JPH02286358A - Light emitting device - Google Patents

Light emitting device

Info

Publication number
JPH02286358A
JPH02286358A JP1107761A JP10776189A JPH02286358A JP H02286358 A JPH02286358 A JP H02286358A JP 1107761 A JP1107761 A JP 1107761A JP 10776189 A JP10776189 A JP 10776189A JP H02286358 A JPH02286358 A JP H02286358A
Authority
JP
Japan
Prior art keywords
array
light emitting
substrate
nucleation
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1107761A
Other languages
Japanese (ja)
Inventor
Yuji Nishigaki
西垣 有二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1107761A priority Critical patent/JPH02286358A/en
Publication of JPH02286358A publication Critical patent/JPH02286358A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/20Illuminated signs; Luminous advertising with luminescent surfaces or parts
    • G09F13/22Illuminated signs; Luminous advertising with luminescent surfaces or parts electroluminescent

Landscapes

  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)
  • Led Devices (AREA)
  • Dot-Matrix Printers And Others (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Abstract

PURPOSE:To make the mechanical alignment of the optical axis of a luminous element array with the same of a micro-lense array unnecessary and miniaturize the title device by a method wherein the micro-lense array is formed on one side of an amorphous transparent substrate while the luminous element array is formed on the other side of the same while aligning the light emitting positions thereof with the optical axis of the micro-lens array so as to be monolithic. CONSTITUTION:An amorphous transparent substrate 1 is employed as the substrate and a micro-lense array 2 is formed on one side of the substrate while a luminous element array 3 is formed on the other side of the substrate while aligning the light emitting positions of the array 3 with the optical axis of the micro-lense array 2 so as to be monolithic respectively. The relative alignment of the optical axises of the array 3 and the array 2 is effected upon integrating and, therefore, the title device is stabilized. Accordingly, mechanical alignment of the optical axises may not be necessitated when a photo-printer is constituted of said light emitting device while a distance with respect to a photosensitive drum may be shortened and it becomes favorable to miniaturize the device.

Description

【発明の詳細な説明】 (M東上の利用分野) 本発明は発光素子と光学系とを基板上に集積した発光装
置に関し、とくに、元プリンタのプリンタヘッド、情報
処理用光源−むして使用する発光装置に関するものであ
る。
[Detailed Description of the Invention] (Field of Application of M Tojo) The present invention relates to a light-emitting device in which a light-emitting element and an optical system are integrated on a substrate, and particularly to a printer head of a former printer, a light source for information processing, etc. This invention relates to a light emitting device.

(従来の技術) 従来、IJDプリンタなどの発光装置として用いられる
LEDアレイ23は第6図に示されるようにロッドレン
ズアレイ24と組合わされて使用されるので、組立てに
際しては光軸調整を行なう必要があり、このための機械
設備を必要とする。また、IJDアレイ23と感光ドラ
ム25の位置関係はロット0レンズアレイ24を挾んで
いる関係で、ロッPし/ズの共役長(20〜40闘)だ
け対称に離されている。
(Prior Art) Conventionally, an LED array 23 used as a light emitting device in an IJD printer or the like is used in combination with a rod lens array 24 as shown in FIG. 6, so it is necessary to adjust the optical axis during assembly. There is a need for mechanical equipment for this purpose. Further, the positional relationship between the IJD array 23 and the photosensitive drum 25 is such that they sandwich the lot 0 lens array 24, and are symmetrically separated by the conjugate length (20 to 40 degrees) of the lot 0 lens array 24.

(発明が解決しようとする課題) しかしながら、上述の従来例ではLEDアレイ23とロ
ッドレンズアレイ24との光軸調整に手間がかかり、ま
た、ロッドレンズアレイ24のためにLEDアレイ23
と感光ドラム25との間の距離は一定値以下には縮める
ことができない。
(Problems to be Solved by the Invention) However, in the conventional example described above, it takes time and effort to adjust the optical axes of the LED array 23 and the rod lens array 24.
The distance between the photosensitive drum 25 and the photosensitive drum 25 cannot be reduced below a certain value.

