JPH022849A - Porous hollow yarn membrane - Google Patents

Porous hollow yarn membrane

Info

Publication number
JPH022849A
JPH022849A JP13226488A JP13226488A JPH022849A JP H022849 A JPH022849 A JP H022849A JP 13226488 A JP13226488 A JP 13226488A JP 13226488 A JP13226488 A JP 13226488A JP H022849 A JPH022849 A JP H022849A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
group
porous hollow
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13226488A
Other languages
Japanese (ja)
Inventor
Yasushi Shimomura
下村 泰志
Masahiko Yamaguchi
正彦 山口
Koichiro Fukuzaki
福崎 好一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP13226488A priority Critical patent/JPH022849A/en
Publication of JPH022849A publication Critical patent/JPH022849A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make hollow diameter uniform and to increase selectively separating ability by forming porous hollow yarn membrane made of polyolefin having surrounding wall surface composed of strip-shaped ultrafine pore group with rod group and fine fibril group. CONSTITUTION:At first, the melt-spun polyolefin hollow yarn is elongated in a medium at a low temp., e.g., in liq. nitrogen and thereafter at 100-155 deg.C at 22.0%/min strain rate. Thereby, the surrounding wall surface part is composed of the relatively thick rod group running at an almost right angle to the direction of the length of the hollow yarn membrane, and fine fibril group running among the rods in the direction of the length of the hollow yarn membrane and besides, connecting between the rods, and the strip-shaped ultrafine pore group is formed with the rod group and fine fibril group to obtain porous hollow yarn membrane having 50-150mum the thickness, 250-1000mum inner diameter and 0.1-1.0mum pore diameter (by a bubble point method).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、周壁に多数の微小空孔を有する1選択的分離
能を備えた多孔性中空糸膜に関し、人工肺、血漿分離、
水処理などの用途に好適な多孔性中空糸膜に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a porous hollow fiber membrane having a large number of micropores in the peripheral wall and having a selective separation ability, and is applicable to artificial lungs, plasma separation,
The present invention relates to a porous hollow fiber membrane suitable for uses such as water treatment.

[従来の技術] ポリプロピレン等のような結晶性ポリオレフィンのフィ
ルムを延伸して、フィルムの内部に空孔な生成させ、多
孔質のフィルムを製造する方法は米国特許第35587
64号明細書に示されている。この方法においては、多
孔質ポリプロピレンフィルムを得るために、未延伸フィ
ルムを融点以上10〜40°Cの範囲で溶融押出しし、
これを巻き取り比(即ち、ドラフト)20〜180の範
囲内で巻き取ることによって、フィルム内部に互いにつ
ながった平均孔径1000〜2000Aの空孔を有する
ものか得られている。
[Prior Art] A method of producing a porous film by stretching a film of crystalline polyolefin such as polypropylene to form pores inside the film is disclosed in U.S. Pat. No. 35587.
No. 64 specification. In this method, in order to obtain a porous polypropylene film, an unstretched film is melt-extruded at a temperature of 10 to 40°C above its melting point,
By winding this film at a winding ratio (that is, draft) within a range of 20 to 180, a film having interconnected pores with an average pore diameter of 1000 to 2000 A can be obtained.

更に、特公昭56−52123号公報には多孔質ポリプ
ロピレン中空系及びその製造方法が提案されており、こ
の公報には、紡糸温度210〜250°Cて押出し、ド
ラフト180〜600で巻き取ることにより、ポリプロ
ピレンよりなる中空糸膜(中空u&m)であってその周
壁部の厚さが40島未満であり且つ該周壁部に互いにつ
ながった多数の微小空孔が存在するとともに該微小空孔
の半径の分布曲線が200〜1200人の範囲内に少な
くとも1つの極大点を有することを特徴とするものが得
られることか記載され、この場合ガスの透過性に特徴を
有する中空糸膜な得ることか可能となったと記載されて
いる。
Furthermore, Japanese Patent Publication No. 56-52123 proposes a porous polypropylene hollow system and a method for producing the same. is a hollow fiber membrane (hollow U&M) made of polypropylene, the thickness of its peripheral wall is less than 40 islands, and the peripheral wall has a large number of interconnected micropores, and the radius of the micropores is It is described that it is possible to obtain a hollow fiber membrane characterized by a distribution curve having at least one maximum point in the range of 200 to 1200, in which case it is possible to obtain a hollow fiber membrane characterized by gas permeability. It is stated that it became.

[発明か解決しようとする課題] しかしながら、従来公知の中空糸膜(中空繊維)は、そ
の周壁部の空孔か極めて不均質であり、空孔形の分布か
大きく、選択的分離性能面からみると大きい欠点を有し
ている。すなわち、優れた選択約分#俺を示すためには
空孔の大きさの均一性が重要であることは論をまたない
[Problem to be solved by the invention] However, in conventional hollow fiber membranes (hollow fibers), the pores in the peripheral wall are extremely heterogeneous, and the distribution of pore shapes is large, making it difficult to achieve selective separation performance. As you can see, it has major drawbacks. In other words, it goes without saying that the uniformity of the pore size is important in order to show an excellent selection factor.

ポリプロピレンのようなポリオレフィンを延伸フィブリ
ル化して多孔性とした場合、従来の方法では、形状及び
大きさが不均一で比較的太い曲りくねった網目を形成す
る部分と、この網目間に中空糸膜の長さ方向にほぼ平行
して走る、比較的細いフィブリル(以後、微小フィブリ
ルという)とによって孔か形成されている。
When polyolefin such as polypropylene is made porous by stretching and fibrillating, the conventional method involves forming a relatively thick and winding network with non-uniform shape and size, and forming a hollow fiber membrane between these networks. The pores are formed by relatively thin fibrils (hereinafter referred to as microfibrils) that run approximately parallel to the length.

このように、公知の方法によって得られる空孔の形状や
大きさは、全く均一性に欠け、上述の比較的太い網目状
部分は閉鎖回路を形成し、換言すれば、この比較的太い
網目を形成する部分は、中空糸膜の長さ方向に対して、
あらゆる方向に向って走っており、前記微小フィブリル
の長さと略同じ次元の大きさで大小さまざまな連続した
閉鎖回路すなわち網目を形成している。
As described above, the shape and size of the pores obtained by the known method lacks uniformity at all, and the relatively thick mesh portion described above forms a closed circuit. The part to be formed is in the longitudinal direction of the hollow fiber membrane.
They run in all directions and form a continuous closed circuit or network of various sizes with approximately the same dimension as the length of the microfibrils.

従って、前記微小フィブリルの長さも、場所によって様
々であり、換言すれば孔の大きさは分布の広いものとな
っている。このような、孔の大きさの分布の広いものは
、別の言葉で表現すれば選択的分離能において劣ること
となる。
Therefore, the length of the microfibrils also varies depending on the location, in other words, the pore sizes have a wide distribution. In other words, such a wide pore size distribution results in poor selective separation ability.

