10717889 A JP10717889 A JP 10717889A JP H02290929 A JPH02290929 A JP H02290929A
Authority
JP
Japan
Prior art keywords
molten metal
gas
pressure
bubbles
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10717889A
Other languages
Japanese (ja)
Inventor
Yoshiteru Kikuchi
良輝 菊地
Eiju Matsuno
英寿 松野
Toshio Takaoka
利夫 高岡
Yoshihiko Kawai
河井 良彦
Toshio Ishii
俊夫 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10717889A priority Critical patent/JPH02290929A/en
Publication of JPH02290929A publication Critical patent/JPH02290929A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To generate fine bubbles from the innermost in a bath and to improve refining efficiency by controlling the atmosphere in a furnace to the prescribed pressure at the time of removing inclusions by allowing the inclusions to be entrapped by the bubbles generated by evacuating a molten metal in which gas is dissolved. CONSTITUTION:Evacuation is carried out simultaneously with or after the dissolution of gas in a molten metal, by which fine gas bubbles are generated in the above molten metal. Subsequently, inclusions existing in the molten metal are removed by allowing the inclusions to be entrapped by the bubbles. At this time, the pressure Pa of the atmosphere in the furnace in which the above treatment is exerted is controlled so that the value of Px-Pa (where Px means the equilibrium of gaseous partial pressure the soluble gas in the molten metal) is regulated to >=0.05atm.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は溶融金属中の不純物・介在物を除去する真空
精錬法に関する。 〔従来の技術〕 本発明者等は溶融金属中の介在物除去効率を高めるため
,次のような提案を行なった。即ち,溶融金属に、これ
に可溶なガスをパブリングして溶解せしめると共に、減
圧によって該溶融金属中に微細ガス気泡を発生させると
いうものである。この方法によれば溶融金属中の介在物
は微細なものまでこの気泡にトラップされて浮上するこ
とになり、介在物除去能力が非常に高いものとなる。 一方本発明者等は、上記の介在物除去における気泡浮上
の状態にヒントを得て、これを脱ガス精錬法またはスラ
グ精錬法に応用する開発を行なった.即ち、上記の手順
に従って溶融金属中に微細ガス気泡を発生せしめ、その
浮上により該溶融金属と雰囲気との界面あるいは溶融金
属と溶融スラグの界面をばたつかせてその反応界面積を
増大せしめるというものである。このガス気泡は溶融金
属全域から発生するため,上記界面のばたつきは該界面
全面に及ぶ。しかも、そのガス気泡は微細なものが多量
に発生するため、上記反応界面積の増大は顕著なものと
なり、脱ガス精錬やスラブ精錬による不純物除去能力は
非常に高いものとなる.〔発明が解決しようとする問題
点〕 いずれの精錬法も溶融金属中の介在物・不純物を除去し
、超清浄溶湯を得るには非常に効率の良い方法であるが
,減圧処理時間が依然20分程度必要であり、これを更
に短縮せしめて効率化を図りたいという要請があった。 本発明は以上の問題に鑑み創案されたものであり、上述
した真空精錬法における減圧処理条件の最適化を図り、
以ってその処理時間を短縮せしめようとするものである
。 〔問題点を解決するための手段〕 そのため本発明は上述した介在物除去方法及び介在物・
不純物除去方法において、減圧時に溶融金属中の可溶ガ
ス成分の平衡ガス分圧Pxに対し、処理する炉内の雰囲
気圧力Paを下式に示される条件で制御することを基本
的特徴としている。 P x  ? a≧0 . 0 5 (atm)この構
成の創案に当っては、次に述べることがそのベースとな
った。即ち、微細ガス気泡による介在物トラップ効率は
、微細ガス気泡生成量が同じであれば,気泡径が小さい
程又浴の深い所から生成する程良好になる.又ガス気泡
の浮上で溶融スラグとの界面をばたつかせ、反応界面積
の増大を図る場合にもその反応効率の面からは気泡径が
小さい程良い.一方、気泡発生条件としては、例えば第
2図に示すように可溶ガスXを溶湯(1)中にパブリン
グして溶かした場合、そのガス成分(X)が微細ガス気
泡(2)として発生するための条件は、その平衡ガス分
圧Pxに対し、次式を満たすものでなければならない。 2 σ Px  ≧ Pa  +ρgh+− r Pa: 脱ガス時の炉内雰囲気圧力 g : 重力加速度 h : 気泡発生深さ σ :溶湯の表面張力 r :臨界気泡半径 該式から明らかように、炉内の雰囲気圧力Paが減圧時
に低い値となればなる程、微細ガス気泡(2)が発生し
易くなる。又浴の深い(hの大きい)所からの気泡(2
)発生も可能となるし、更に該気泡(2)の径自身も小
さいものが得られ易くなる.そこで本発明者等は、後述
する実施例の試験を行ない、その試験結果から、溶湯(
1)中の可溶ガス成分(X)の平衡ガス分圧Pxに対し
、どの程度炉内の雰囲気圧力Paを下げたら、介在物・
不純物の除去処理に有効かを明らかにした.即ち、減圧
処理中にPx−Pa≧0.05 atmになるように圧
力を制御することにより、浴中深くから微細なガス気泡
を大量に発生させ,精錬効率を大幅に上昇させることが
可能であることを見い出し、以上の構成を本発明として
提案したものである。 〔実施例〕 以上本発明の具体的実施例につき説明する。 本発明者等は,50tonVAD設備内にT,(0)=
= 2 5 ppl1、(N)= 2 6 0ppmの
溶鋼50tonを入れ、1660℃で6 5 0 to
rrに保ちながら、取鍋底部よりポーラスプラグで10
分間かけて6N113のNtガスを吹込んだ.その後急
速に減圧しそのまま放置した.この時同時に取鍋底部か
らArガスを3 Q N Q /winでパブリングし
、溶鋼の撹拌を行なった。第1図は溶鋼中のN8ガスの
平衡ガス分圧Pxに対し炉内ガス圧力Paをそれ以下に
下げた場合に、減圧開始当初T・
[Industrial Application Field] This invention relates to a vacuum refining method for removing impurities and inclusions in molten metal. [Prior Art] The present inventors have proposed the following in order to improve the efficiency of removing inclusions from molten metal. That is, a gas soluble in the molten metal is bubbled into the molten metal to dissolve it, and fine gas bubbles are generated in the molten metal by reducing the pressure. According to this method, even minute inclusions in the molten metal are trapped by the bubbles and floated to the surface, resulting in extremely high inclusion removal ability. On the other hand, the present inventors got a hint from the bubble floating state in the above-mentioned inclusion removal, and developed the application of this to a degassing refining method or a slag refining method. That is, according to the above procedure, fine gas bubbles are generated in the