JP3765266B2 - How to remove metal from vacuum degassing tank - Google Patents

How to remove metal from vacuum degassing tank Download PDF

Info

Publication number
JP3765266B2
JP3765266B2 JP2001373550A JP2001373550A JP3765266B2 JP 3765266 B2 JP3765266 B2 JP 3765266B2 JP 2001373550 A JP2001373550 A JP 2001373550A JP 2001373550 A JP2001373550 A JP 2001373550A JP 3765266 B2 JP3765266 B2 JP 3765266B2
Authority
JP
Japan
Prior art keywords
vacuum degassing
carbon steel
low carbon
ultra
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001373550A
Other languages
Japanese (ja)
Other versions
JP2003171716A (en
Inventor
大輔 高橋
守 須田
寛 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001373550A priority Critical patent/JP3765266B2/en
Publication of JP2003171716A publication Critical patent/JP2003171716A/en
Application granted granted Critical
Publication of JP3765266B2 publication Critical patent/JP3765266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の関係する技術の分野】
この発明は、低炭素鋼、極低炭素鋼の製造方法に供される真空脱ガス槽の地金除去方法に係り、特に真空脱ガス処理を施す際に生じる鋼中炭素[C]や鋼中酸素[O]の再上昇を防止するための真空脱ガス槽付着地金の除去方法に関する。
【0002】
【従来の技術】
自動車用鋼板や缶用鋼板に用いられる鋼は、加工性が非常に重視されるため炭素(C)の含有率を質量比で0.0025%以下のように極度に低下させることが要求される。このような極低炭素鋼は、転炉による通常の脱炭精錬のみでは、歩留まりが悪くなり、また、精錬時間が長くなるので、真空脱ガス槽を用い、必要に応じて槽内に酸素ガスを吹き込んで、減圧下でCO反応を活発に行わせて脱炭の進行を図って製造される。
【0003】
このような真空脱炭により極低炭素鋼等を溶製するに当たっての問題点の一つは、当該極低炭素鋼等を溶製するとき、それ以前に溶製した高炭素鋼等の地金が真空脱ガス槽内に付着し、その地金が高純度鋼である極低炭素鋼等を溶製する際に落下、あるいは再溶解して溶製中の極低炭素鋼中のCや酸素[O]の含有率を再上昇させること(以下、Cピックアップ、Oピックアップという)である。特に脱炭反応が進行して溶鋼組成が極低炭素域になったときに上記現象が起こると、製品の規格はずれを惹起する。そのため、極低炭素鋼を真空脱炭処理するときには、種々の方法で、例えば、実公平7-40509号公報に提案されているように地金を予め除去することが行われる。
【0004】
【発明が解決しようとする課題】
しかしながら、上記公報に提案されているような手段をすべての真空脱炭精錬において行うことは処理経費の増大を招き、また、真空脱ガス装置の使用スケジュールを乱して現実的ではなく、さらに仮に実行したとしても完全に地金を除去できるわけではないので、極低炭素鋼の溶製の際に生ずる汚染を完全には防止できない。本発明は、真空脱ガス装置の使用スケジュールを乱したり経費の増大をもたらすことなく、また、CピックアップやOピックアップを生ずることなく、極低炭素鋼を確実に製造しうる真空脱ガス槽付着地金の除去方法を提案することを目的とする。
【0005】
【課題を解決するための手段】
本発明者等は、真空脱ガス槽付着地金を除去するに際し、従来の如く、機械的手段によらず真空脱ガス処理(真空脱ガス方式としてRH式、DH式を含む)に供する比較的低炭素含有量の溶鋼により真空脱ガス槽内を洗浄すれば地金を効果的に除去できることに着目し、上記本発明の目的の達せられる条件を探求して本発明を完成した。
【0006】
本発明は、真空脱ガス処理後の最終 C 含有量が質量比で 25ppm 以下の極低炭素鋼を真空脱ガス処理によって溶製するのに先立って、前記極低炭素鋼の溶製に先立つ操業により真空脱ガス槽内の溶鋼到達レベル直上のフリーボード部に付着した地金を低炭素溶鋼によるリムド処理によって溶解・除去することとするものである。
【0007】
上記地金の溶解・除去は、質量比でC:0.02〜0.10%、O:50ppm以上を含有する低炭素鋼溶鋼を真空脱ガス槽内に導き真空脱ガス処理を施すリムド処理を施すことによって行われる。
【0008】
上記リムド処理は、継続して2回以上行うか、あるいは10min継続するリムド処理を少なくとも1回以上行うことが好適であり、これにより真空脱ガス処理の際に[C]および[O]の再上昇が起こることを確実に防止して、安定した極低炭素鋼の製造が可能になる。
【0009】
【発明の実施の形態】
以下、本発明をその実施手順に沿って説明する。図1は本発明を実施するときの転炉と真空脱ガス装置の稼働順序を、RH真空脱ガス装置を例として、模式的に示す説明図である。ここに示すように本発明では、極低炭素鋼の溶製に先立ち、低炭素鋼用溶鋼の溶製が転炉で行われ、RH真空脱ガス装置によってリムド処理される(ステージI)。リムド処理とは、Cに比してOを大量に含んだ溶鋼を真空処理し活発なC+1/2O2→CO反応を進行させる操作をいい、具体的には、質量比で C 0.02 0.10 %、 O 50ppm 以上を含有する低炭素鋼溶鋼を真空脱ガス槽内に導き真空脱ガス処理を施す操作をいう。
【0010】
この処理は後に説明する条件にしたがい、必要な時間に亘り、必要な回数繰り返し(ステージII)、これによって、それ以前の真空脱ガス処理の際にRH脱ガス槽の溶鋼到達レベル直上に付着していた地金を溶解・除去する。ついで、転炉で極低炭素用溶鋼の溶製を行い、出鋼後、RH真空脱ガス装置により脱炭反応を進行させる(ステージIII)。
【0011】
本発明は、基本的に上記操業手順により行われ、これによって真空脱ガス処理する際のCピックアップ、Oピックアップを防止することができるが、特に以下の点に留意して操業を行うことが必要である。
【0012】
まず、リムド処理に当たっては、それ以前の真空脱ガス処理によってフリーボード上に形成されていた地金が低炭素溶鋼によって完全に溶解・除去されるようにしなければならない。図2(a)は、例えば取鍋2に受鋼された高炭素鋼溶鋼MをRH脱ガス槽1内においてキルド処理による脱ガス処理を行う場合の槽内の模式図であるが、ここに示すように真空脱ガス槽1内には、溶鋼レベル直上に地金Sが付着する。この地金は、C含有率が高く、この地金Sの付着した状態の装置を極低炭素鋼の真空脱ガス処理に供すると、地金Sの再溶解によるCピックアップが発生する。
【0013】
したがって、リムド処理に当たっては、図2(b)に示すように低炭素鋼の溶鋼Mが前回の高炭素鋼の真空脱ガス処理において形成された真空脱ガス槽1内の地金Sのレベルを超えて上昇するように行うことが必要である。その条件は、真空脱ガス処理される低炭素鋼の〔C〕、〔O〕のバランス、真空脱ガス槽1内への還流ガスの吹き込み量等によって変化するが、これらは経験によって把握可能である。
【0014】
上記の条件に加え、上記リムド処理は、以下の条件を満足するように行うのが好ましい。まず、リムド処理に供する低炭素鋼の溶鋼はC:0.02〜0.10%、O:50ppm以上を含有するものとするのがよい。かかる組成を有する溶鋼に真空脱ガス処理を施すと、いわゆるCO反応によりリムド処理後の組成は、C:0.01〜0.04%を含有することになる。リムド処理によっても図2(b)に示すように、地金Sが真空脱ガス処理装置1内に付着するが、上記範囲内であれば、引き続く極低炭素鋼の処理に支障を生じない。なお、好ましくは、低炭素鋼のC含有率は0.02〜0.07%とするのがよい。この範囲では、リムド処理後のC量は0.01〜0.03%となり、Cピックアップを一層確実に防止できるからである。
【0015】