(発明の目的) 本発明は上記事情にもとづいてなされたもので、マイク
ロレンズアレイを基板に対してモノリシックに形成する
と共に、反対面に発光素子アレイを集積化によってモノ
リシックに形成することで、機械的な光軸調整が不要で
光軸方向への所要距離を大幅にIEi縮できる発光装置
を提供しようとするものである。
(Object of the Invention) The present invention has been made based on the above circumstances, and is capable of mechanically forming a microlens array monolithically on a substrate and monolithically forming a light emitting element array on the opposite surface by integration. The present invention aims to provide a light emitting device that does not require optical axis adjustment and can significantly reduce the required distance in the optical axis direction.

(課題を解決するための手段) このため1本発明では発光素子と光学系とを基板上に集
積した発光装置であって、上記基板には非晶質透明基板
を用い、該基板の一面にマイクロレンズアレイを、また
、上記マイクロレンズアレイの光軸に発光位置を合わせ
て発光素子アレイを上記マイクロレンズアレイとは反対
側に位置して上記基板の他面にそれぞれモノリシックに
形成している。
(Means for Solving the Problems) For this reason, the present invention provides a light emitting device in which a light emitting element and an optical system are integrated on a substrate, in which an amorphous transparent substrate is used as the substrate, and one surface of the substrate is A microlens array is monolithically formed on the other surface of the substrate, and a light emitting element array is located on the opposite side of the microlens array with the light emitting position aligned with the optical axis of the microlens array.

そして、要すれば、上記発光素子プレイは、マイクロレ
ンズアレイを形成した非晶質透明基板の他面を非核形成
面とするか、あるいは非晶質透明基板の他面に反射膜を
形成し、その反射膜表面を非核形成面として、非核形成
面に核形成密度が十分大きくかつ単一の核だけが成長す
る程度に十分微細な核形成面を形成し、結晶成長処理に
よシ核形成面上の単一核から単結晶を成長させ、その単
結晶に発光素子を形成している。
And, if necessary, the light emitting element play includes making the other surface of the amorphous transparent substrate on which the microlens array is formed a non-nucleation surface, or forming a reflective film on the other surface of the amorphous transparent substrate, The surface of the reflective film is used as a non-nucleation surface, and a nucleation surface with sufficiently high nucleation density and fine enough to grow only a single nucleus is formed on the non-nucleation surface, and a nucleation surface is formed on the non-nucleation surface by crystal growth processing. A single crystal is grown from the single nucleus above, and a light emitting element is formed in that single crystal.

(作用) したがりて、発光索子アレイとマイクロレンズアレイと
の相対的な元軸整合は集積時に行なわれるのみで、安定
したものとなる。このため、上記発光装置を用いて光プ
リンタを構成した場合、機械的な光軸調整を組立てに際
して行なう必要がなく、また、感光ドラムに対する距離
も短縮でき、装置の小形化にも有利となる。また、情報
処理用光源として用いるために、基板に対して2次元的
に発光素子アレイおよびこれに対応するマイクロレンズ
プレイを配設する構成では、全体の小型化が充分に達成
できる。
(Function) Therefore, the relative axis alignment between the light emitting strand array and the microlens array is only performed at the time of integration, and is stable. Therefore, when an optical printer is constructed using the above light emitting device, there is no need to perform mechanical optical axis adjustment during assembly, and the distance to the photosensitive drum can also be shortened, which is advantageous for downsizing the device. Furthermore, in order to use the device as a light source for information processing, a structure in which a light emitting element array and a corresponding microlens play are two-dimensionally disposed on a substrate can sufficiently reduce the overall size.

(実施例) 以下、本発明の実施例を図面を参照して具体的に説明す
る。
(Example) Hereinafter, an example of the present invention will be specifically described with reference to the drawings.