molten metal, and their floating causes the interface between the molten metal and the atmosphere or the interface between the molten metal and molten slag to flutter, thereby increasing the reaction interface area. It is. Since these gas bubbles are generated from the entire area of the molten metal, the flutter at the interface extends over the entire area of the interface. Moreover, since a large number of fine gas bubbles are generated, the increase in the reaction interface area becomes remarkable, and the ability to remove impurities by degassing refining or slab refining becomes extremely high. [Problems to be solved by the invention] Both refining methods are very efficient methods for removing inclusions and impurities in molten metal and obtaining ultra-clean molten metal, but the decompression processing time still takes 20 minutes. There was a request to further shorten this time and improve efficiency. The present invention was devised in view of the above problems, and aims to optimize the reduced pressure processing conditions in the vacuum refining method described above.
This is intended to shorten the processing time. [Means for solving the problem] Therefore, the present invention provides the above-mentioned method for removing inclusions and
The basic feature of the impurity removal method is that the atmospheric pressure Pa in the processing furnace is controlled under the conditions shown in the following formula with respect to the equilibrium gas partial pressure Px of the soluble gas component in the molten metal during pressure reduction. Px? a≧0. 0 5 (atm) The following was the basis for creating this configuration. In other words, the inclusion trapping efficiency by fine gas bubbles becomes better as the bubble diameter becomes smaller and the bubbles are generated from deeper in the bath, provided that the amount of fine gas bubbles generated is the same. Also, when attempting to increase the reaction interface area by flapping the interface with the molten slag by floating gas bubbles, the smaller the bubble diameter, the better from the standpoint of reaction efficiency. On the other hand, as a bubble generation condition, for example, when soluble gas X is bubbled into molten metal (1) and dissolved as shown in Fig. 2, the gas component (X) is generated as fine gas bubbles (2). The conditions for this must satisfy the following equation for the equilibrium gas partial pressure Px. 2 σ Px ≧ Pa +ρgh+- r Pa: Atmospheric pressure in the furnace during degassing g: Gravitational acceleration h: Bubble generation depth σ: Surface tension of the molten metal r: Critical bubble radius As is clear from the equation, the atmosphere inside the furnace The lower the pressure Pa becomes during depressurization, the more likely fine gas bubbles (2) are generated. Also, air bubbles (2
) can be generated, and furthermore, the diameter of the bubbles (2) itself becomes smaller. Therefore, the present inventors conducted tests in the examples described below, and from the test results, the molten metal (
1) To what extent should the atmospheric pressure Pa in the furnace be lowered relative to the equilibrium gas partial pressure Px of the soluble gas component (X) in the mixture?
We clarified whether this method is effective in removing impurities. In other words, by controlling the pressure so that Px-Pa≧0.05 atm during the depressurization process, it is possible to generate a large amount of fine gas bubbles from deep within the bath, thereby greatly increasing the refining efficiency. We have discovered this and proposed the above configuration as the present invention. [Example] Specific examples of the present invention will be described above. The present inventors installed T, (0)=
= 25 ppl1, (N) = 50 tons of molten steel of 260 ppm and heated at 1660°C to 650 to
10 with a porous plug from the bottom of the ladle while keeping it at rr.
6N113 Nt gas was injected over a period of minutes. Afterwards, the pressure was rapidly reduced and the specimen was left as it was. At the same time, Ar gas was bubbled from the bottom of the ladle at a rate of 3 Q N Q /win to stir the molten steel. Figure 1 shows that when the furnace gas pressure Pa is lowered below the equilibrium gas partial pressure Px of N8 gas in molten steel, T