さらに、低炭素鋼のリムド処理は、その処理完了後に加炭処理を行わないようにし、そのため、製品の目標C含有量を下回らないようにリムド処理を行うことが好ましい。リムド処理による脱炭後に加炭処理を行うと、加炭の際に生じたC含有率の高い溶鋼による地金付きが生じ、それが次に極低炭素鋼を処理する際のCピックアップの原因になるからである。
【0016】
加えて、リムド処理は、5min以上継続して2回以上行うか、あるいは10min以上継続するリムド処理を少なくとも1回以上行うことが好ましい。図3は、処理能力250tの真空脱ガス装置を用い、溶鋼1t当たり還流ガス流量を0.0059m(標準状態)/minとの条件で処理したときの地金溶解・除去処理時間、処理回数と極低炭素鋼におけるCピックアップの関係を示すグラフである。
【0017】
極低炭素鋼におけるCピックアップは低炭素鋼による地金溶解・除去回数が増すほど小さくなり、2回以上行うと最大でも1ppm以下となる。また、地金溶解・除去回数が1回の場合であっても、リムド処理時間を10min以上継続させるとCピックアップが最大でも1ppmとなる。したがって、リムド処理時間が比較的短く、例えば5minに満たない場合には、2回以上のリムド処理を行うことが好ましく、一方、リムド処理の時間が十分に長い場合、例えば10min以上継続する場合には、1回のリムド処理によって地金の溶解・除去を行えばよい。もちろん、より多数回に亘ってリムド処理を繰り返して行えば、より確実にCピックアップを防止できる。なお、上記データはRH真空脱ガス装置によるものであるが、これをDH式真空脱ガス装置に対して適用することもできる。
【0018】
前記の点に留意してリムド処理を行い、ついで極低炭素鋼の真空脱ガス処理を行えば、図2(c)に示すように、RH脱ガス槽1のフリーボードには、高炭素鋼を処理した場合に生成した地金Sはもはや存在せず、Cピックアップが生ずることはない。なお、リムド処理を行った場合にも、図2(b)に示すように地金Sが生成するが、これは先にも述べたようにC含有率が低いものであり、また、その生成部位が続く極低炭素鋼の溶鋼レベルのかなり上方にあり、極低炭素鋼等を溶製するときのCピックアップの原因とはなり難い。
【0019】
図4は、地金溶解・除去処理時間としてリムド処理時間を10minとして地金溶解・除去処理を行ったときの地金溶解・除去処理回数と真空脱ガス槽内付着地金の除去率の関係を示すグラフである。処理条件は、処理能力250tのRH真空脱ガス装置を用い、溶鋼1t当たり還流ガス流量を0.0059m(標準状態)/minとした。2回以上の処理を行うことにより、地金除去率は95%以上となりCおよびOのピックアップの原因となる地金の除去が達成されている。
【0020】
本発明では、このように低炭素鋼のリムド処理により、付着地金の溶解・除去を行い、しかる後、極低炭素鋼溶鋼の真空脱ガス処理を行う。すなわち、図2(c)に示すように、取鍋2に極低炭素鋼用溶鋼Mを転炉から受鋼し、これに対して真空脱ガス処理を行う。この際、必要に応じて酸素上吹き用ランス3から酸素を浴面上に吹きつけ脱炭の速やかな進行を図りうることは当然である。
【0021】
本発明は極低炭素鋼の製造に当たり広く適用することができるが、特に、真空脱ガス処理後の最終C含有率が25ppm以下の鋼種に適用すると効果が大きい。このようなC含有率が極度に低い鋼種は、非常にCピックアップを生じやすいが、本発明により規格はずれがほとんど生じなくなくなるからである。
【0022】
【発明の効果】
本発明は、上記のように、真空脱ガス処理により極低炭素鋼を溶製する際にCピックアップやOピックアップの原因となる地金を予め低炭素鋼のリムド処理によって溶解・除去する。その結果、真空脱ガス装置の使用スケジュールを乱すことなく、C、Oのピックアップをほぼ完全に防止することができる。
【図面の簡単な説明】
【図1】 本発明を実施するときの転炉とRH真空脱ガス装置の稼働順序を模式的に示す説明図である。
【図2】 本発明を実施する際の地金除去過程を示す説明図である。
【図3】 本発明を実施する際の地金溶解・除去処理時間、処理回数と極低炭素鋼におけるCピックアップの関係を示すグラフである。
【図4】 本発明を実施する際の地金溶解除去回数と槽内地金除去率との関係を示すグラフである。
【符号の説明】
1:RH脱ガス槽
2:取鍋
3:酸素上吹き用ランス
M:処理溶鋼
S:地金
[0001]
[Field of the Invention]
TECHNICAL FIELD The present invention relates to a method for removing bullion in a vacuum degassing tank used in a method for producing low carbon steel and extremely low carbon steel, and in particular, carbon [C] in steel generated in vacuum degassing treatment or in steel. The present invention relates to a method for removing a metal in a vacuum degassing tank in order to prevent a rise of oxygen [O].
[0002]
[Prior art]
Steel used for automobile steel sheets and steel sheets for cans is required to extremely reduce the content ratio of carbon (C) to 0.0025% or less by mass ratio because workability is very important. Such an ultra-low carbon steel has a low yield and a long refining time only by ordinary decarburization refining in a converter, so a vacuum degassing tank is used, and oxygen gas is introduced into the tank as necessary. It is produced by decarburization progressing by actively carrying out CO reaction under reduced pressure.
[0003]
One of the problems in melting ultra-low carbon steel by vacuum decarburization is that when melting the ultra-low carbon steel, etc. Is deposited in the vacuum degassing tank, and when the ingot is melted, such as ultra-low carbon steel, which is high-purity steel, C or oxygen in the ultra-low carbon steel being melted by dropping or remelting It is to raise the content of [O] again (hereinafter referred to as C pickup and O pickup). In particular, when the above phenomenon occurs when the decarburization reaction proceeds and the molten steel composition becomes an extremely low carbon range, the product specification is deviated. Therefore, when the ultra-low carbon steel is vacuum decarburized, the metal is previously removed by various methods, for example, as proposed in Japanese Utility Model Publication No. 7-40509.
[0004]
[Problems to be solved by the invention]