第1図は非晶質透明基板1上にマイクロレンズアレイ2
を形成すると共に、上記マイクロレンズアレイ2のある
側とは反対側の面において、上記基板1上に発光素子ア
レイ3を集積化した発光装置を示している。ここでは非
晶質透明基板1の一面は非核形成面になっており、非核
形成面上に核形成密度が十分大きくかつ単一の核だけが
成長する程度に十分微細な核形成面を形成し、結晶成長
処理により核形成面上の単一核から単結晶を成長させ、
その単結晶上に発光素子を形成するのである。このよう
に基板l上にモノリシックにマイクロレンズアレイ2お
よび発光素子アレイ3を集積化する点が本発明の特徴で
ある。
Figure 1 shows a microlens array 2 on an amorphous transparent substrate 1.
A light emitting device is shown in which a light emitting element array 3 is integrated on the substrate 1 on the surface opposite to the side where the microlens array 2 is present. Here, one surface of the amorphous transparent substrate 1 is a non-nucleation surface, and a nucleation surface is formed on the non-nucleation surface that has a sufficiently high nucleation density and is sufficiently fine that only a single nucleus grows. , a single crystal is grown from a single nucleus on the nucleation surface by a crystal growth process,
A light emitting element is formed on the single crystal. The feature of the present invention is that the microlens array 2 and the light emitting element array 3 are monolithically integrated on the substrate l in this manner.

なお、非晶質透明基板1としては石英ガラスなど、後工
程の結晶成長処理のグロセス温度に耐えられる耐熱性の
材料を用いる。
Note that the amorphous transparent substrate 1 is made of a heat-resistant material such as quartz glass that can withstand the growth temperature of the crystal growth process in the subsequent process.

マイクロレンズアレイの材料としては、たとえば、石英
ガラス基板(屈折率1.46)に対して、より屈折率の
大きいSl、N4(屈折率2.0)ftレンズ材料とし
て用いることができる。また、マイクロレンズアレイの
材料も結晶成長処理のグロセス温度に耐えられることが
望ましい。このようなマイクロレンズアレイは、レンズ
形状に適する膜厚分布を持つ九薄膜の堆積法を用いて形
成するとよく、それには基板加熱型のレーデCVD法(
レーデ気相成長法)が適当である。また、ウニyトエッ
チングによって、形状を整えてもよい。
As a material for the microlens array, for example, a ft lens material such as Sl or N4 (refractive index 2.0) having a larger refractive index than a quartz glass substrate (refractive index 1.46) can be used. It is also desirable that the material of the microlens array can withstand the growth temperature of the crystal growth process. Such a microlens array is preferably formed using a nine-thin film deposition method with a film thickness distribution suitable for the lens shape.
Rede vapor phase growth method) is suitable. Alternatively, the shape may be adjusted by unit etching.

非晶質基板1上に■、■族化合物半導体の単結晶を成長
させるには選択核形成法(特開昭63−107016)
を用いるとよい。これは結晶成長させる材料の核形成密
度が小さい非核形成面4上に、核形成密度が大きい非核
形成面5を微細に形成した基板lを用意する(第2図(
a)参照)。
Selective nucleation method for growing a single crystal of a group ■, group compound semiconductor on an amorphous substrate 1 (Japanese Patent Application Laid-Open No. 107016/1983)
It is recommended to use This is done by preparing a substrate l in which a non-nucleation surface 5 with a high nucleation density is finely formed on a non-nucleation surface 4 with a low nucleation density of the material to be crystal grown (see Fig. 2).
a)).