〔0〕が25ppmあ
った溶鋼が6 ppm以下となるまでに要する減圧開始
後の放置時間(脱酸時間)を調べ、グラフにしたもので
ある.尚、同図のX軸座標は、前記平衡ガス分圧Pxと
炉内ガス圧力Paとの差(Px−Pa)に関し、減圧処
理中におけるその平均を採ったものである。 同図から明らかなように、平均(Px−Pa)が0,0
5 atmを境に脱酸に要する放置時間が大幅に短くな
っており、従って減圧時にこの差が0.05atm以上
になるよう(好ましくは0.1atII1以上になるよ
う)に炉内圧力Paを制御することで、全体の処理時間
の短縮化が図れることが明らかとなった。 又、脱ガス精錬やスラグ精錬においても、一旦溶鋼中八
N2ガスを吹込んで後の減圧処理時に、上記の範囲の圧
力差になるように炉内圧力Paを制御することでそれぞ
れ脱H反応、脱硫反応の進行が著しくなり、処理時間の
短縮化に有効であることを確認している。 尚、減圧時に、炉内の雰囲気圧力Paを急激に低くする
と、微細ガス気泡のみが大量に生成し、介在物をトラッ
プせずに浮上し抜け出してしまうので、可溶ガス成分(
X)の脱ガス挙動を見ながら或いは予測して炉内の雰囲
気圧力Paを適宜制御し、結果として平衡ガス分圧Px
との差の平均が上述の範囲となるようにすると良い。
This is a graph of the standing time (deoxidation time) required after the start of decompression for the molten steel, which had 25 ppm of [0], to become 6 ppm or less. Note that the X-axis coordinate in the figure is the average of the difference (Px-Pa) between the equilibrium gas partial pressure Px and the furnace gas pressure Pa during the pressure reduction process. As is clear from the figure, the average (Px-Pa) is 0,0
The standing time required for deoxidation is significantly shorter after 5 atm, so the furnace pressure Pa is controlled so that this difference is 0.05 atm or more (preferably 0.1atII1 or more) when depressurizing. It has become clear that by doing so, the overall processing time can be shortened. In addition, in degassing refining and slag refining, the dehydration reaction and slag refining can be achieved by controlling the furnace pressure Pa so that the pressure difference is within the above range during the depressurization treatment after once injecting N2 gas into the molten steel. It has been confirmed that the desulfurization reaction progresses significantly and is effective in shortening processing time. Note that if the atmospheric pressure Pa in the furnace is suddenly lowered during depressurization, only fine gas bubbles will be generated in large quantities and will float up and escape without trapping inclusions, so soluble gas components (
The atmospheric pressure Pa in the furnace is appropriately controlled while observing or predicting the degassing behavior of X), and as a result, the equilibrium gas partial pressure Px
It is preferable that the average difference between the two values falls within the above range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は脱酸時間と平均(Px−Pa)の相関関係を示
すグラフ図、第2図は溶湯中に溶解せしめたガスの微細
ガス気泡発生条件を示す説明図である。 図中(1)は溶湯、(2)は微細ガス気泡を各示す。 脱酸峙間(分)
FIG. 1 is a graph showing the correlation between deoxidation time and average (Px-Pa), and FIG. 2 is an explanatory diagram showing the conditions for generating fine gas bubbles in the gas dissolved in the molten metal. In the figure, (1) shows the molten metal, and (2) shows the fine gas bubbles. Deoxidation time (min)