[課題を解決するための手段] そこで、本発明者らは多孔質ポリオレフィン中空糸膜の
孔形を一定にする方法について鋭意検討を続けた結果、
延伸フィブリル化を特定の条件において行うことによっ
て、空孔の大きさが均一な極めて特異なフィブリル状態
の微多孔性中空糸膜を形成させることに成功した。
[Means for Solving the Problems] Therefore, the present inventors continued to study intensively on a method of making the pore shape of a porous polyolefin hollow fiber membrane constant.
By performing stretch fibrillation under specific conditions, we succeeded in forming a microporous hollow fiber membrane with a very unique fibrillar state with uniform pore size.

すなわち、本発明によれば、ポリオレフィンの多孔性中
空糸膜であって、その周壁部は、該中空糸膜の長さ方向
に対し、略直角に走る比較的太いロッド群と、その各ロ
ッド間に該中空糸膜の長さ方向に走り且つ各ロッド間に
つながる微小フィブリル群とによって構成され、これら
のロッド群及び微小フィブリル群によって短冊状の微小
孔群を形成してなり、膜厚が50〜150ILm、内径
か250〜11000p、且つバブルポイント法で測定
したとき孔径が0.1〜1.07zmであることを特徴
とする多孔性中空糸膜、が提供される。
That is, according to the present invention, there is provided a porous hollow fiber membrane of polyolefin, the peripheral wall of which has a group of relatively thick rods running approximately perpendicularly to the length direction of the hollow fiber membrane, and a group of relatively thick rods between the rods. and a group of microfibrils running in the length direction of the hollow fiber membrane and connected between each rod, and these rods and microfibrils form a group of strip-shaped micropores, and the film thickness is 50 mm. Provided is a porous hollow fiber membrane, characterized in that the porous hollow fiber membrane has an inner diameter of 250 to 11000 p, and a pore diameter of 0.1 to 1.07 zm when measured by a bubble point method.

本発明における好ましい態様は、前記ロッド群が中空糸
膜の長さ方向に略直角に走り、各ロッド群の間に形成さ
れる微小フィブリルの平均長(d)の3倍以上の長さで
前記ロッドは閉鎖回路を形成しく第1図、第2図及び第
3図参照)、好ましくは前記微小フィブリルの平均長(
d)の5倍以上、更に好ましくは10倍以上の長さで閉
鎖回路を形成することを特徴としている。ここで微小フ
ィブリルの平均長(d)は任意の前記ロッド上の任意の
1点をとり、その周辺の任意の微小フィブリル20本の
長さの平均で表わすものとする。
In a preferred embodiment of the present invention, the rod groups run substantially perpendicularly to the length direction of the hollow fiber membrane, and have a length that is at least three times the average length (d) of microfibrils formed between each rod group. The rods form a closed circuit (see Figures 1, 2 and 3), preferably the average length of the microfibrils (see Figures 1, 2 and 3).
It is characterized by forming a closed circuit with a length of 5 times or more, more preferably 10 times or more, of d). Here, the average length (d) of the microfibrils is expressed as the average length of 20 arbitrary microfibrils around an arbitrary point on the rod.

本発明においては種々の成形条件を綿密に検討して、比
較的太いロッド状の部分を中空糸膜の長さ方向に対して
、略直角方向のみに形成させ、換言すればこの比較的太
いロッド状のものが、中空糸膜の長さ方向に形成するこ
とのない特殊な中空糸膜を開発したものである。
In the present invention, various molding conditions were carefully studied, and relatively thick rod-shaped portions were formed only in a direction substantially perpendicular to the length direction of the hollow fiber membrane. A special type of hollow fiber membrane has been developed that does not require formation in the length direction of the hollow fiber membrane.

従来の方法で製造された中空糸膜では、前記の閉鎖回路
を形成する枠の大きさが様々であり、従って、その間に
走る微小フィブリルの長さもそれに対応して様々であり
、換言すれば短冊状に形成される孔の大きさが不均一で
分布が極めて広いものとなる。
In hollow fiber membranes produced by conventional methods, the sizes of the frames forming the closed circuit vary, and therefore the lengths of the microfibrils running between them vary accordingly.In other words, the lengths of the microfibrils running between them vary. The size of the pores formed is non-uniform and the distribution is extremely wide.

本発明における中空糸膜は、膜厚が50〜150μm、
好ましくは50〜100ルm、内径が250〜l100
Op、好ましくは270〜400g、mで、バブルポイ
ント法で孔径を測定したとき、孔径か0.1〜1.0μ
m、好ましくは0.2〜0.57zmである物性を有す
ることが必要である。
The hollow fiber membrane in the present invention has a membrane thickness of 50 to 150 μm,
Preferably 50-100 lm, inner diameter 250-1100 lm
Op, preferably 270 to 400 g, m, and when the pore size is measured by the bubble point method, the pore size is 0.1 to 1.0μ.
m, preferably 0.2 to 0.57 zm.

このような物性の中空糸膜を人工節に用いれば、膜面積
が小てあってもガス交換能(酸素添加能及び炭酸ガス交
換能)が良好て、血漿の洩れが長時間発生しない人工J
Wを得ることがてきる。
If a hollow fiber membrane with such physical properties is used in an artificial joint, even though the membrane area is small, the gas exchange capacity (oxygenation capacity and carbon dioxide exchange capacity) will be good, and plasma leakage will not occur for a long time.
You can get W.

また、その他の用途、例えば血漿分離、水処理などに利
用した場合も、中空糸膜の空孔の大きさか均一なため、
その選択的分離能の優れたものを得ることができる。
In addition, when used for other purposes such as plasma separation and water treatment, the pores of the hollow fiber membrane are uniform in size, so
It is possible to obtain an excellent selective separation ability.

本発明において、好ましくは、前記ロット上の任意の1
点を起点として微小フィブリルの平均長(d)(前記起
点を中心に周辺の任意の微小フィブリル20本の平均長
て表わす)の3倍以上の長さて前記ロッドは閉鎖回路を
形成するものである。これは換言すれば上記の範囲に亘
って微小フィブリルの長さは略一定であることを意味す
る。
In the present invention, preferably any one on the lot
The length of the rod is at least three times the average length (d) of the microfibrils (expressed as the average length of 20 arbitrary microfibrils around the starting point), and the rod forms a closed circuit. . In other words, this means that the length of the microfibrils is approximately constant over the above range.

また、本発明ては、ロッドの太さ(Δd)か0.1μm
〜40μmの間にあることが好ましく、且つロッドの太
さ(Δd)と微小フィブリルの太さ(Δl)(第2図参
照)との間に 3Δ又≦Δd≦400Δl なる関係か成立することが好ましい。ここて、Δdが3
Δlより小さいと強度が不足し、400Δlより大きく
なると空隙率が低下し、分離能か低下し好ましくない。
In addition, in the present invention, the rod thickness (Δd) is 0.1 μm.
It is preferable that it is between ~40 μm, and a relationship of 3Δ or ≦Δd≦400Δl can be established between the rod thickness (Δd) and the microfibril thickness (Δl) (see Figure 2). preferable. Here, Δd is 3
If it is smaller than Δl, the strength will be insufficient, and if it is larger than 400 Δl, the porosity will decrease and the separation ability will decrease, which is not preferable.