However, performing the means as proposed in the above publication in all vacuum decarburization refining results in an increase in processing costs, and it is not practical because the use schedule of the vacuum degassing apparatus is disturbed. Even if it is carried out, it is not possible to completely remove the metal, so it is not possible to completely prevent contamination that occurs during the melting of ultra-low carbon steel. The present invention is attached to a vacuum degassing tank that can reliably produce ultra-low carbon steel without disturbing the use schedule of the vacuum degassing apparatus or increasing costs, and without causing C pickup or O pickup. The purpose is to propose a method for removing bullion.
[0005]
[Means for Solving the Problems]
The present inventors are relatively free to use vacuum degassing (including RH type and DH type as vacuum degassing methods) regardless of mechanical means, as in the prior art, when removing the vacuum degassing tank adhering metal. Focusing on the fact that the metal can be effectively removed if the inside of the vacuum degassing tank is washed with molten steel having a low carbon content, the present invention has been completed by searching for conditions that can achieve the object of the present invention.
[0006]
The present invention is an operation prior to melting the ultra-low carbon steel prior to melting ultra-low carbon steel having a final C content of 25 ppm or less by mass by vacuum degassing after vacuum degassing. it is an dissolving and removing bullion attached to the free board portion right above the molten steel reaches level vacuum degassing vessel by rimmed treatment with low carbon molten steel by.
[0007]
The melting and removal of the above-mentioned metal is performed by performing a rimming process in which a low carbon steel molten steel containing C: 0.02 to 0.10% by mass and O: 50 ppm or more is introduced into a vacuum degassing tank and subjected to vacuum degassing. Done.
[0008]
The rimmed processing is preferably performed either performed twice or more continuously, or rimmed processing for 10min continued at least once, thereby re during vacuum degassing process [C] and [O] It is possible to reliably prevent the rise from occurring and to produce a stable ultra-low carbon steel.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in accordance with its implementation procedure. FIG. 1 is an explanatory view schematically showing an operation sequence of a converter and a vacuum degassing apparatus when an embodiment of the present invention is carried out, taking an RH vacuum degassing apparatus as an example. As shown here, in the present invention, prior to the melting of the ultra-low carbon steel, the melting of the molten steel for the low-carbon steel is performed in a converter and rimmed by a RH vacuum degassing apparatus (stage I). The rimd treatment is an operation in which a molten steel containing a large amount of O as compared with C is vacuum-treated to promote an active C + 1 / 2O 2 → CO reaction . Specifically, C : 0.02 in mass ratio. ~ 0.10 %, O : Refers to the operation of introducing a low-carbon steel molten steel containing 50 ppm or more into a vacuum degassing tank and subjecting it to vacuum degassing treatment.
[0010]
This treatment is repeated as many times as necessary for the required time (stage II) according to the conditions described later, so that it adheres immediately above the molten steel arrival level of the RH degassing tank during the previous vacuum degassing treatment. Dissolve and remove the bare metal. Next, molten steel for extremely low carbon is melted in a converter, and after de-steeling, the decarburization reaction is advanced by an RH vacuum degasser (stage III).
[0011]