次にMOCVD法(M@tal Orgahic Ch
@m1ealVapourDaposl tlon :
有機金属気相成長法)、クロライドVPE法(Chlo
rid@Vapour Phraae Epitaxy
:クロライド気相エピタキシー) 、 LPE法(Ll
quldPhras@Epltaxy :液相エピタキ
シー) %MBE法(Mo1scular Beam 
Epttaxy :分子線エピタキシー)、MOMBE
法(Metal Organic Mo1scular
 BaamEpitaxy:有機金属分子線エピタキシ
ー)などの結晶成長法を用いて、非核形成面4上には核
が成長せず、核形成面5上にのみ選択的に核が成長する
条件で結晶成長させると、単一核6が核形成面5上に形
成される(第2図(b)参照)ことを指すのであって、
更に結晶を成長させると、単結晶は非核形成面4上まで
拡大され、大きな単結晶7が生成できる(第2図(a)
参照)。
Next, MOCVD method (M@tal Organic Ch
@m1ealVapourDaposl tron:
metal organic vapor phase epitaxy), chloride VPE method (Chlo
rid@Vapour Phraae Epitaxy
:chloride gas phase epitaxy), LPE method (Ll
quldPhras@Epltaxy: Liquid phase epitaxy) %MBE method (Mo1scular beam
Epttaxy: Molecular beam epitaxy), MOMBE
Law (Metal Organic Mo1scal
When crystal growth is performed using a crystal growth method such as BaamEpitaxy (organometallic molecular beam epitaxy) under conditions where nuclei do not grow on the non-nucleation surface 4 and nuclei selectively grow only on the nucleation surface 5. , refers to the formation of a single nucleus 6 on the nucleation surface 5 (see FIG. 2(b)),
When the crystal is further grown, the single crystal is expanded to the non-nucleation surface 4, and a large single crystal 7 can be generated (Fig. 2(a)).
reference).

なお、単結晶7上に形成する発光素子としては透明基板
1にほぼ垂直に基板側へ発光する面発光LED 、面発
光レーデであればどのような構造のものにしてもよい。
The light emitting element formed on the single crystal 7 may be of any structure as long as it is a surface emitting LED or a surface emitting radar that emits light almost perpendicularly to the transparent substrate 1 toward the substrate.

このような構成では、第1図のように、発光素子アレイ
3から基板側へ発光した光は透明基板1を経由してマイ
クロレンズアレイ2で集光される。
In such a configuration, as shown in FIG. 1, light emitted from the light emitting element array 3 toward the substrate side passes through the transparent substrate 1 and is focused by the microlens array 2.

上述の発光素子アレイ3における単結晶材料としては、
GaAs、 AbmAs、 InP、 InGaAsP
、 InGaAtP。
As the single crystal material in the above-mentioned light emitting element array 3,
GaAs, AbmAs, InP, InGaAsP
, InGaAtP.

GaAmP、 GaP、 GaNなどのm−v族化合物
半導体や、ZnSθ、 ZnSなどの1−Vl族化合物
半導体を用いることができる。
MV group compound semiconductors such as GaAmP, GaP, and GaN, and 1-Vl group compound semiconductors such as ZnSθ and ZnS can be used.

次に1本発明に係る発光装置の具体的な実例を述べる。Next, a specific example of a light emitting device according to the present invention will be described.

(実施例1) 先う、石英ガラス基板1上に耐熱性マイクロレンズアレ
イ2を形成する(第3図(a)参照)。ここでは石英ガ
ラス基板1は厚さl闘であり、この上に、レーデCVD
法によってスポット状にSIN M膜を、100.am
間隔でライン状に100個並べて形成することでマイク
ロレンズアレイ2を得る。使用レーザは波長10,6μ
mの炭酸ガスレーザ(出力10W)であり、Zn5sレ
ンズによりて絞ってからZn5e九学窓を通して光CV
D装置に導入してbる。
(Example 1) First, a heat-resistant microlens array 2 is formed on a quartz glass substrate 1 (see FIG. 3(a)). Here, the quartz glass substrate 1 has a thickness of 1, and on top of this, a Rede CVD
The SIN M film was applied in spots by the method of 100. am
A microlens array 2 is obtained by arranging 100 microlenses in a line shape at intervals. The laser used has a wavelength of 10.6μ
m carbon dioxide laser (output 10W), which is focused by a Zn5s lens and then passed through a Zn5e nine-way window to produce an optical CV.
Introduce it into the D device.

ソースガスとしてFi、5IH2Ct2を10 SCC
M 、 NH,を50SCCM流し、圧力5 Torr
で、1スポツトにつき2m1n間、照射し、薄膜を形成
する。中心膜厚はは約2μmで、なだらかな膜厚分布を
持ち、レンズ機能を持つ。
10 SCC of Fi, 5IH2Ct2 as source gas
M, NH, was flowed at 50 SCCM, and the pressure was 5 Torr.
Then, each spot is irradiated for 2 m1n to form a thin film. The central film thickness is approximately 2 μm, has a gentle film thickness distribution, and has a lens function.