尚、本発明でいう「ロッド」は、中空糸膜の外壁面にお
いて呈される形8(第1図及び第2図参照)を意味して
おり、特に「棒状」を意味するものではなく、中空糸膜
の横断面においては、第3図(第3図は、中空糸膜の一
部をその切断面と共に示す電子顕微鏡写真で、詳しくは
、同図に示される中空糸膜の上方部は中空糸膜の横断面
を示し、同図に示される中空糸膜の下半部の右方部は中
空糸膜の縦断面を示し、同図に示される中空糸膜の下半
部の左方部は中空糸膜の内壁面を示す)に示される中空
糸膜の上方部に示される如き形態をしている。従って、
本発明でいう「ロッドの太さ」も中空糸膜の外壁面にお
いて呈される「太さ」(厚み)を意味する。前記「ロッ
ト」は、第3図から明らかなように、中空糸膜の内壁面
及び縦断面においても外壁面におけると同様な形態を呈
する。
The term "rod" used in the present invention refers to the shape 8 (see FIGS. 1 and 2) of the outer wall surface of the hollow fiber membrane, and does not particularly mean a "rod shape." A cross section of the hollow fiber membrane is shown in FIG. The right side of the lower half of the hollow fiber membrane shown in the same figure shows the vertical cross section of the hollow fiber membrane, and the left side of the lower half of the hollow fiber membrane shown in the same figure shows the vertical cross section of the hollow fiber membrane. The hollow fiber membrane has a shape as shown in the upper part of the hollow fiber membrane shown in FIG. Therefore,
The "rod thickness" in the present invention also means the "thickness" (thickness) exhibited on the outer wall surface of the hollow fiber membrane. As is clear from FIG. 3, the "lot" exhibits the same form on the inner wall surface and longitudinal section of the hollow fiber membrane as on the outer wall surface.

本発明の中空糸膜は、これを血漿分離膜として用いる場
合には、フィブリルの平均長(d)とフィブリル間の平
均間隔(立)との比(d/Jl)か2〜60、好ましく
は5〜30の間にあり、文か0.02μm〜1 μm、
好ましくは0.05μm〜0.8JLmの間にあるのが
よい。ここで、文が0.02μmより小さいと血漿の濾
過速度が遅く一方1μmを超えると、赤血球か血漿とと
もに濾過されてしまう。これらの数値に合致させるため
には延伸倍率、延伸温度等の条件を適度に変更すればよ
く、その調整は容易である。
When the hollow fiber membrane of the present invention is used as a plasma separation membrane, the ratio (d/Jl) between the average length of fibrils (d) and the average spacing between fibrils (vertical) is preferably 2 to 60, preferably It is between 5 and 30, and the size is between 0.02 μm and 1 μm,
It is preferably between 0.05 μm and 0.8 JLm. Here, if the diameter is smaller than 0.02 μm, the filtration rate of plasma is slow, while if it exceeds 1 μm, red blood cells or plasma will be filtered together. In order to match these values, conditions such as the stretching ratio and stretching temperature may be appropriately changed, and the adjustment is easy.

また本発明の中空糸膜においては、膜の周壁部表面及び
その微小孔内表面の少なくとも一部をグリセリン脂肪酸
エステルにより被覆すると、その親水性か飛躍的に向上
し、水または水溶液の精密症過膜あるいは限外濾過膜と
して好適に使用できる。
In addition, in the hollow fiber membrane of the present invention, when at least a portion of the peripheral wall surface of the membrane and the inner surface of its micropores are coated with glycerin fatty acid ester, its hydrophilicity is dramatically improved, and the precise treatment of water or aqueous solutions is improved. It can be suitably used as a membrane or ultrafiltration membrane.

グリセリン脂肪酸エステルの脂肪酸成分としては、カプ
リル酸、カプリン酸、ラウリン酸、バルミチン酸、ステ
アリン酸、オレイン酸、ベヘニン酸などが挙げられ、又
、これらの酸成分とグリセリンとの反応によって生成さ
れるグリセリン脂肪酸エステルは、モノクリセライト、
ジクリセライト及びトリクリセライトの何れか一つ又は
それらの混合物か使用される。
Fatty acid components of glycerin fatty acid ester include caprylic acid, capric acid, lauric acid, valmitic acid, stearic acid, oleic acid, behenic acid, etc. Glycerin produced by the reaction of these acid components with glycerin Fatty acid esters include monochrycerite,
Either one of dicrycerite and tricrycerite or a mixture thereof may be used.

第3図に示すように、本発明の多孔性中空糸膜の周壁を
構成する壁部は略平行状に走るロット間に兄事な微小フ
ィフリルが走っている。即ち、第3図ではロットは微小
フィブリルの平均長(d)に対して508以上にわたっ
て閉鎖回路を形成していない。これは空隙率か飛躍的に
向上していることを示し、換言すれば同一膜面積の性能
が飛躍的に向上することを示している。
As shown in FIG. 3, in the wall portion constituting the circumferential wall of the porous hollow fiber membrane of the present invention, closely related microfibrils run between the lots running approximately in parallel. That is, in FIG. 3, the lot does not form a closed circuit over an average length (d) of microfibrils of 508 or more. This shows that the porosity is dramatically improved, and in other words, the performance of the same membrane area is dramatically improved.

次に、このような多、孔性中空糸膜の製造方法の例につ
いて述べる。
Next, an example of a method for manufacturing such a multi-porous hollow fiber membrane will be described.

即ち、本発明者らは種々の角度から検討した結果、本発
明のような空孔の大きさが均一である特異なフィフリル
状態を有する多孔性中空糸膜を得るためには、中空糸を
延伸する際の歪速度を比較的低く特定することが重要で
あることを見出した。
That is, as a result of investigations from various angles, the present inventors found that in order to obtain a porous hollow fiber membrane having a unique fifurl state in which the pore size is uniform as in the present invention, it is necessary to stretch the hollow fibers. We have found that it is important to specify a relatively low strain rate when

より具体的に製造方法例を述べると、例えば、溶融紡糸
された中空糸を当初低温下て媒体中、例えば液体窒素中
て延伸し、引続いて高温下、例えば110〜155℃程
度の温度範囲で、歪速度が22.0%/分未満、好まし
くは8〜18%/分の範囲て延伸工程を行なう方法(第
一の方法)、また、溶融紡糸された中空糸を低温におけ
る延伸を行なわずして高温下、即ち120〜145°C
1好ましくは130〜140°Cにおいて上記第一の方
法よりは歪速度をより低くした10.0%/分未満、好
ましくは3〜9%/分の範囲の歪速度て延伸を行なう方
法(第二の方法)などによって本発明の多孔性中空糸膜
か製造できる。すなわち、当初低温下で延伸することを
しない場合(第二の方法)は、延伸工程における歪速度
を、低温下での初期延伸を行う場合(第一の方法)に比
してより低くするのである。
To give a more specific example of the manufacturing method, for example, a melt-spun hollow fiber is first drawn at a low temperature in a medium, for example, liquid nitrogen, and then at a high temperature, for example, in a temperature range of about 110 to 155°C. A method (first method) in which the stretching step is carried out at a strain rate of less than 22.0%/min, preferably in the range of 8 to 18%/min, and a method in which the melt-spun hollow fiber is stretched at a low temperature Always at high temperatures, i.e. 120-145°C
1. A method in which stretching is carried out at a strain rate lower than the first method, preferably less than 10.0%/min, preferably in the range of 3 to 9%/min, at 130 to 140°C (first method). The porous hollow fiber membrane of the present invention can be produced by method 2). In other words, when initially stretching is not performed at low temperatures (second method), the strain rate in the stretching process is lower than when initial stretching is performed at low temperatures (first method). be.