The present invention is basically performed according to the above-described operation procedure, thereby preventing C pick-up and O pick-up when performing vacuum degassing, but it is necessary to pay attention to the following points for operation. It is.
[0012]
First, in the rimd process, the bare metal formed on the freeboard by the previous vacuum degassing process must be completely dissolved and removed by the low carbon molten steel. FIGS. 2 (a) is a schematic view of a tank in the case of performing the degassing process by killed processed in example ladle 2 to受鋼been high carbon steel molten steel M 1 degassing tank 1 RH, where in the vacuum degassing vessel 1 as shown, bullion S 1 is attached to the molten steel level immediately above. This bullion has a high C content, and when the apparatus with the bullion S 1 attached thereto is subjected to ultra-low carbon steel vacuum degassing treatment, C pickup occurs due to remelting of the bullion S 1 .
[0013]
Therefore, when rimmed processing bullion S 1 of low-carbon steel of the molten steel M 2 is vacuum degassing chamber 1 formed in the vacuum degassing of the high-carbon steel of the previous, as shown in FIG. 2 (b) It is necessary to go beyond the level. The conditions vary depending on the balance of [C] and [O] of the low carbon steel to be vacuum degassed, the amount of reflux gas blown into the vacuum degassing tank 1, etc., which can be grasped by experience. is there.
[0014]
In addition to the above conditions, it is preferable that the rimming process is performed so as to satisfy the following conditions. First, the molten steel of the low carbon steel used for the rim treatment should contain C: 0.02 to 0.10% and O: 50 ppm or more. When a vacuum degassing treatment is performed on molten steel having such a composition, the composition after the rimming treatment by a so-called CO reaction contains C: 0.01 to 0.04%. Also, as shown in FIG. 2 (b) by rimmed treatment, bullion S 2 is attached to the vacuum degassing apparatus 1, if it is within the above range, no problems in subsequent ultra-low carbon steel processing . Preferably, the C content of the low carbon steel is 0.02 to 0.07%. In this range, the amount of C after the rimmed process is 0.01 to 0.03%, and C pickup can be prevented more reliably.
[0015]
Further, in the rimming treatment of the low carbon steel, it is preferable not to perform the carburizing treatment after the completion of the treatment, and therefore it is preferable to perform the rimming treatment so as not to fall below the target C content of the product. When carburizing is performed after decarburization by rimming, bullion is caused by molten steel with a high C content generated during carburizing, which is the cause of C pickup in the next processing of ultra-low carbon steel. Because it becomes.
[0016]
In addition, it is preferable that the rimming process is performed twice or more continuously for 5 min or more, or the rimming process that continues for 10 min or more is performed at least once. Fig. 3 shows the processing time and the number of treatments of the metal when a vacuum degassing device with a treatment capacity of 250 t is used and the reflux gas flow rate per 1 t of molten steel is 0.0059 m 3 (standard state) / min. It is a graph which shows the relationship of C pick-up in extra-low carbon steel.
[0017]
The C pickup in ultra-low carbon steel becomes smaller as the number of melting / removal of the bullion by the low-carbon steel increases. Even if the number of times the metal is dissolved / removed once, if the rimming process time is continued for 10 minutes or more, the C pickup becomes 1 ppm at the maximum. Therefore, when the rimming process time is relatively short, for example, less than 5 min, it is preferable to perform the rimming process twice or more. On the other hand, when the rimming process time is sufficiently long, for example, when continuing for 10 min or more. The melting and removing of the metal may be performed by a single rimming process. Of course, the C pick-up can be prevented more reliably if the rimming process is repeated more times. Although the above data is based on the RH vacuum degassing apparatus, it can also be applied to the DH vacuum degassing apparatus.
