JPH02289942A - Method and instrument for measuring groove shape - Google Patents

Method and instrument for measuring groove shape

Info

Publication number
JPH02289942A
JPH02289942A JP11111289A JP11111289A JPH02289942A JP H02289942 A JPH02289942 A JP H02289942A JP 11111289 A JP11111289 A JP 11111289A JP 11111289 A JP11111289 A JP 11111289A JP H02289942 A JPH02289942 A JP H02289942A
Authority
JP
Japan
Prior art keywords
order
optical
diffracted light
groove
groove shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11111289A
Other languages
Japanese (ja)
Inventor
Masabumi Ototake
正文 乙武
Yoshishige Matsuzawa
松澤 良茂
Masahiro Kajiwara
梶原 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11111289A priority Critical patent/JPH02289942A/en
Publication of JPH02289942A publication Critical patent/JPH02289942A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To detect the groove shapes of an optical disk with high accuracy and to automate the decision of the acceptance or rejection thereof by determining the cross sectional shape of the groove width and groove depth by the diffraction intensities of zero order, 1st order and 2nd order diffracted light rays of the collimated beams of the coherent light projected to the grooves and the intervals of the grooves. CONSTITUTION:The laser beam projected the optical disk 1 is diffracted on the surface by the track grooves thereof. The diffracted light thereof is detected by a photodetector 3 and the intensity thereof is photoelectrically converted and is measured by an optical power meter 33. The photodetector 3 consists of three optical sensors; the zero order optical sensor 3a which detects the zero order diffracted light, the 1st order optical sensor 3b which detects the 1st order diffracted light diffracted at the 1st order diffraction angle theta1 with the zero order diffracted light and the 2nd order optical sensor 3c which detects the 2nd order diffracted light with the inclination at the 2nd order diffraction angle theta2 with the zero order diffracted light. The intensities of the respective optical sensors 3a to 3c of the photodetector 3 measured by an optical power meter 33 is applied to a host computer 5 where the depth and depth of the cross section of the track grooves are calculated. The measurement accuracy is improved in this way and the groove shapes of the plural places are measured by relatively moving the optical means and optical disk. The acceptance or rejection thereof is thus automatically decided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光ディスクの溝形状の測定方法及び’JW
に関し、特にHe−Ne レーザ光を用い゛ζ、その回
折光の強度により溝形状の測定を行・う方法及び装置に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring the groove shape of an optical disc and a method for measuring the groove shape of an optical disc.
In particular, the present invention relates to a method and apparatus for measuring groove shapes using He--Ne laser light and the intensity of its diffracted light.

〔従来の技術〕[Conventional technology]

光ディスクにはCD, CD−ROM及びLDの如くの
再生専用形と、ユーザで記録することが可能な追記形と
、光磁気ディスク等の書換形とがある。このような光デ
ィスクには信号を記録するだめのピント及び溝が形成さ
れている。このピソ1・及び溝は、はじめガラス製の原
盤に形成され、それ6こニソケル電鋳を行って得られた
ニンゲル製のスタンパを介して、これを金型として用い
て躬出成形法又は21)(フォトボリマ)法と呼ばれる
紫外線硬化樹脂を用いる信号転写法により透明基板に転
写され生信号の0ハ比に多犬な影響を与えるため、その
形状測定による合否判定が、光ディスクの製造I二程に
おける品質管理上必要となっている。
Optical disks include read-only types such as CDs, CD-ROMs, and LDs, write-once types that allow users to record, and rewritable types such as magneto-optical disks. Such an optical disc has a focus and a groove for recording signals. These piso 1 and grooves are first formed on a glass master disk, and then using a stamper made of Ningel obtained by performing Nisokel electroforming, this is used as a mold by the extrusion molding method or 21 ) (Photobolima) method, which uses an ultraviolet curable resin, is transferred to a transparent substrate and has a large effect on the 0 ratio of the raw signal. It is necessary for quality control.