これは、第一の方法では初期の低温延伸により中空糸に
小さな空孔が略均−に形成され、次いて後続の延伸工程
により該空孔か拡がるというプロセスを経るのに対し、
第二の方法では上記第一の方法のように、予め小さな空
孔を作製することをしないで高温下て延伸することから
、その歪速度をより低くする必要か生じたものと考えら
れる。
This is because, in the first method, small pores are formed approximately evenly in the hollow fiber by the initial low-temperature stretching, and then the pores are enlarged in the subsequent stretching step.
In the second method, unlike the first method, the stretching is performed at high temperature without creating small holes in advance, so it is thought that the strain rate needs to be lowered.

尚、延伸歪速度を一定以上に大きくすると、空孔の極め
て小さなものしか得られないか、或いは空孔か全く得ら
れなくなる。
If the stretching strain rate is increased beyond a certain level, only very small pores or no pores will be obtained.

延伸倍率は、目的とする多孔性中空糸膜の用途に対応し
た空孔の平均孔径に応じ変えることができる。延伸倍率
は未延伸中空糸の初期長さに対して100〜700%、
好ましくは150〜600%である。延伸倍率が700
%を超えると中空糸か切断することがあり好ましくない
The stretching ratio can be changed depending on the average pore diameter of the pores corresponding to the intended use of the porous hollow fiber membrane. The stretching ratio is 100 to 700% with respect to the initial length of the unstretched hollow fiber.
Preferably it is 150-600%. Stretching ratio is 700
If it exceeds %, the hollow fibers may break, which is not preferable.

また、第二の方法例で多孔性中空糸膜を製造する場合、
延伸の前に、第一の方法例で示した低温下での初期延伸
を行うこともできる。
In addition, when manufacturing a porous hollow fiber membrane in the second method example,
Before stretching, initial stretching at a low temperature as shown in the first method example can also be performed.

上記延伸工程を経て多孔質化された中空糸は、次いで熱
処理にかけられることが好ましい。この熱処理は形成さ
れた空孔を保持するための熱固定を主なる目的とするも
のである。この熱処理は、延伸状態を保持したまま、多
孔質化した中空糸を110〜155℃程度に加熱した空
気中で3秒以上加熱する方法などにより実施される。
It is preferable that the hollow fibers made porous through the above stretching step are then subjected to heat treatment. The main purpose of this heat treatment is heat fixation to maintain the formed pores. This heat treatment is carried out by heating the porous hollow fibers in air heated to about 110 to 155° C. for 3 seconds or more while maintaining the stretched state.

次に、本発明の多孔性中空糸膜の周壁部表面及びその微
小孔内表面の少なくとも一部にグリセリン脂肪酸エステ
ルを被覆するには、以下の如き方法が用いられる。
Next, the following method is used to coat at least a portion of the peripheral wall surface and the inner surface of the micropores of the porous hollow fiber membrane of the present invention with glycerin fatty acid ester.

前記したグリセリン脂肪酸エステルを、グリセリン脂肪
酸エステル可溶な溶媒にO,1〜10重量%の濃度とな
るように溶解する。溶媒としてはメタノールSエタノー
ルなどのアルコール、アセトン、ベンゼン、トルエン、
キシレン、クロロホルム等が好適に用いられる。
The above-described glycerin fatty acid ester is dissolved in a glycerin fatty acid ester-soluble solvent to a concentration of 1 to 10% by weight of O. Solvents include alcohols such as methanol, ethanol, acetone, benzene, toluene,
Xylene, chloroform, etc. are preferably used.

次いて、得られたグリセリン脂肪酸エステル溶液に多孔
性中空糸膜を浸漬し、多孔性中空糸膜の微小孔内にも充
分グリセリン脂肪酸エステル溶液を行き渡らせた後、乾
繰して溶媒を除去することにより、グリセリン脂肪酸エ
ステル被覆の多孔性中空糸膜な得ることができる。
Next, the porous hollow fiber membrane is immersed in the obtained glycerin fatty acid ester solution, and after the glycerin fatty acid ester solution is sufficiently spread into the micropores of the porous hollow fiber membrane, the solvent is removed by drying. By this, a porous hollow fiber membrane coated with glycerin fatty acid ester can be obtained.

尚1本発明の多孔性中空糸11!2を製造するに当って
用いられるポリオレフィンとしては、ポリエチレン、ポ
リプロピレン、ポリ−4−メチルペンテン−1のような
結晶性ポリオレフィンが用いられ、殊にポリエチレン、
ポリプロピレンか好適に用いられる。また、ポリオレフ
ィンはその分子量分布の狭い、重量平均分子量M、/数
平均分子量Mnか7以下のものか好適に用いられる。
As the polyolefin used in producing the porous hollow fiber 11!2 of the present invention, crystalline polyolefins such as polyethylene, polypropylene, and poly-4-methylpentene-1 are used, particularly polyethylene,
Polypropylene is preferably used. In addition, polyolefins having a narrow molecular weight distribution and a weight average molecular weight M/number average molecular weight Mn of 7 or less are preferably used.

尚、バブルポイント法による孔径の測定方法について次
に説明する。
A method for measuring the pore diameter using the bubble point method will be described next.

バフルポイント法は、八、S、TJ、(America
n 5tandard Testing and Ma
terials)に記載され1m孔性材料(この場合、
中空糸膜)の最大孔径を求めるものである。
The baffle point method is eight, S, TJ, (America
n 5 standard Testing and Ma
1m porous material (in this case,
This is to find the maximum pore diameter of the hollow fiber membrane.

すなわち、溶媒に濡らした中空糸膜の中空糸内側に空気
による圧力を徐々にかけてゆき、中空糸の外側に気泡が
最初に出てくるときの圧力から、下記式により最大孔径
を求めるものである。
That is, air pressure is gradually applied to the inside of the hollow fibers of a hollow fiber membrane wetted with a solvent, and the maximum pore diameter is determined from the pressure when air bubbles first appear outside the hollow fibers using the following formula.

r=2σ/p ここて、rは最大孔径の半径(clll)、pは圧力(
dyne/cm) 、 crは表面張力(dyne/c
m)である。
r=2σ/p where r is the radius of the maximum pore diameter (clll), p is the pressure (
dyne/cm), cr is surface tension (dyne/c
m).

尚、本発明でいう孔径とは、最大孔径てはなく一斉に気
泡か出る圧力より孔径な求めたものである。
Note that the pore diameter in the present invention is not the maximum pore diameter, but the pore diameter determined from the pressure at which bubbles emerge all at once.