[0018]
If the rimming process is performed in consideration of the above points, and then the vacuum degassing process of the ultra-low carbon steel is performed, the free board of the RH degassing tank 1 has high carbon steel as shown in FIG. 2 (c). bullion S 1 generated with by is no longer present, C pickup does not occur. Even when performing rimmed processing, although ingot S 2 as shown in FIG. 2 (b) to produce, which is intended C content is low, as mentioned earlier, also the The formation site is far above the level of molten steel of ultra low carbon steel, which is unlikely to cause C pickup when melting ultra low carbon steel.
[0019]
Fig. 4 shows the relationship between the number of metal dissolution / removal treatments and the removal rate of metal in the vacuum degassing tank when the metal dissolution / removal treatment is performed with a rim removal time of 10 minutes. It is a graph which shows. The processing conditions were such that a RH vacuum degassing apparatus with a processing capacity of 250 t was used and the reflux gas flow rate per 1 t of molten steel was 0.0059 m (standard state) / min. By performing the treatment twice or more, the removal rate of the bullion becomes 95% or more, and the removal of the bullion causing the pickup of C and O is achieved.
[0020]
In the present invention, the adhesion metal is melted and removed by the rimming process of the low carbon steel as described above, and then the vacuum degassing process of the ultra low carbon steel molten steel is performed. That is, as shown in FIG. 2 (c), the molten steel M 1 for ultra low carbon steel was受鋼from the converter to the ladle 2, subjected to vacuum degassing treatment thereto. At this time, it is natural that oxygen can be blown onto the bath surface from the oxygen blowing lance 3 as needed to promptly proceed with decarburization.
[0021]
The present invention can be widely applied to the production of ultra-low carbon steel, but is particularly effective when applied to a steel type having a final C content of 25 ppm or less after vacuum degassing. This is because such a steel type having an extremely low C content is very likely to cause C pick-up, but there is almost no deviation from the standard according to the present invention.
[0022]
【The invention's effect】
As described above, the present invention dissolves and removes in advance the bullion that causes C pickup and O pickup when melting ultra low carbon steel by vacuum degassing treatment by rim treatment of low carbon steel. As a result, C and O pickups can be almost completely prevented without disturbing the use schedule of the vacuum degassing apparatus.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram schematically showing the operation sequence of a converter and an RH vacuum degassing apparatus when carrying out the present invention.
FIG. 2 is an explanatory diagram showing a bullion removal process when carrying out the present invention.
FIG. 3 is a graph showing the relationship between the metal melting / removal treatment time and the number of treatments and the C pickup in the ultra-low carbon steel when the present invention is carried out.
FIG. 4 is a graph showing the relationship between the number of bullion dissolution removal times and the in-vessel bullion removal rate when carrying out the present invention.
[Explanation of symbols]
1: RH degassing tank 2: Ladle 3: Oxygen top blowing lance M: Processed molten steel S: Metal