従来の溝形状の測定方法としては、1光ディスクの測定
・評価技術J  (1988年日本工業技術センタ刊)
の125頁に示され゛ζいる如く、光ディスクを再生さ
せて、その読取りビックアップのサーボ信号を測定する
ごとにより行う方法及び平行ビームを溝に照射したとき
に生じる回折現象を利用し、その1次回折光の回折角度
によりトラノクピソチを測定するもの(前述の[光ディ
スクの測定・評価技術115頁)又は1次回折光の光量
により溝形状を測定するもの([オプ1・ロニクスJ 
1988,No.5の115jJ)がある。
Conventional groove shape measurement methods include 1. Optical Disc Measurement and Evaluation Technology J (published by Japan Industrial Technology Center in 1988).
As shown on page 125 of ``ζ'', the method is carried out by reproducing the optical disk and measuring the read start-up servo signal, and the diffraction phenomenon that occurs when a parallel beam is irradiated onto the groove, Part 1 One that measures the groove shape using the diffraction angle of the second-order diffracted light (see above [Optical Disc Measurement and Evaluation Technology, p. 115), or one that measures the groove shape based on the amount of the first-order diffracted light ([Op 1 Ronix J
1988, No. 5, 115jJ).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら前Hの方法はピンクアンプの特f′4−に
依存ずるとごろが多く、光ディスクだけのデ夕を測定す
る方法としては不適であった。また後者の方法では、ト
ランクピノ千の計測については開示されているが、満幅
及び溝深さ等の溝形状を計測することに関しては具体的
には開示されていない。また1次回折光だけの光量測定
では、溝形状を精度よくδ1測ずることは困難である。
However, the method of the previous H is highly dependent on the characteristic f'4- of the pink amplifier, and is therefore unsuitable as a method for measuring the data of only optical discs. Furthermore, although the latter method discloses the measurement of trunk pinots, it does not specifically disclose the measurement of groove shapes such as full width and groove depth. Furthermore, it is difficult to accurately measure the groove shape δ1 by measuring the amount of light using only the first-order diffracted light.

この発明は斯かる事情に鑑みてなされたものであり、平
行ビームの0次、1次及び2次回折光の回折強度及び溝
の間陥に基づき溝形状を計測することにより、精度よく
溝形状を計測できる溝形状計測方法並びに光ディスクと
測定手段とを径方向及び周方向に相対移動させるごとに
より、複数点での溝形状の測定を行い、自動的に溝形状
の合否を判定できる溝形状測定装置を提供することを目
的とする。
This invention was made in view of the above circumstances, and it is possible to accurately determine the groove shape by measuring the groove shape based on the diffraction intensity of the 0th-order, 1st-order and 2nd-order diffracted light of the parallel beam and the groove depth. Groove shape measurement method that can measure the groove shape and a groove shape measuring device that can measure the groove shape at multiple points by moving the optical disk and the measuring means relative to each other in the radial and circumferential directions, and automatically determine whether the groove shape is acceptable. The purpose is to provide

〔課題を解決するための丁段] この発明に係る溝形状111測定方法は、溝に照射した
可干渉光の平行ビームの0次、1次及び2次回折光の回
折強度及び溝の間隔により満幅及び溝深さの溝の横断面
形状を求めるようにしたものであり、溝形状測定装置は
、ディスクを載置する測定台と、ディスクに平行ビーム
を照射し、そこからの0次、1次及び2次回折光の同折
強度を検出する光学手段とをディスクの径方向及び周方
向に相対移動させると共に光ディスクの複数の部{i>
で検出された回折強度により夫々の部位の溝の横断面形
状を求めるようにしたものである。
[Steps to Solve the Problems] The groove shape 111 measuring method according to the present invention is satisfied by the diffraction intensities of the 0th-order, 1st-order and 2nd-order diffracted lights of the parallel beam of coherent light irradiated onto the grooves and the groove spacing. The groove shape measuring device is designed to determine the cross-sectional shape of the groove in terms of width and groove depth. The optical means for detecting the diffracted intensities of the next and second-order diffracted lights are moved relative to each other in the radial direction and circumferential direction of the disc, and a plurality of parts of the optical disc {i>
The cross-sectional shape of the groove at each location is determined based on the diffraction intensity detected.