(以下、余白) [実施例コ 以下、本発明を実施例に基き更に詳細に説明する。(Hereafter, margin) [Example code] Hereinafter, the present invention will be explained in more detail based on Examples.

(実施例1) ポリプロピレン(宇部興産■製、MFI=5g/10分
、 M、、/Mn=5 、5 )を直径30 m mの
円形スリットノズルを用いて、常法によって溶融、紡糸
し、巻取速度116m/分で中空糸膜な紡糸した。
(Example 1) Polypropylene (manufactured by Ube Industries, Ltd., MFI=5 g/10 min, M, /Mn=5,5) was melted and spun using a circular slit nozzle with a diameter of 30 mm in a conventional manner, The hollow fiber membrane was spun at a winding speed of 116 m/min.

この中空糸膜を、150°Cで5分間、熱処理した後、
−196°Cの低温浴(液体窒素)中に導き15%延伸
し、これを引き続いて温度150°Cて45秒間処理し
て熱固定を行い、更に135°Cの加熱媒体中、歪速度
17.3%/分で300%の延伸を行いフィブリル化を
行った後、同じ温度て5分間足長て熱処理を行った。
After heat-treating this hollow fiber membrane at 150°C for 5 minutes,
It was placed in a low temperature bath (liquid nitrogen) at -196°C and stretched by 15%, followed by heat setting by treating it at a temperature of 150°C for 45 seconds, and then in a heating medium at 135°C at a strain rate of 17%. After fibrillating by stretching 300% at .3%/min, heat treatment was performed at the same temperature for 5 minutes.

得られた中空糸膜の外壁面の電子顕微鏡写真を第1図に
示す。
An electron micrograph of the outer wall surface of the hollow fiber membrane obtained is shown in FIG.

この中空糸膜は、内径か3207zm、膜厚が55トm
、孔径が0.25ルm(バブルポイント法による測定)
であり、この中空糸膜な用いて膜面積1.3m2の中空
糸膜型人工肺を作成し、成犬(体重9kg)を用いて成
犬の静脈血をAAMI (Association  
for the Advance of Medica
lInstrumentation)て定められた標準
静脈血(酸素飽和度=65±5%、PvCo□ : 4
5±5 m mHg、血中ヘモグロビン値:12±1g
/d!l、温度=37±2°C)にし、該静脈血を用い
て前記人工肺のガス交換能を測定した。その結果を第4
図、第5図に示す。
This hollow fiber membrane has an inner diameter of 3207 mm and a membrane thickness of 55 mm.
, pore diameter is 0.25 lm (measured by bubble point method)
A hollow fiber membrane oxygenator with a membrane area of 1.3 m2 was created using this hollow fiber membrane, and the venous blood of an adult dog (9 kg in weight) was collected using AAMI (Association
for the Advance of Medica
Standard venous blood (oxygen saturation = 65 ± 5%, PvCo□: 4) determined by
5±5 m mHg, blood hemoglobin level: 12±1 g
/d! 1, temperature = 37±2°C), and the gas exchange capacity of the oxygenator was measured using the venous blood. The result is the fourth
As shown in Fig. 5.

(実施例2) 実施例1と同様にして、内径320JLm、膜厚55u
、m、孔径0.4pLm(バブルポイント法で溶媒とし
てエタノールを用い1.5kg/cm2の空気圧で気泡
が一斉に発生)のポリプロピレン多孔質中空糸膜を得た
。これを用いて膜面積0゜5m2の中空糸膜型人工肺を
作成し、ヘパリン化牛血液をAAMIて定められた標準
血液にして、血液流量を1文/ m i nて50時間
、人工肺に流した結果、酸素ガス添加能及び炭酸ガス交
換能の低下はほとんどなく、シーラムリーケージ(血漿
の漏出)も見られなかった。
(Example 2) In the same manner as in Example 1, the inner diameter was 320JLm, and the film thickness was 55u.
, m, and a pore size of 0.4 pLm (bubbles were generated all at once at an air pressure of 1.5 kg/cm2 using the bubble point method using ethanol as a solvent) to obtain a polypropylene porous hollow fiber membrane. Using this, a hollow fiber membrane oxygenator with a membrane area of 0°5 m2 was created, and heparinized bovine blood was used as the standard blood specified by AAMI, and the oxygenator was operated at a blood flow rate of 1 sentence/min for 50 hours. As a result, there was almost no decrease in oxygen gas addition ability and carbon dioxide exchange ability, and no serum leakage (leakage of plasma) was observed.

(実施例3) 実施例1と同様にして作成するポリプロピレン多孔質中
空糸膜の孔径を変えた場合のシーラムリーケージ時間と
の関係(この場合、実施例2と同し牛血液を用いた。)
について検討、測定したところ、表−1のような結果か
得られた。
(Example 3) Relationship with serum leakage time when the pore diameter of a polypropylene porous hollow fiber membrane prepared in the same manner as in Example 1 was changed (in this case, the same bovine blood as in Example 2 was used). )
When we investigated and measured the results, we obtained the results shown in Table 1.

尚、ボッティング部材としてはポリウレタン樹脂を用い
た。
Note that polyurethane resin was used as the botting member.

この結果から多孔性中空糸膜の孔径が0.21Lm以上
て且つ膜厚が50JLm以上の場合には、シーラムリー
ケージは短時間では発生せず、しかも滅菌後においても
リークの発生は殆どないことがわかる。
These results show that if the pore diameter of the porous hollow fiber membrane is 0.21 Lm or more and the membrane thickness is 50 JLm or more, sealant leakage will not occur in a short period of time, and there will be almost no leakage even after sterilization. I understand.

(実施例4) ポリプロピレン(商品名UBE−PP−J 109G、
宇部興産■製、MFI=9g/10分、M、/Mn=6
)を直径8■、内径7mmの気体供給管を備えた中空糸
製造用ノズルを使用し、紡糸温度210℃、引取速度2
00 m1分、ドラフト比726の条件で紡糸した。
(Example 4) Polypropylene (trade name UBE-PP-J 109G,
Manufactured by Ube Industries ■, MFI=9g/10min, M, /Mn=6
) using a hollow fiber manufacturing nozzle equipped with a gas supply pipe with a diameter of 8 mm and an inner diameter of 7 mm, at a spinning temperature of 210°C and a take-up speed of 2.
Spinning was carried out under the conditions of 00 ml for 1 minute and a draft ratio of 726.

得られたポリプロピレン中空糸を145°Cの加熱空気
槽て6分間加熱処理し、次いで液体窒素(−195°C
)中で、初期長さに対し20%延伸し、延伸状態を保っ
たまま145°Cの加熱空気槽内て2分間熱処理を行っ
た。
The obtained polypropylene hollow fibers were heat treated in a heated air bath at 145°C for 6 minutes, and then heated in liquid nitrogen (-195°C
) in a heated air tank at 145° C. for 2 minutes while maintaining the stretched state.