このようにして、マイクロレンズアレイ2を形成した石
英ガラス基板lを裏返して、集束イオンビーム装置によ
りてG息イオンを40 KaV、 2XIO/clfL
”のドーズで、1βm角の微細領域に打込む。このGa
イオンの打込み領域5は上記マイクロレンズアレイ2の
光軸に対応して1100a間隔でライン状に100個並
べて形成される(第3図(b)参照)。
In this way, the quartz glass substrate l on which the microlens array 2 was formed was turned over, and G ions were irradiated with a focused ion beam device at 40 KaV and 2XIO/clfL.
” into a fine area of 1βm square.
100 ion implantation regions 5 are formed in a line at intervals of 1100a, corresponding to the optical axis of the microlens array 2 (see FIG. 3(b)).

次に、Gaイオンの打込み領域5を表にしてMOCVD
装置に基板lftセットし、ソースガスとしてトリメチ
ルガリウム、トリメチルアルミニウム、アルシン、ドー
パントガスとしてシラン、キャリヤガスとして水素を流
し、基板温度750℃、圧力5 Q Torr 、 V
/In比=80の条件でn型ALxGa1−、Am(X
=0.65)の成長を行なう。この場合、石英ガラス5
tO2基板lの表面4は非核形成面として動き、G&イ
オンの打込領域の表面が核形成面として働くので、その
微細な打込み領域5から直径的5μmのAbmAsの単
結晶粒子8が成長する(第3図(0)参照)。
Next, MOCVD is performed with the Ga ion implantation region 5 facing up.
A substrate lft was set in the apparatus, trimethylgallium, trimethylaluminum, arsine was supplied as a source gas, silane was used as a dopant gas, and hydrogen was supplied as a carrier gas.The substrate temperature was 750°C and the pressure was 5Q Torr, V.
/In ratio = 80, n-type ALxGa1-, Am(X
=0.65). In this case, quartz glass 5
The surface 4 of the tO2 substrate l acts as a non-nucleation surface, and the surface of the G& ion implantation region acts as a nucleation surface, so AbmAs single crystal particles 8 with a diameter of 5 μm grow from the fine implantation region 5 ( (See Figure 3 (0)).

次いで、ガスの流量、ドーパントガス(p釜のときはノ
エチル亜鉛)を切換えて、n型AtxGa1−xAm(
x=0.8)層9を、ノンドープのA7xG畠1−、A
M(X=0.35)活性層10を、piJ AtxGa
l−xAs (x=0.8)層11を、p型A4Ga1
−xAs (x= 0.65 )層12を順次成長させ
、直径約20μmの粒子7にする(第3図(d)および
(6)参照)。
Next, by changing the gas flow rate and dopant gas (noethylzinc in the case of a p-type pot), n-type AtxGa1-xAm (
x=0.8) Layer 9 is made of non-doped A7xG Hatake1-, A
M (X=0.35) active layer 10, piJ AtxGa
The l-xAs (x=0.8) layer 11 is made of p-type A4Ga1
-xAs (x=0.65) layers 12 are successively grown into particles 7 with a diameter of about 20 μm (see FIGS. 3(d) and (6)).

次に、この粒子7の表面をラッピングおよびポリッシン
グによシ平坦化しく第3図(f)および−)参照)、反
射EX (Au/SIO□) 13、正電極(AuZn
 )14、負電極(AuG・)15などを集積して、ダ
ブルへテロ構造のLEDとする(第3図(h)および(
1)参照)。
Next, the surfaces of the particles 7 are flattened by lapping and polishing (see FIGS. 3(f) and -)), reflection EX (Au/SIO□) 13, and positive electrode (AuZn
) 14, negative electrode (AuG・) 15, etc. are integrated to form a double heterostructure LED (Fig. 3 (h) and (
1)).

このような構成ではLEDの活性層10から放出された
光は石英ガラス1を透過してマイクロレンズアレイ2で
集光される。
In such a configuration, light emitted from the active layer 10 of the LED passes through the quartz glass 1 and is focused by the microlens array 2.