〔作用〕[Effect]

この発明の溝形状測定方法においては、光ディスクに平
行ビーノ・を照射し、そこからのO次、1次及び2次回
折光の回折強度を測定し、溝の間隔及び回折強度により
溝の横断面の幅及び深さを求める。又溝形状測定装置に
おいては、測定台と光学T段との相対移動により、光デ
ィスクの複数部位の溝形状を測定し、その結果により自
動的にディスクの合否判定が可能となる。
In the groove shape measuring method of the present invention, an optical disc is irradiated with a parallel beam, the diffraction intensities of the O-order, 1st-order and 2nd-order diffracted light are measured, and the cross-section of the grooves is determined based on the groove spacing and the diffraction intensity. Find the width and depth. Furthermore, in the groove shape measuring device, the groove shapes of multiple parts of the optical disk can be measured by relative movement of the measuring table and the optical T-stage, and it is possible to automatically judge whether or not the disk is acceptable based on the results.

〔実施例〕〔Example〕

以下、この発明をその−・実施例を示す圓面に基づいて
詳述する。
Hereinafter, the present invention will be described in detail based on a circle showing embodiments thereof.

第1図はこの発明に係る溝形状測定装置の構成を示すブ
ロソク図である。図において32は平板状のヘースであ
り、該ヘース32の一端には光検知器3を取付けるため
の倒立I一字状のアーム3lが立設されている。またヘ
ース32の中央部には光ディスク1を径方向に移動させ
るためのXステージ22が設けられている。χステージ
22−トには後述するθステージ21が載置されており
、図示しないリニアモータによりθステージ21を径方
向に移動させ、光ディスク1を径方向に移動させる。θ
ステージ21は図示しないステンビングモータによりそ
の上に載置された光ディスク1を間欠的に回転自在に駆
動するものであり、θステージ21及びχステージ22
の制御は、それらに接続されたステージコントローラ2
3により行われる。光ディスク1には1.6//m間隔
でスバイラル状のトラック溝が形成されており、そのト
ラック溝間又ぱl・ランク溝に情報が記録される。
FIG. 1 is a block diagram showing the configuration of a groove shape measuring device according to the present invention. In the figure, reference numeral 32 denotes a flat header, and an inverted I-shaped arm 3l is erected at one end of the header 32 to which the photodetector 3 is attached. Further, an X stage 22 for moving the optical disc 1 in the radial direction is provided at the center of the head 32. A θ stage 21, which will be described later, is mounted on the χ stage 22, and the θ stage 21 is moved in the radial direction by a linear motor (not shown), thereby moving the optical disc 1 in the radial direction. θ
The stage 21 intermittently rotatably drives the optical disc 1 placed thereon by a stevening motor (not shown), and includes a θ stage 21 and a χ stage 22.
are controlled by the stage controller 2 connected to them.
3. The optical disc 1 has spiral track grooves formed at intervals of 1.6 m, and information is recorded between the track grooves and in the rank grooves.

一方、光源たるtle−Neレーザ源4は反射鏡6を介
して光ディスク1のトランク溝に平行ビームのレーザ光
を照射するものであり、光ディスク1の上方に設けられ
た反射鏡6の入射方向に配設されている。光ディスク1
乙こ照射されたレーザ光はそのトランク溝により光ディ
スクの表面で回折し、その回折光が光検知器3で検出さ
れ、その強度が光電変換されて光パワーメータ33で測
定される。
On the other hand, the tle-Ne laser source 4, which is a light source, irradiates a parallel beam of laser light to the trunk groove of the optical disc 1 via a reflecting mirror 6, and the laser beam is directed in the direction of incidence of the reflecting mirror 6 provided above the optical disc 1. It is arranged. optical disc 1
The irradiated laser light is diffracted on the surface of the optical disk by the trunk groove, the diffracted light is detected by the photodetector 3, and its intensity is photoelectrically converted and measured by the optical power meter 33.