この中空糸を140°Cの空気雰囲気下、歪速度17.
3%/分て380%の熱延伸を行った後、延伸状態を保
ったまま145°Cの加熱空気槽内で5分間熱処理を行
ない、多孔質ポリプロピレン中空糸を製造した。得られ
た多孔質ポリプロピレン中空糸は内径320μm、膜厚
551Lm、孔径0.54ILm(バブルポイント法で
測定)てあった。この多孔質中空糸膜外壁面の電子顕微
鏡写真を第6図に示す。
This hollow fiber was heated at 140°C in an air atmosphere at a strain rate of 17.
After hot stretching of 380% at 3%/min, heat treatment was performed for 5 minutes in a heated air tank at 145° C. while maintaining the stretched state to produce porous polypropylene hollow fibers. The obtained porous polypropylene hollow fiber had an inner diameter of 320 μm, a membrane thickness of 551 Lm, and a pore diameter of 0.54 ILm (measured by the bubble point method). An electron micrograph of the outer wall surface of this porous hollow fiber membrane is shown in FIG.

この膜を用いて膜面積0.5n2の血漿分離器を作成し
、雑種成犬10.4kgを用い、血漿分離試験を実施し
た。
A plasma separator with a membrane area of 0.5n2 was prepared using this membrane, and a plasma separation test was conducted using a mongrel adult dog weighing 10.4 kg.

その結果、血漿総蛋白(TP)の篩い係数(SC)は1
20分値で0.94であり、また血漿アルブミンのSC
は120分値で0.96であった。また、総コレステロ
ールのSCは120分値で0.91であった。
As a result, the sieving coefficient (SC) of plasma total protein (TP) was 1
The 20-minute value was 0.94, and the SC of plasma albumin
was 0.96 at 120 minutes. Furthermore, the SC of total cholesterol was 0.91 at 120 minutes.

また、IgGのSCは120分値で1.0で、膜間圧力
差TMP ((モジュール入ロ圧力+モジュール出口圧
力)/2−iti液側圧)は、血漿分離試験中(3時間
)を通じて30 m+sHg以下であった。又、濾過量
は120分値で4 、91 /hr/m”であった。
In addition, the SC of IgG was 1.0 at 120 minutes, and the transmembrane pressure difference TMP ((module inlet pressure + module outlet pressure)/2-it liquid side pressure) was 30 throughout the plasma separation test (3 hours). It was below m+sHg. The filtration rate was 4.91/hr/m'' at 120 minutes.

また、上記の成犬による血漿分離試験に用いたモジュー
ルと同様のモジュールを用いて、モジュール出口側をク
ランプした状態て、血液ポンプによりヒト保存血をモジ
ュール内に流入させ、そのときの圧力(膜間圧力差、T
MP)変化による溶血の有無を肉眼てa察した。
In addition, using a module similar to the module used in the plasma separation test using adult dogs described above, human stored blood was flowed into the module using a blood pump with the module outlet side clamped, and the pressure at that time (membrane pressure difference, T
The presence or absence of hemolysis due to MP) changes was visually observed.

溶血開始圧力は6例で260 mmt1g〜416 m
+aHgであった。これは従来の血漿分離用膜に比して
かなり高い耐溶血性を示すものである。
The hemolysis onset pressure was 260 mmt1g to 416 m in 6 cases.
It was +aHg. This shows significantly higher hemolysis resistance than conventional plasma separation membranes.

(実施例5) ポリプロピレン(商品名:UBE  pp  J109
G、宇部興産■製、MFI=9g/10分、M、/Mn
=6)を直径331ffi、内径27mmの気体供給管
を備えた中空糸製造用ノズルを使用し、紡糸温度200
°C1引取り速度116m/分の条件で紡糸して、ポリ
プロピレン中空糸を得た。
(Example 5) Polypropylene (product name: UBE pp J109
G, manufactured by Ube Industries ■, MFI=9g/10min, M, /Mn
= 6) using a hollow fiber manufacturing nozzle equipped with a gas supply pipe with a diameter of 331ffi and an inner diameter of 27 mm, and the spinning temperature was 200.
Polypropylene hollow fibers were obtained by spinning at a take-up speed of 116 m/min.

得られたポリプロピレン中空糸を145°Cの加熱槽で
6分間加熱処理し、次いで液体窒素(−195°C)中
て、初期長さに対して20%延伸し、延伸状態を保った
まま145°Cの加熱槽内で2分間熱固定を行った。
The obtained polypropylene hollow fibers were heat-treated in a heating tank at 145°C for 6 minutes, then stretched to 20% of the initial length in liquid nitrogen (-195°C), and then stretched to 145°C while maintaining the stretched state. Heat fixation was performed for 2 minutes in a heating bath at °C.

このポリプロピレン中空糸を125°Cの空気雰囲気下
、歪速度17.3%/分で400%熱延伸し、延伸状態
を保ったまま、145℃の加熱空気槽内で15分間熱固
定を行い、多孔質ポリプロピレン中空糸を製造した。
This polypropylene hollow fiber was hot-stretched by 400% at a strain rate of 17.3%/min in an air atmosphere at 125°C, and while maintaining the stretched state, it was heat-set in a heated air tank at 145°C for 15 minutes. Porous polypropylene hollow fibers were manufactured.

得られた多孔質ポリプロピレン中空糸の平均孔径は0.
25μmてあり、空隙率は70%であった。
The average pore diameter of the obtained porous polypropylene hollow fibers was 0.
The thickness was 25 μm, and the porosity was 70%.

(実施例6) ポリプロピレン(商品名: UBE−PP−J 109
G、宇部興産■製、MFI=9g/10分、M、/Mo
=6)を直径30mmの円形スリットノズルを用いて、
常法によって溶融、紡糸し、巻取り速度116m/分で
中空糸膜な紡糸した。
(Example 6) Polypropylene (product name: UBE-PP-J 109
G, manufactured by Ube Industries ■, MFI=9g/10min, M, /Mo
=6) using a circular slit nozzle with a diameter of 30 mm,
The mixture was melted and spun using a conventional method, and a hollow fiber membrane was spun at a winding speed of 116 m/min.

この中空糸膜を、145°Cの加熱空気槽で5分間加熱
処理し、次いで135℃の温度で初期長さに対して28
0%、歪速度8.33%/分で延伸し、延伸状態を保っ
たまま145°Cの加熱空気槽内て5分間熱処理を行い
、多孔質ポリプロピレン中空糸膜を製造した。
This hollow fiber membrane was heat treated in a heated air bath at 145°C for 5 minutes and then at a temperature of 135°C for 28°C to the initial length.
0% and a strain rate of 8.33%/min, and while maintaining the stretched state, heat treatment was performed in a heated air bath at 145°C for 5 minutes to produce a porous polypropylene hollow fiber membrane.

得られた多孔質ポリプロピレン中空糸膜の外壁面の電子
顕微鏡の写真を第7図に示す。この中空糸膜は内径が3
20μm、周壁部厚さが55JLm、孔径が0.2μm
(バブルポイント法による測定)であった。
An electron microscope photograph of the outer wall surface of the obtained porous polypropylene hollow fiber membrane is shown in FIG. This hollow fiber membrane has an inner diameter of 3
20μm, peripheral wall thickness 55JLm, hole diameter 0.2μm
(measured by bubble point method).