(実施例2) 別の実施例としては第4図および第5図に示すような構
造の集積化が基板1上になされるが、ここでは、2次元
面発光レーデアレイと2次元マイクロレンズアレイとが
形成される。
(Example 2) As another example, the structures shown in FIGS. 4 and 5 are integrated on the substrate 1, but here, a two-dimensional surface emitting radar array and a two-dimensional microlens array are integrated. is formed.

先づ、厚さ1jImの石英ガラス基板1上に実施例1と
同様にしてレーザCVD法で5INR[のマイクロレン
ズアレイ2を100μmピッチで8×8個の2次元配列
で64個形成する。
First, 64 microlens arrays 2 of 5 INR were formed in a two-dimensional array of 8×8 at a pitch of 100 μm using the laser CVD method in the same manner as in Example 1 on a quartz glass substrate 1 with a thickness of 1 jIm.

次に、マイクロレンズアレイが形成され次層板1を裏返
して、上面にAu膜16を電子線加熱によって蒸着し、
次いで5IN4膜17を減圧CVD法で全面に堆積し、
基板側反射膜とする。
Next, after the microlens array is formed, the next layer plate 1 is turned over, and an Au film 16 is deposited on the upper surface by electron beam heating.
Next, a 5IN4 film 17 is deposited on the entire surface by low pressure CVD method,
Use as a reflective film on the substrate side.

次に81 、N4膜17上に、実施例1と同様にして集
束イオンビーム装置でG1イオンを1 xAm角で打込
み、更に基板をMOCVD装置にセットして、選択核形
成法(先述)で、単結晶を成長する。ここではSl、N
4膜17が非核形成面となり、Caイオン打込み領域の
表面が核形成面となる。しかして、実施例1と同様に、
ソースガス )”−ノ4ントガスの流量を変え、最初に
n mGaAs層181次いでn型、^、txG畠1−
xAs (x=0.35 )層19、ノンドープのAt
xGal−XAs (x = 0.05 )活性420
.p型AtxGa1−xAs (x = 0.35 )
層2” %p型GaAa層22を順次成長する。
Next, 81, G1 ions were implanted onto the N4 film 17 at a angle of 1 x Am using a focused ion beam device in the same manner as in Example 1, and then the substrate was set in an MOCVD device, and by the selective nucleation method (described earlier), Grow single crystals. Here, Sl, N
4 film 17 becomes a non-nucleation surface, and the surface of the Ca ion implantation region becomes a nucleation surface. However, similar to Example 1,
Source gas )"-4 The flow rate of the source gas is changed, first the nm GaAs layer 181, then the n-type, ^, txG Hatake 1-
xAs (x=0.35) layer 19, non-doped At
xGal-XAs (x = 0.05) activity 420
.. p-type AtxGa1-xAs (x = 0.35)
Layer 2'' % p-type GaAa layer 22 is grown sequentially.

次に、実施例1と同様に成長した結晶を平坦化し、反射
膜(Au /810□) 、正電極(AuZn)14、
負電極(AuGe ) 15などを形成してダブルへテ
ロ構造の面発光レーザとする。
Next, the grown crystal was flattened in the same manner as in Example 1, and a reflective film (Au/810□), a positive electrode (AuZn) 14,
A negative electrode (AuGe) 15 and the like are formed to form a double heterostructure surface emitting laser.

(発明の効果) 本発明は以上詳述したようになり、非晶質透明基板上に
発光素子アレイ、マイクロレンズアレイを集積化してい
るので、発光素子アレ・イとマイクロレンズアレイの機
構的な元軸調整が不要となり、より安定した光プリンタ
や情報処理装置が構成できる。また、各別の発光素子プ
レイおよびマイクロレンズアレイを組合わせ使用する場
合よりも全体の小型化が実現できる。更に、非晶質基板
を用いるから、長尺の1次元集積化発光索子アレイや、
大面積の2次元集積化発元素子プレイの製造が可能であ
る。
(Effects of the Invention) As described in detail above, the present invention integrates a light emitting element array and a microlens array on an amorphous transparent substrate. This eliminates the need for base axis adjustment, allowing more stable optical printers and information processing devices to be configured. Furthermore, the overall size can be reduced compared to the case where separate light emitting element plays and microlens arrays are used in combination. Furthermore, since an amorphous substrate is used, it is possible to create a long one-dimensional integrated luminescent cord array,
It is possible to manufacture a large-area two-dimensionally integrated power source element play.