第2図は、光検知器の構成を示す模式図であり、光検知
器3は0次回折光を検出する0次光センリー38、0次
回折光に対して1次回折角θl傾いて回折する1次回折
光を検出する1次光センザ3b及び0次回折光に対して
2次回折角θ2傾いて回折する2次回折光を検出する2
次光センサ3cの3つの光センサからなっている。なお
、ごの光センザ3a3h・・・のレーザ光の光ディスク
1の照射位置から受光面までの距離は全て等しくなって
いる。また回折角θは次式で示す如く1・ラック溝の間
隔Pにより−・意に定まる。
FIG. 2 is a schematic diagram showing the configuration of a photodetector. The photodetector 3 includes a 0th-order optical sensor 38 that detects 0th-order diffracted light, and a 1st-order diffracted light sensor 38 that detects 0th-order diffracted light, and A first-order optical sensor 3b that detects the diffracted light, and a second-order optical sensor 2 that detects the second-order diffracted light that is tilted at a second-order diffraction angle θ2 with respect to the 0th-order diffracted light.
It consists of three optical sensors: a secondary optical sensor 3c; Note that the distances from the irradiation position of the optical disk 1 of the laser beams of the optical sensors 3a3h . . . to the light receiving surface are all equal. Further, the diffraction angle θ is determined by the interval P between the rack grooves as shown by the following equation.

? λ θ一■sin−’  (      )P ここで  P:トラック溝の間隔 n:回折光の次数 λ=レーザ光の波長 θ:回折角 なお、この例ではP− 1.6μm.λ−0.633μ
mであるので、1次回折角θ, =23.3゜、2次回
折角θ2=52.3゜となる。
? λ θ - ■sin-' ( )P where P: Interval between track grooves n: Order of diffracted light λ = Wavelength of laser light θ: Diffraction angle In this example, P- 1.6 μm. λ-0.633μ
m, the first-order diffraction angle θ, = 23.3° and the second-order diffraction angle θ2 = 52.3°.

また、光バワーメータ33で測定された光検知器3の各
光センサ3a,3b,3cの強度はポストコンビュタ5
に与えられ、そこで後述する演算により1・ランク溝の
横断面の幅及び深さが算出される。またホス1・コンピ
ュータ5はステージコン1・ローラ23に動作指令を与
える。即ち光ディスク1上の一点の溝形状の計測が終了
すると、ポストコンピュータ5はステージコントローラ
23に動作指令を与え、それに応してステージコン1−
ローラ23はXステージ22及びθステージ21を適宜
制御し、周方向に31カ所、径方向に7カ所設けられた
測定点で溝形状を測定できるように光ディスク1を回転
及び移動させる。
Further, the intensity of each optical sensor 3a, 3b, 3c of the photodetector 3 measured by the optical power meter 33 is determined by the post computer 5.
Then, the width and depth of the cross section of the 1-rank groove are calculated by calculations described later. Further, the host 1/computer 5 gives operation commands to the stage controller 1/roller 23. That is, when the measurement of the groove shape at one point on the optical disk 1 is completed, the post computer 5 gives an operation command to the stage controller 23, and the stage controller 1-
The roller 23 appropriately controls the X stage 22 and the θ stage 21, and rotates and moves the optical disc 1 so that the groove shape can be measured at 31 measuring points in the circumferential direction and 7 in the radial direction.

次にこの溝形状測定方法による溝形状の測定手順につい
て説明する。
Next, a procedure for measuring the groove shape using this groove shape measuring method will be explained.