(実施例7) 実施例6の多孔質ポリプロピレン中空糸膜を内径45m
11(φ)、外径52■(φ)、長さ380mmのハウ
ジング内に2400本集束して装填し、両端部をボッテ
ィング材により固定した。次いて中空糸膜東端部のボッ
チインク材て密着固定された部分の中央部を中空糸末技
さ方向に直角に切断し、開口した。
(Example 7) The porous polypropylene hollow fiber membrane of Example 6 was prepared with an inner diameter of 45 m.
11 (φ), an outer diameter of 52 mm (φ), and a length of 380 mm, 2,400 tubes were bundled and loaded, and both ends were fixed with botting material. Next, the central part of the eastern end of the hollow fiber membrane, which was tightly fixed with the bocchi ink material, was cut at right angles to the direction of the hollow fiber end to form an opening.

上記のようにして製造した中空糸膜モジュールを用いて
、バクテリアチャレンジテストを行った。チャレンジ菌
としてセラチア マルセッセンス(5erratia 
 marcescens) 、シュードモナスデイミュ
ヌータ(Preseudomonas diminut
a) 、マイコプラズマ(Mycoplasma la
idlawii)を用いた。
A bacterial challenge test was conducted using the hollow fiber membrane module manufactured as described above. Serratia marcescens (5erratia
marcescens), Pseudomonas diminuta
a) Mycoplasma la
idlawii) was used.

試験法は、セラチア菌(S、marcescens) 
、シュードモナス菌(P、diminuta)の場合、
モジュールを高圧蒸気滅菌し、滅菌生理食塩水にて通水
洗浄(5交)後、滅菌生理食塩水をさらに通し、モジュ
ールの滅菌性を確認した。次に、l O” Org/I
I1文に菌液調整した生理食塩水を濾過し、濾液の生菌
数を測定した。生菌数l1111定用にはトリプチケー
ス ソイ アガー(Trypticase Soy A
gar )  (寒天培地)を用いた。除菌能はLRV
て表示した。ここで、LRVとは、対数換算値(Log
  Reduction Value)の略である。
The test method is Serratia bacterium (S, marcescens)
, in the case of Pseudomonas (P, diminuta),
The module was sterilized with high-pressure steam, washed with sterile physiological saline (5 cycles), and then further passed with sterile physiological saline to confirm the sterility of the module. Next, l O” Org/I
Physiological saline prepared with a bacterial solution was filtered, and the number of viable bacteria in the filtrate was measured. Trypticase Soy Agar is used to determine the number of viable bacteria.
gar) (agar medium) was used. Sterilization ability is LRV
It was displayed. Here, LRV is a logarithmic conversion value (Log
Reduction Value).

また、マイコプラズマ(Mycoplasma lai
dlawii)の場合、前述と同様に滅菌処理し、滅菌
性確認はマイコプラズマ ブロス(Mycoplasm
a Broth)(液体培地)を用いて直接法で行った
。l O’orglIII見に菌液調整した生理食塩水
を濾過し、濾過液の生菌数を測定した(直接法)。除菌
能はLRVで表示した。
In addition, Mycoplasma lai
In the case of Mycoplasma dlawii, sterilization was performed in the same manner as described above, and sterility was confirmed using Mycoplasma broth.
A direct method was used using Broth (liquid medium). Physiological saline prepared with a bacterial solution was filtered, and the number of viable bacteria in the filtrate was measured (direct method). The sterilizing ability was expressed as LRV.

上記のチャレンジテスト結果は次の通りとなった。The results of the above challenge test were as follows.

(以下、余白) [発明の効果コ 以上説明したように、本発明の多孔性中空糸膜は、空孔
の大きさが均一で、選択的分離能に優れたものであり、
従ってこれを用いることによって人工肺、血漿分離、水
処理などの用途に好適な中空糸膜モジュールを提供する
ことかできる。
(Hereinafter, blank space) [Effects of the Invention As explained above, the porous hollow fiber membrane of the present invention has uniform pore sizes and excellent selective separation ability.
Therefore, by using this, it is possible to provide a hollow fiber membrane module suitable for uses such as artificial lungs, plasma separation, and water treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一例である多孔性中空糸膜の外壁面の
一部の繊維の形状を示す電子顕微鏡写真、第2図は本発
明の一例である多孔性中空糸膜の外壁面の一部の繊維の
形状を更に拡大して示す電子WJ徴鏡写真、第3図は本
発明の一例である多孔性中空糸膜の一部の縁維の形状を
その切断面と共に示す’tIt子顕微鏡写真である。第
4図は本発明の多孔性中空糸膜を用いた人工肺における
酸素添加能を示すクラ7、第5図は同じく炭酸ガス交換
能を示すクラ7である。第6図は本発明の他の例である
多孔性中空糸膜の外壁面の一部の繊維の形状を示す電子
顕微鏡写真、第7図は本発明の更に他の例である多孔性
中空糸膜の外壁面の一部の繊維の形状を示す電子顕微鏡
写真である。
FIG. 1 is an electron micrograph showing the shape of some fibers on the outer wall surface of a porous hollow fiber membrane that is an example of the present invention, and FIG. FIG. 3 is an electronic WJ micrograph showing the shape of some of the fibers further enlarged, and FIG. This is a microscopic photograph. FIG. 4 shows Cura 7 showing the oxygen addition ability in an oxygenator using the porous hollow fiber membrane of the present invention, and FIG. 5 shows Cura 7 showing the carbon dioxide exchange ability. FIG. 6 is an electron micrograph showing the shape of some fibers on the outer wall surface of a porous hollow fiber membrane that is another example of the present invention, and FIG. 7 is a porous hollow fiber that is still another example of the present invention. It is an electron micrograph showing the shape of some fibers on the outer wall surface of the membrane.

Claims (5)