Claims (2)

真空脱ガス処理後の最終 C 含有量が質量比で 25ppm 以下の極低炭素鋼を真空脱ガス処理によって溶製するのに先立って、質量比で C 0.02 0.10 %、 O 50ppm 以上を含有する低炭素鋼溶鋼を真空脱ガス槽内に導き真空脱ガス処理を施すリムド処理を施すことによって、前記極低炭素鋼の溶製に先立つ操業により真空脱ガス槽内の溶鋼到達レベル直上のフリーボード部に付着した地金を溶解・除去することを特徴とする真空脱ガス槽付着地金の除去方法。 Before melting ultra-low carbon steel with a final C content of 25 ppm or less after vacuum degassing by vacuum degassing, C : 0.02 to 0.10 % by mass ratio , O : 50 ppm or more By introducing the low carbon steel molten steel contained into the vacuum degassing tank and performing the rimmed process for performing the vacuum degassing process, the operation immediately prior to the melting of the ultra low carbon steel is performed immediately above the molten steel reach level in the vacuum degassing tank. A method for removing a bullion attached to a vacuum degassing tank, wherein the bullion attached to the freeboard portion is dissolved and removed. 低炭素鋼によるリムド処理を、継続して2回以上行うか、あるいは10min継続するリムド処理を少なくとも1回以上行うことを特徴とする請求項に記載の真空脱ガス槽付着地金の除去方法。The rimmed processing by the low-carbon steel, or performed twice or more continuously, or a method of removing the vacuum degassing vessel attached bullion according to claim 1, characterized in that 10min continuing rimmed processing at least one or more .
JP2001373550A 2001-12-07 2001-12-07 How to remove metal from vacuum degassing tank Expired - Lifetime JP3765266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001373550A JP3765266B2 (en) 2001-12-07 2001-12-07 How to remove metal from vacuum degassing tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001373550A JP3765266B2 (en) 2001-12-07 2001-12-07 How to remove metal from vacuum degassing tank