第3図は、この発明方法の測定手順を示ずフ「2−チャ
ートである。光ディスクlをθステージ21にセ/1一
する(S1)と、ホストニ1ンピ1−夕5はステージコ
ンl・口〜ラ23に対してXステージ22を初朋位置に
移動ずべく制御ずるように指令する(S2)。
FIG. 3 is a 2-chart that does not show the measurement procedure of the method of the present invention. When the optical disk 1 is placed on the θ stage 21 (S1), the host・Instructs the mouth 23 to control the X stage 22 so as not to move it to the first friend position (S2).

次にポストコンピュータ5はlie−Ne レーザーg
4にし・−ザ光を照射するように指令し、光ディスクの
上にレーザ光が照射される(S3)。そしてトラック溝
により回折されたレーザ光のO次、1次及び2次回折光
強度である光量が各光セン→ノ“3a,3b,3cで検
出され、それが光電変換され光パワーメータ33で測定
される(S4)。次に各光量値がホス1・コンビュータ
に送られ、溝形状が計算される(S5)。
Next, post computer 5 is lie-Ne laser g
4, a command is given to irradiate laser light, and the laser light is irradiated onto the optical disc (S3). The light intensity, which is the O-th, 1st- and 2nd-order diffracted light intensity of the laser beam diffracted by the track groove, is detected by each optical sensor 3a, 3b, 3c, and is photoelectrically converted and measured by an optical power meter 33. (S4).Next, each light amount value is sent to the computer 1, and the groove shape is calculated (S5).

この計算方法は、以下の通りである。The calculation method is as follows.

フラウンホーファ−領域の回折像の振幅分布IJ ( 
// ,υは U  ( μ,   v)  −−CSL+  exp
   (   2  π i(  1i  ξ十υη)
}dξdη ・・・(1) で表される。
Amplitude distribution IJ of the diffraction image in the Fraunhofer region (
// , υ is U (μ, v) --CSL+ exp
(2 π i( 1i ξ1υη)
}dξdη ...(1) It is expressed as follows.

断面形状がY−g(x)で表される凹凸が周期Pなお、
この演算は代入法で行われるため、溝形状を1lImの
精度で求めるためにはホスト:1ンビュータ5の処理能
力に高い能力が要求され、ホストコンピュータ5が高価
となるので、予め溝形状の範囲を限定し、その範囲内で
溝幅W、溝深さdに対してマトリノクス状に回折強度の
計算を行い、その結果をホスl・コンピエータ5内にテ
ーブルとL2で記憶しておき、回折強度の測定値をテー
ブルと比較することにより光ディスク1の溝形状(溝幅
W及び溝深さd)を求めてもよい。ごれ6こより、計算
の場合217カ所の溝形状を測定するの6こ1時間要し
ていたものが、7分程度に短縮された。
The unevenness whose cross-sectional shape is represented by Y-g(x) has a period P.
Since this calculation is performed by the substitution method, in order to obtain the groove shape with an accuracy of 1 lIm, the host computer 5 requires a high processing capacity, and the host computer 5 becomes expensive. is defined, and within that range, the diffraction intensity is calculated in a matrix manner for the groove width W and the groove depth d.The results are stored in the table and L2 in the computer 5, and the diffraction intensity is The groove shape (groove width W and groove depth d) of the optical disc 1 may be determined by comparing the measured values of with a table. Based on this calculation, the time required to measure the groove shapes at 217 locations was reduced to about 7 minutes.