【特許請求の範囲】[Claims] (1)ポリオレフィンの多孔性中空糸膜であって、その
周壁部は、該中空糸膜の長さ方向に対し、略直角に走る
比較的太いロッド群と、その各ロッド間に該中空糸膜の
長さ方向に走り且つ各ロッド間につながる微小フィブリ
ル群とによって構成され、これらのロッド群及び微小フ
ィブリル群によって短冊状の微小孔群を形成してなり、
膜厚が50〜150μm、内径が250〜1000μm
、且つバブルポイント法で測定したとき孔径が0.1〜
1.0μmであることを特徴とする多孔性中空糸膜。
(1) A porous hollow fiber membrane of polyolefin, the peripheral wall of which is comprised of a group of relatively thick rods running approximately perpendicularly to the length direction of the hollow fiber membrane, and between each rod the hollow fiber membrane a group of microfibrils running in the length direction and connecting between each rod, and a group of strip-shaped micropores is formed by these rod groups and microfibrils,
Film thickness is 50-150μm, inner diameter is 250-1000μm
, and the pore diameter is 0.1 to 0.1 when measured by the bubble point method.
A porous hollow fiber membrane characterized by having a diameter of 1.0 μm.
(2)前記各ロッドは、前記微小フィブリルの平均長(
@d@)の3倍以上の長さにわたって閉鎖回路を形成す
る、特許請求の範囲第1項記載の多孔性中空糸膜。
(2) Each rod has an average length (
The porous hollow fiber membrane according to claim 1, which forms a closed circuit over a length three times or more of @d@).
(3)前記各ロッドの太さ(Δd)が0.1μm〜40
μmの間にあり、前記ロッドの太さ(Δd)と微小フィ
ブリルの太さ(Δl)との間に3Δl≦Δd≦400Δ
l なる関係を有する、特許請求の範囲第1項記載の多孔性
中空糸膜。
(3) The thickness (Δd) of each rod is 0.1 μm to 40
μm, and the distance between the rod thickness (Δd) and the microfibril thickness (Δl) is 3Δl≦Δd≦400Δ
1. The porous hollow fiber membrane according to claim 1, which has the following relationship.
(4)前記微小フィブリルの平均長(@d@)と前記微
小フィブリル間の平均間隔(l)との比が2〜60の間
にあり、(l)が0.02μm〜1μmの間にある、特
許請求の範囲第1項記載の多孔性中空糸膜。
(4) The ratio of the average length of the microfibrils (@d@) to the average spacing (l) between the microfibrils is between 2 and 60, and (l) is between 0.02 μm and 1 μm. , a porous hollow fiber membrane according to claim 1.
(5)周壁部表面及び微小孔内表面の少なくとも一部が
グリセリン脂肪酸エステルで被覆されている特許請求の
範囲第1項記載の多孔性中空糸膜。
(5) The porous hollow fiber membrane according to claim 1, wherein at least a portion of the peripheral wall surface and the inner surface of the micropores are coated with glycerin fatty acid ester.
JP13226488A 1987-06-26 1988-05-30 Porous hollow yarn membrane Pending JPH022849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13226488A JPH022849A (en) 1987-06-26 1988-05-30 Porous hollow yarn membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-159095 1987-06-26
JP15909587 1987-06-26
JP13226488A JPH022849A (en) 1987-06-26 1988-05-30 Porous hollow yarn membrane

Publications (1)

Publication Number Publication Date
JPH022849A true JPH022849A (en) 1990-01-08

Family

ID=26466892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13226488A Pending JPH022849A (en) 1987-06-26 1988-05-30 Porous hollow yarn membrane

Country Status (1)

Country Link
JP (1) JPH022849A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995019219A1 (en) * 1994-01-17 1995-07-20 Mitsubishi Rayon Co., Ltd. Composite microporous polyolefin film and process for producing the same
US5648683A (en) * 1993-08-13 1997-07-15 Kabushiki Kaisha Toshiba Semiconductor device in which a first resin-encapsulated package is mounted on a second resin-encapsulated package
EP1249269A2 (en) * 2001-04-12 2002-10-16 Sumitomo Chemical Company, Limited Thermoplastic resin porous film
JP2003340221A (en) * 2002-05-28 2003-12-02 Sumitomo Chem Co Ltd Filter medium for microfilter
JP2004008873A (en) * 2002-06-05 2004-01-15 Sumitomo Chem Co Ltd Porous membrane for oil-water separation
EP1909347A1 (en) * 2005-07-19 2008-04-09 Toyota Jidosha Kabushiki Kaisha Composite porous membrane, method for production thereof, solid polymer electrolyte membrane, and fuel cell
JP5211071B2 (en) * 2007-12-06 2013-06-12 旭化成メディカル株式会社 Porous hollow fiber membrane for blood treatment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107507A (en) * 1979-02-13 1980-08-18 Celanese Corp Production of hollow microporous polypropylene fiber
JPS6031765U (en) * 1983-08-02 1985-03-04 東芝テック株式会社 magnetic recording and reproducing device
JPS61146308A (en) * 1984-12-21 1986-07-04 Ube Ind Ltd Preparation of porous polypropylene hollow yarn or film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107507A (en) * 1979-02-13 1980-08-18 Celanese Corp Production of hollow microporous polypropylene fiber
JPS6031765U (en) * 1983-08-02 1985-03-04 東芝テック株式会社 magnetic recording and reproducing device
JPS61146308A (en) * 1984-12-21 1986-07-04 Ube Ind Ltd Preparation of porous polypropylene hollow yarn or film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648683A (en) * 1993-08-13 1997-07-15 Kabushiki Kaisha Toshiba Semiconductor device in which a first resin-encapsulated package is mounted on a second resin-encapsulated package
WO1995019219A1 (en) * 1994-01-17 1995-07-20 Mitsubishi Rayon Co., Ltd. Composite microporous polyolefin film and process for producing the same
EP1249269A2 (en) * 2001-04-12 2002-10-16 Sumitomo Chemical Company, Limited Thermoplastic resin porous film
EP1249269A3 (en) * 2001-04-12 2007-08-15 Sumitomo Chemical Company, Limited Thermoplastic resin porous film
JP2003340221A (en) * 2002-05-28 2003-12-02 Sumitomo Chem Co Ltd Filter medium for microfilter
JP2004008873A (en) * 2002-06-05 2004-01-15 Sumitomo Chem Co Ltd Porous membrane for oil-water separation
EP1909347A1 (en) * 2005-07-19 2008-04-09 Toyota Jidosha Kabushiki Kaisha Composite porous membrane, method for production thereof, solid polymer electrolyte membrane, and fuel cell
EP1909347A4 (en) * 2005-07-19 2009-05-27 Toyota Motor Co Ltd Composite porous membrane, method for production thereof, solid polymer electrolyte membrane, and fuel cell
JP5211071B2 (en) * 2007-12-06 2013-06-12 旭化成メディカル株式会社 Porous hollow fiber membrane for blood treatment

Similar Documents

Publication Publication Date Title
US4401567A (en) Microporous polyethylene hollow fibers
US5851394A (en) Module for blood purification, blood purification membrane and its production
US4530809A (en) Process for making microporous polyethylene hollow fibers
US4859535A (en) Porous hollow-fiber
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
US5290448A (en) Polyacrylonitrile membrane
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
US4681713A (en) Method of making a hollow fiber membrane for dialysis
JPH022849A (en) Porous hollow yarn membrane
US4176070A (en) Semi-permeable membranes of regenerated cuprammonium cellulose and method for heat sterilization thereof in physiological saline
JPS61200806A (en) Polyether sulfone porous hollow yarn membrane and its production
US4886631A (en) Cellulose ester hollow fiber membrane for plasma separation
JPH04265132A (en) Production of porous hollow fiber membrane
JP2572895B2 (en) Manufacturing method of porous hollow fiber membrane
JP2008246402A (en) Hollow fiber type blood purification membrane and method of manufacturing the same
JPH0371144B2 (en)
JPH0314922B2 (en)
CN114733366A (en) Preparation method of asymmetric hollow fiber membrane
JPH06509746A (en) Hollow fiber for dialysis
JPH01222766A (en) Module for concentrating and separating cell bodies
JP5138840B2 (en) Hollow fiber microporous membrane and membrane oxygenator incorporating the same
JPS6259607B2 (en)
JPH01222765A (en) Module for concentrating and separating cell bodies
JP2622629B2 (en) Manufacturing method of hollow fiber membrane
CN114733365A (en) Preparation process of polyolefin hollow fiber membrane