【図面の簡単な説明】[Brief explanation of the drawing]

gt図は本発明の一実施例を示す断面図、第2図(a)
〜(c)は選択核形成法を説明するための図、第3図(
a)〜(1)は本発明の一具体例全示す1次元集積化L
EDアレイの製作工程を示す図、第4図および第5図は
本発明の別の具体例を示す2次元集積化レーデアレイの
断面図および平面図、第6図は従来例のLED fリン
クの構成図でおる。 1・・・非晶質透明基板、2・・・マイクロレンズアレ
イ、3・・・発光素子アレイ、4・・・非核形成面、5
・・・基体、6・・・単一核、7・・・単結晶。
gt diagram is a sectional view showing one embodiment of the present invention, FIG. 2(a)
~(c) is a diagram for explaining the selective nucleation method, Figure 3 (
a) to (1) are one-dimensional integrated L showing one specific example of the present invention.
4 and 5 are cross-sectional views and plan views of a two-dimensional integrated radar array showing another example of the present invention, and FIG. 6 is a diagram showing the configuration of a conventional LED f-link. Illustrated. DESCRIPTION OF SYMBOLS 1... Amorphous transparent substrate, 2... Microlens array, 3... Light emitting element array, 4... Non-nucleation surface, 5
... Substrate, 6... Single nucleus, 7... Single crystal.

Claims (3)

【特許請求の範囲】[Claims] (1)発光素子と光学系とを基板上に集積した発光装置
であって、上記基板には非晶質透明基板を用い、該基板
の一面にマイクロレンズアレイを、また、この面とは反
対側の面に上記マイクロレンズアレイの光軸に発光位置
を合わせて発光素子アレイをそれぞれモノリシックに形
成していることを特徴とする発光装置。
(1) A light emitting device in which a light emitting element and an optical system are integrated on a substrate, in which an amorphous transparent substrate is used as the substrate, a microlens array is arranged on one side of the substrate, and a microlens array is arranged on the opposite side of the substrate. A light-emitting device characterized in that a light-emitting element array is monolithically formed on a side surface with light-emitting positions aligned with the optical axis of the microlens array.
(2)上記発光素子アレイはマイクロレンズアレイを形
成した非晶質透明基板の他面を非核形成面として、ここ
に核形成密度が十分大きく、且つ、単一の核だけが成長
する程度の微細な核形成面を形成し、この核形成面から
単結晶を成長させて発光素子を構成している請求項1の
発光装置。
(2) The above-mentioned light emitting element array has the other surface of the amorphous transparent substrate on which the microlens array is formed as a non-nucleation surface, and the nucleation density is sufficiently high here, and the microlens is small enough that only a single nucleus grows. 2. The light emitting device according to claim 1, wherein a light emitting element is constructed by forming a nucleation surface and growing a single crystal from this nucleation surface.
(3)上記発光素子アレイは、マイクロレンズアレイを
形成した非晶質透明基板の他面に反射膜を形成し、該反
射膜の表面を非核形成面として、ここに核形成密度が十
分大きく、且つ、単一の核だけが成長する程度の微細な
核形成面を形成し、この核形成面から単結晶を成長させ
て発光素子を構成している請求項1の発光装置。
(3) The light emitting element array has a reflective film formed on the other surface of the amorphous transparent substrate on which the microlens array is formed, and the surface of the reflective film is used as a non-nucleation surface, and the nucleation density is sufficiently high here. 2. The light emitting device according to claim 1, further comprising forming a fine nucleation surface on which only a single nucleus grows, and forming a light emitting element by growing a single crystal from this nucleation surface.
JP1107761A 1989-04-28 1989-04-28 Light emitting device Pending JPH02286358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1107761A JPH02286358A (en) 1989-04-28 1989-04-28 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1107761A JPH02286358A (en) 1989-04-28 1989-04-28 Light emitting device