溝形状が求まるとポストコンビ上−夕5はその溝形状を
位置と対応づけてメモリに記憶L,(S6)、レーザ光
を消灯ずるようにlle−Ne レーザ源4に指令ずる
(S7)。次にポストコンピュータ5はステージコンI
− [:I−ラ23に対してθステージ21を約11゜
(−360゜/31)回転ずるように指令し(S8)、
その位置カ月周の終りか否かを判定し(S9)、終りで
ない場合はステップ3に戻り次の位置の溝形状を求める
。終りの場合はホストコンピュータ5はステンコントロ
ーラ23に対してXステージ22を次の半径位置に移動
さ一已るように指令し(510) 、移動した位置が径
方向(X方向)の最終位置か否かを判定し(Sll) 
、最終位置ではないときはステンプ3に戻り、最終位置
のときは各位置の溝形状からその平均値及び分散値を算
出し(81.2) 、それと予め記憶してある規格値と
を比較してその光ディスクの合否判定を行い(S13)
終了する。
Once the groove shape is determined, the post-combiner 5 associates the groove shape with the position and stores it in the memory (S6), and instructs the lle-Ne laser source 4 to turn off the laser beam (S7). Next, post computer 5 is stage computer I.
- [: Command to rotate the θ stage 21 by about 11 degrees (-360 degrees/31) with respect to the I-ra 23 (S8),
It is determined whether the position is at the end of the monthly cycle (S9), and if it is not the end, the process returns to step 3 to find the groove shape at the next position. In the case of the end, the host computer 5 instructs the stainless controller 23 to move the X stage 22 to the next radial position (510), and determines whether the moved position is the final position in the radial direction (X direction). Determine whether or not (Sll)
, if it is not the final position, return to Step 3, and if it is the final position, calculate the average value and variance value from the groove shape at each position (81.2), and compare it with the standard value stored in advance. and performs a pass/fail judgment on the optical disc (S13).
finish.

これにより光ディスクの溝形状が高精度で検出できると
共にその合否判定が自動化される。
As a result, the groove shape of the optical disc can be detected with high precision, and the pass/fail judgment can be automated.

次に他の実施例について説明する。Next, other embodiments will be described.

第4図は他の実施例の光検知器の構成を示す模式図であ
る。この実施例では1次、2次の回折光の光センザ3b
,3h及び同3c,3cを正負両方の側に設けてあり、
前述の実施例と比べてさらに測定精度が向」二し、受光
エラーにだいするマージンが多くなる。なお、その他の
構成及び動作については第1の実施例と同様であり、説
明を省略する。
FIG. 4 is a schematic diagram showing the configuration of a photodetector according to another embodiment. In this embodiment, an optical sensor 3b for first-order and second-order diffracted light
, 3h and 3c, 3c are provided on both the positive and negative sides,
The measurement accuracy is further improved compared to the above-mentioned embodiment, and the margin for light reception errors is increased. Note that the other configurations and operations are the same as those in the first embodiment, and their explanations will be omitted.

第5図はさらに他の実施例の光検知器の構成を示す模式
図である。この実施例ではレーザ光の照射位置と光セン
ナ3d、同3h,3h及び3c,3cとの間に5個のジ
ャック7a, 7b. 7b, 7c, 7cを設ける
。ごのソヤッタ7a,7h・・は光セン→ナ3a.3b
・・・にあたっ人二回折光がそこで反射され、再度光デ
ィスク1に戻り、そごで再度回折現象が生じ、それが再
度光センサ3a,3b・・・にて検出され、測定値がそ
れにより影響を受けるのを防止するために設けられるも
のであり、各光センサ3a,3b・・の測定時シャッタ
7a,7h・を1つずつ開口し、他の光センサ3++,
3b・・からの反射光の回折を防止する。
FIG. 5 is a schematic diagram showing the configuration of a photodetector according to still another embodiment. In this embodiment, five jacks 7a, 7b. 7b, 7c, and 7c are provided. Go soyatta 7a, 7h... is the light sensor → na 3a. 3b
... is reflected there and returns to the optical disk 1 again, where another diffraction phenomenon occurs, which is detected again by the optical sensors 3a, 3b, etc., and the measured value is changed accordingly. The shutters 7a, 7h are opened one by one when each optical sensor 3a, 3b... is being measured, and the other optical sensors 3++, 3++, .
3b... Prevents diffraction of reflected light.