Publications (2)

Publication Number Publication Date
JP2003171716A JP2003171716A (en) 2003-06-20
JP3765266B2 true JP3765266B2 (en) 2006-04-12

Family

ID=19182259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001373550A Expired - Lifetime JP3765266B2 (en) 2001-12-07 2001-12-07 How to remove metal from vacuum degassing tank

Country Status (1)

Country Link
JP (1) JP3765266B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4722772B2 (en) * 2006-06-12 2011-07-13 株式会社神戸製鋼所 Manufacturing method of high cleanliness steel
JP5314939B2 (en) * 2008-06-10 2013-10-16 株式会社神戸製鋼所 Method for producing high alloy ultra low carbon steel
KR102428005B1 (en) * 2020-09-10 2022-08-03 주식회사 포스코 Apparatus and method for processing molten material

Also Published As

Publication number Publication date
JP2003171716A (en) 2003-06-20

Similar Documents

Publication Publication Date Title
EP0707080B1 (en) Method of manufacturing low carbon molten steel by vacuum degasification and decarbonization
JP3765266B2 (en) How to remove metal from vacuum degassing tank
JP6780695B2 (en) Melting method of ultra-low sulfur low nitrogen steel
JP4207820B2 (en) How to use vacuum degassing equipment
JPH01188619A (en) Method for rh vacuum degasification
JP3282531B2 (en) Melting method of high clean steel
JPH0734117A (en) Production of extra-low carbon steel having excellent cleanliness
JPH10317049A (en) Method for melting high clean steel
JP3619283B2 (en) Method for producing medium carbon Al killed steel
JP2780342B2 (en) Vacuum degassing method for molten metal
JPH08283826A (en) Production of high purity ultralow sulfur hic resistant steel
JP3680660B2 (en) Low nitrogen steel manufacturing method
JPH02228418A (en) Production of clean steel
JPS60404B2 (en) Method for producing Al-Si killed molten steel
JP5314939B2 (en) Method for producing high alloy ultra low carbon steel
JP2897647B2 (en) Melting method of low hydrogen extremely low sulfur steel
JPS63161113A (en) Method for refining steel
JPH09287017A (en) Method for melting high purity steel
JP2021070855A (en) Steel smelting method
JPH08302419A (en) Refining method of molten steel
JPH04318119A (en) Production of high clean steel
JP2003286515A (en) Method for cleaning aluminum killed steel
JP2962163B2 (en) Melting method of high clean ultra low carbon steel
JP3071445B2 (en) Methods for reducing nitrogen in vacuum refining of molten steel.
JPH05132710A (en) Manufacture of dead soft steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3765266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term