Publications (1)

Publication Number Publication Date
JPH02286358A true JPH02286358A (en) 1990-11-26

Family

ID=14467324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1107761A Pending JPH02286358A (en) 1989-04-28 1989-04-28 Light emitting device

Country Status (1)

Country Link
JP (1) JPH02286358A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169721A (en) * 1991-12-19 1993-07-09 Sharp Corp Image forming device
JPH05238059A (en) * 1992-02-28 1993-09-17 Kyocera Corp Image device
JPH0699612A (en) * 1992-09-18 1994-04-12 Toshiba Corp Aligner
US5475417A (en) * 1991-10-25 1995-12-12 Rohm Co., Ltd. LED array printhead and method of adjusting light luminance of same
JP2002196571A (en) * 2000-12-26 2002-07-12 Canon Inc Image forming device
WO2014109158A1 (en) * 2013-01-11 2014-07-17 株式会社ブイ・テクノロジー Optical interconnection device
CN110361947A (en) * 2018-04-09 2019-10-22 柯尼卡美能达株式会社 Optical writing device and image forming apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475417A (en) * 1991-10-25 1995-12-12 Rohm Co., Ltd. LED array printhead and method of adjusting light luminance of same
JPH05169721A (en) * 1991-12-19 1993-07-09 Sharp Corp Image forming device
JPH05238059A (en) * 1992-02-28 1993-09-17 Kyocera Corp Image device
JPH0699612A (en) * 1992-09-18 1994-04-12 Toshiba Corp Aligner
JP2002196571A (en) * 2000-12-26 2002-07-12 Canon Inc Image forming device
JP4574006B2 (en) * 2000-12-26 2010-11-04 キヤノン株式会社 Image forming apparatus
WO2014109158A1 (en) * 2013-01-11 2014-07-17 株式会社ブイ・テクノロジー Optical interconnection device
CN104919731A (en) * 2013-01-11 2015-09-16 株式会社V技术 Optical interconnection device
CN110361947A (en) * 2018-04-09 2019-10-22 柯尼卡美能达株式会社 Optical writing device and image forming apparatus

Similar Documents

Publication Publication Date Title
JPS5816583A (en) Semiconductor device having non-planar layer characteristic and method of producing same
CN105742958A (en) III-nitride luminescent device with DBR mask and preparation method
JPH05251738A (en) Manufacture of semiconductor optical device array
JPH02286358A (en) Light emitting device
US5243200A (en) Semiconductor device having a substrate recess forming semiconductor regions
EP0637086B1 (en) Light emitting semiconductor device and light enhanced deposition method for fabricating the same
JPH079999B2 (en) Gallium nitride compound semiconductor light emitting device
US20230402564A1 (en) Method of transferring a pattern to an epitaxial layer of a light emitting device
US5115284A (en) Light-emitting device
JP2815114B2 (en) Light emitting device and manufacturing method thereof
US5250819A (en) Light emitting device having stepped non-nucleation layer
JPH05226781A (en) Production of semiconductor light emitting element
JP2815115B2 (en) Light emitting device and manufacturing method thereof
JPH07249831A (en) Method for growing crystal
JPH0621515A (en) Optical integrated device
JPH0271574A (en) Semiconductor laser and manufacture thereof
JPS6273691A (en) Manufacture of semiconductor light-emitting device
JPH01296678A (en) Manufacture of semiconductor heterojunction
JP2766088B2 (en) Light emitting device manufacturing method
JPH01312883A (en) Semiconductor laser device and manufacture thereof
JPH06232044A (en) Manufacture of semiconductor film
JPS6114753A (en) Manufacture of composite photosemiconductor element
JPH06140712A (en) Manufacture of compound semiconductor device
JPS6262581A (en) Manufacture of semiconductor light emitting device
JPH09219367A (en) Manufacture of semiconductor device