Claims (1)

【特許請求の範囲】 1、溶融金属中に、これに可溶なガスを溶解せしめ、そ
れと同時に或いはその後に減圧し、該溶融金属中に微細
ガス気泡を発生させ、この気泡にトラップせしめて溶融
金属中の介在物を除去する溶融金属の真空精錬法におい
て、減圧時に該溶融金属中の可溶ガス成分の平衡ガス分
圧Pxに対し、処理する炉内の雰囲気圧力Paを下式に
示される条件で制御することを特徴とする溶融金属の真
空精錬法。 Px−Pa≧0.05(atm) 2、溶融金属中に、これに可溶なガスを溶解せしめ、そ
れと同時に或いはその後に減圧し、該溶融金属中に微細
ガス気泡を発生させ、この気泡にトラップせしめて溶融
金属中の介在物を除去すると共に、該気泡の浮上により
溶融金属と雰囲気の界面および/または溶融金属と溶融
スラグの界面をばたつかせてその反応界面積を増大させ
、溶融金属中の不純物を除去する溶融金属の真空精錬法
において、減圧時に該溶融金属中の可溶ガス成分の平衡
ガス分圧Pxに対し、処理する炉内の雰囲気圧力Paを
下式に示される条件で制御することを特徴とする溶融金
属の真空精錬法。 Px−Pa≧0.05(atm)
[Claims] 1. Dissolve a gas soluble in the molten metal, reduce the pressure at the same time or after that, generate fine gas bubbles in the molten metal, trap the gas in the molten metal, and melt the metal. In a vacuum refining method for molten metal to remove inclusions in the metal, the atmospheric pressure Pa in the processing furnace is expressed by the following formula with respect to the equilibrium gas partial pressure Px of the soluble gas component in the molten metal when the pressure is reduced. A vacuum refining method for molten metal characterized by controlled conditions. Px-Pa≧0.05 (atm) 2. Dissolve a soluble gas in the molten metal, and reduce the pressure at the same time or after that to generate fine gas bubbles in the molten metal, and In addition to removing inclusions in the molten metal by trapping them, the floating of the bubbles causes the interface between the molten metal and the atmosphere and/or the interface between the molten metal and molten slag to flutter, increasing the reaction interface area, and removing the molten metal. In the vacuum refining method of molten metal to remove impurities in the molten metal, the atmospheric pressure Pa in the processing furnace is set under the conditions shown in the following formula with respect to the equilibrium gas partial pressure Px of the soluble gas component in the molten metal when the pressure is reduced. A vacuum refining method for molten metal characterized by control. Px-Pa≧0.05 (atm)
JP10717889A 1989-04-28 1989-04-28 Vacuum refining method for molten metal Pending JPH02290929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10717889A JPH02290929A (en) 1989-04-28 1989-04-28 Vacuum refining method for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10717889A JPH02290929A (en) 1989-04-28 1989-04-28 Vacuum refining method for molten metal

Publications (1)

Publication Number Publication Date
JPH02290929A true JPH02290929A (en) 1990-11-30

Family

ID=14452448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10717889A Pending JPH02290929A (en) 1989-04-28 1989-04-28 Vacuum refining method for molten metal

Country Status (1)

Country Link
JP (1) JPH02290929A (en)

Similar Documents

Publication Publication Date Title
JPH02290929A (en) Vacuum refining method for molten metal
JPH01188619A (en) Method for rh vacuum degasification
SU882416A3 (en) Method and device for steel treatment
US1555313A (en) Process of melting and degasifying metals under reduced pressure
JP2780342B2 (en) Vacuum degassing method for molten metal
JP3765266B2 (en) How to remove metal from vacuum degassing tank
KR930005065B1 (en) Method for cleaning molten metal and apparatus therefor
JP5010086B2 (en) Vacuum processing of molten metal with simultaneous stripping by helium injection.
JP2718096B2 (en) Vacuum cleaning method for molten metal
JPH05311226A (en) Reduced pressure-vacuum degassing refining method for molten metal
JP4406280B2 (en) Na removal method in silicon refining
JPH01279707A (en) Removal of nitrogen from iron
JPH02270908A (en) Method for cleaning molten metal
JP3829915B2 (en) Vacuum refining method for Al-containing molten steel
JPH036317A (en) Method and device for ladle refining
CA1339703C (en) Method for cleaning molten metal
JPH05287360A (en) Method for melting extremely low carbon steel
JPH02285036A (en) Vacuum refining method for molten metal
JP4639497B2 (en) Method for refining high carbon steel
JPH05239535A (en) Method for melting extreme-low carbon steel
JPH02285037A (en) Slag refining method for molten metal
JPH0459916A (en) Method for degassing from molten metal
SU707974A1 (en) Method of liquid metal denitration
JPH055575B2 (en)
JPH0741836A (en) Method for melting low nitrogen steel by low vacuum refining