なお、ごのシャッタは光センサ3a . 3h・・・か
ら反射したレーザ光の回折を防ぐだめのものであるので
、例えばビー1、スプリノタの如く入射光と反射光とを
分離して光センサ3a,3h・・・からの反射光が光デ
ィスク1に行かないようにしてもよい。この場合シャソ
タとは異なり同時に各次回折光を4(ク定できる利点が
ある。
Note that the shutter is connected to the optical sensor 3a. This is to prevent diffraction of the laser light reflected from the optical sensors 3a, 3h, etc., so the reflected light from the optical sensors 3a, 3h... It may be arranged not to go to the optical disc 1. In this case, there is an advantage that four (4) orders of diffracted light can be determined simultaneously, unlike in the case of a shadow filter.

なお、以上3つの実施例では光センサを各次回折光毎に
設けたが、この発明はこれに限るものではなく、光セン
号を1つとし、それを各次回折光の回折角度に移動させ
る移動手段を設けて各次回折光を測定してもよい。
In addition, in the above three embodiments, an optical sensor is provided for each order of diffraction light, but the present invention is not limited to this.It is possible to use one optical sensor and move it to the diffraction angle of each order of diffraction light. A means may be provided to measure each order of diffracted light.

また測定物も光ディスクだけではなく、そのガラス原盤
、スタンバ、レプリカ等の溝形状を測定することが可能
である。
Furthermore, it is possible to measure the groove shape of not only optical discs but also glass master discs, stub bars, replicas, etc.

さらに径方向の移動は光学累を駆動してもよく、またそ
の測定点数も適宜定めてよいことは言うまでもない。
Furthermore, it goes without saying that the movement in the radial direction may be achieved by driving the optical system, and the number of measurement points may be determined as appropriate.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、この発明によれば、01.2次の
各次回折光の強度を測定することにより溝形状を求めて
いるので、その測定精度が向上ずる。また光学手段と光
ディスクとを移動手段により相対移動させて複数場所の
溝形状を測定し、その合否を自動判定できる等優れた効
果を奏する。
As explained above, according to the present invention, the groove shape is determined by measuring the intensity of each 01.2-order diffracted light, so the measurement accuracy is improved. Moreover, the optical means and the optical disk are moved relative to each other by the moving means to measure groove shapes at a plurality of locations, and it is possible to automatically judge whether the shapes are acceptable or not, and other excellent effects are achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る溝形状測定装置の構成を示すブ
ロック図、第2図は光検知器の構成を示ず模式図、第3
図は測定手順を示すフローチャート、第4図は他の実施
例の光検知器の構成を示す模式図、第5図はさらに他の
実施例の光検知器の構成を示す模式図である。 ■・・・光ディスク 3・・・光検知器 4・・・ll
e−Neレーザ源 21・・・θステージ 22・・・
Xステージ 31・・光パワーメータ なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a block diagram showing the configuration of a groove shape measuring device according to the present invention, FIG. 2 is a schematic diagram showing the configuration of a photodetector, and FIG.
4 is a schematic diagram showing the configuration of a photodetector according to another embodiment. FIG. 5 is a schematic diagram showing the configuration of a photodetector according to another embodiment. ■...Optical disc 3...Photodetector 4...ll
e-Ne laser source 21...θ stage 22...
X stage 31... Optical power meter In the drawings, the same reference numerals indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)ディスクの周方向に所定の間隔で形成された溝の
横断面形状を可干渉光の平行ビームを用いて測定する溝
形状測定方法であって、 前記平行ビームを前記溝に照射し、そこか らの0次、1次及び2次回折光の回折強度を測定し、測
定した回折強度及び前記間隔に基づき前記横断面形状を
求めることを特徴とする溝形状測定方法。
(1) A groove shape measuring method that measures the cross-sectional shape of grooves formed at predetermined intervals in the circumferential direction of a disk using a parallel beam of coherent light, the method comprising: irradiating the groove with the parallel beam; A groove shape measuring method characterized by measuring the diffraction intensities of zero-order, first-order, and second-order diffraction lights from there, and determining the cross-sectional shape based on the measured diffraction intensities and the intervals.
(2)請求項1記載の溝形状測定方法の実施に用いる装
置であって、 前記ディスクを載置する測定台と、 前記ディスクに平行光を照射し、そこから の0次、1次及び2次回折光の回折強度を検出する光学
手段と、 前記測定台と前記光学手段とを、前記ディ スクの径方向及び周方向に相対移動させる移動手段と、 前記光学手段にて検出された回折強度及び前記間隔によ
り前記横断面形状を求める手段とを備えることを特徴と
する溝形状測定装置。
(2) An apparatus used for carrying out the groove shape measuring method according to claim 1, comprising: a measuring table on which the disk is placed; and a parallel light beam irradiated onto the disk, from which zero-order, first-order, and second-order light are emitted. an optical means for detecting the diffraction intensity of the next-order diffracted light; a moving means for relatively moving the measuring table and the optical means in the radial direction and the circumferential direction of the disk; and the diffraction intensity detected by the optical means and the A groove shape measuring device comprising means for determining the cross-sectional shape based on an interval.
JP11111289A 1989-04-28 1989-04-28 Method and instrument for measuring groove shape Pending JPH02289942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11111289A JPH02289942A (en) 1989-04-28 1989-04-28 Method and instrument for measuring groove shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11111289A JPH02289942A (en) 1989-04-28 1989-04-28 Method and instrument for measuring groove shape

Publications (1)

Publication Number Publication Date
JPH02289942A true JPH02289942A (en) 1990-11-29

Family

ID=14552717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11111289A Pending JPH02289942A (en) 1989-04-28 1989-04-28 Method and instrument for measuring groove shape

Country Status (1)

Country Link
JP (1) JPH02289942A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302441A (en) * 1994-04-30 1995-11-14 Nec Corp Groove shape measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302441A (en) * 1994-04-30 1995-11-14 Nec Corp Groove shape measuring instrument

Similar Documents

Publication Publication Date Title
JPH0414422B2 (en)
JPS6367549A (en) Defect inspecting and film thickness measuring instrument for resist original disk
CN100437764C (en) Quality testing method for optical data carriers
JP2001330431A (en) Apparatus and method for measurement of characteristic of face shape
JPH01124129A (en) Replica base, stamper, or master disk for optical disk
JPH02289942A (en) Method and instrument for measuring groove shape
JPS6093646A (en) Recording and reproducing device of optical memory
JPH11167730A (en) Optical master plate recording device and method thereof
KR20010041003A (en) Method and apparatus to determine fly height of a recording head
EP0982716B1 (en) Optical recording medium and master to produce it
US20040081048A1 (en) Local track pitch measuring apparatus and method
KR100314089B1 (en) System of monitoring developed state of glass disk photoresist for manufacturing optical disk
JPS58147824A (en) Inspecting device of disk
JP2650267B2 (en) optical disk
JP2583447B2 (en) Angle adjustment method of beam train in optical disk recording / reproducing device
JP2007292509A (en) Method of measuring refractive index, and device for measuring refractive index
JPS6220611B2 (en)
JPS62291550A (en) Apparatus for inspecting optical disk
KR20070053294A (en) Focus control for a medium scanning system
JPS63313327A (en) Track pitch detector for optical information recording medium and optical information recording medium driver
JPH09145326A (en) Method and apparatus for measuring groove parameters of stamper for optical disc, production method and method and apparatus for development
JP2737183B2 (en) Optical disk characteristics measurement method
JP2001202638A (en) Optical pickup device and optical disk device using same
JPS60237308A (en) Depth measuring apparatus
JPH1083580A (en) Optical disk measuring instrument