JPH0228442Y2 - - Google Patents

Info

Publication number
JPH0228442Y2
JPH0228442Y2 JP14893482U JP14893482U JPH0228442Y2 JP H0228442 Y2 JPH0228442 Y2 JP H0228442Y2 JP 14893482 U JP14893482 U JP 14893482U JP 14893482 U JP14893482 U JP 14893482U JP H0228442 Y2 JPH0228442 Y2 JP H0228442Y2
Authority
JP
Japan
Prior art keywords
temperature
humidity
sensitive
circuit
sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14893482U
Other languages
Japanese (ja)
Other versions
JPS5953264U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14893482U priority Critical patent/JPS5953264U/en
Publication of JPS5953264U publication Critical patent/JPS5953264U/en
Application granted granted Critical
Publication of JPH0228442Y2 publication Critical patent/JPH0228442Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【考案の詳細な説明】 本考案は基準用積分回路,感温用積分回路及び
感湿用積分回路を同一の絶縁性基板上に構成し、
パルス信号駆動により温度、湿度の変化を積分回
路の積分特性の変化に対応させて検出する,感温
感湿素子に関する。
[Detailed description of the invention] The invention consists of a reference integrating circuit, a temperature sensing integrating circuit, and a humidity sensing integrating circuit on the same insulating substrate.
The present invention relates to a temperature and humidity sensing element that detects changes in temperature and humidity in correspondence with changes in the integral characteristics of an integrating circuit by driving pulse signals.

従来、温度及び湿度の測定(もしくは検出とい
う。)は産業上欠くことのできない技術であり、
空調制御をはじめ、あらゆる分野で行なわれてい
る。しかも温度の測定、湿度の測定を同時に同一
個所で行なう場合は多い。しかしながら、温度,
湿度を同時に検出できる素子は製造上の問題、例
えば、感温測定用素子の代表であるサーミスタは
Mn,Co,Ni,Fe,Cuなどの遷移金属酸化物を
焼結して作り、感湿測定用素子の代表であるセラ
ミツクはFe2O3,K2CO3などを同様に焼結して作
るため、焼結温度などの製造条件の違いのため同
一の絶縁性基板上に構成することが困難である。
などの理由により現在のところ考案されていな
い。このため、温度の検出の場合は各種サーミス
タ,熱電対などを便用し、また湿度の検出の場合
はセラミツク,高分子あるいは電解質センサなど
を使用し、また、これら温度,湿度の各種センサ
を組み合わせ温度,湿度の測定を行つていた。
Traditionally, temperature and humidity measurement (or detection) has been an indispensable technology in industry.
It is used in all fields including air conditioning control. Moreover, temperature and humidity measurements are often performed at the same location at the same time. However, temperature,
There are manufacturing issues with devices that can simultaneously detect humidity, for example, the thermistor, which is a typical temperature-sensitive measurement device, has
It is made by sintering transition metal oxides such as Mn, Co, Ni, Fe, and Cu, and ceramics, which are typical of humidity-sensitive measurement elements, are made by sintering Fe 2 O 3 , K 2 CO 3 , etc. Due to differences in manufacturing conditions such as sintering temperature, it is difficult to construct them on the same insulating substrate.
For these reasons, it has not been devised at present. For this reason, various types of thermistors and thermocouples are used to detect temperature, and ceramic, polymer, or electrolyte sensors are used to detect humidity, and various types of temperature and humidity sensors are used in combination. Temperature and humidity were being measured.

よつて、測定装置は2台必要であり、低コスト
化、装置の小型化には限界があつた。
Therefore, two measuring devices are required, and there is a limit to cost reduction and miniaturization of the device.

本考案は、上記の感温測定用素子及び感湿測定
用素子の欠点を克服するために、感温材にアモル
フアス半導体を、感湿材に多孔質A2O3膜を用
い、基準用積分回路、感温用積分回路及び感湿用
積分回路を同一の絶縁性基板上に構成した、小型
で安価な感温感湿素子を提供するものである。
In order to overcome the drawbacks of the temperature-sensitive measuring element and humidity-sensitive measuring element described above, the present invention uses an amorphous semiconductor as the temperature-sensitive material and a porous A 2 O 3 film as the moisture-sensitive material, and uses a reference integral. The present invention provides a small and inexpensive temperature- and humidity-sensing element in which a circuit, a temperature-sensing integral circuit, and a humidity-sensing integral circuit are constructed on the same insulating substrate.

本考案の感温感湿素子は、同一の絶縁性基板上
に、基準用の第一の積分回路として温度湿度の変
化に対しほぼ一定値を示すコンデンサと抵抗体を
設け、温度検出用の第二の積分回路として温度・
湿度の変化に対しほぼ一定値を示すコンデンサと
温度の変化だけに反応を示す抵抗体を設け、最後
に湿度検出用の第三の積分回路として温度・湿度
の変化に対しほぼ一定値を示す抵抗体と湿度の変
化に対してのみ反応を示すコンデンサを設けて,
構成された感温感湿素子に関する。
The temperature-sensitive and humidity-sensitive element of the present invention has a capacitor and a resistor that exhibit a nearly constant value against changes in temperature and humidity as a first integrating circuit for reference on the same insulating substrate, and a second integrating circuit for temperature detection. Temperature and
A capacitor that exhibits a nearly constant value in response to changes in humidity and a resistor that responds only to changes in temperature are installed.Finally, a resistor that exhibits an approximately constant value in response to changes in temperature and humidity is installed as the third integrating circuit for humidity detection. By installing a capacitor that only responds to changes in the body and humidity,
The present invention relates to the constructed temperature and humidity sensing element.

本考案の感温感湿素子の一実施例について、第
1図及び第2図を用いて説明する。
An embodiment of the temperature and humidity sensing element of the present invention will be described with reference to FIGS. 1 and 2.

この感温感湿素子は、同一の絶縁性基板1上に
三つの積分回路を設けて構成される。
This temperature and humidity sensing element is constructed by providing three integrating circuits on the same insulating substrate 1.

第一の積分回路は、 基準用の積分回路(以下、基準用積分回路とい
う。)であり、温度・湿度の変化に対して抵抗値
の変化が少ない金属薄膜抵抗体2と、パルス信号
入力用で該金属薄膜抵抗体2に接続されたオーミ
ツク電極3と、コンデンサを構成する一方の電極
であり、信号出力用であり、しかも該金属薄膜抵
抗体2のもう一方に接続されたオーミツク電極4
と、温度・湿度の変化に対しほぼ一定の誘電率を
示す絶縁体5と、コンデンサを構成するもう一方
のオーミツク電極6とにより構成される。
The first integrator circuit is a reference integrator circuit (hereinafter referred to as the reference integrator circuit), and includes a metal thin film resistor 2 whose resistance value changes little with changes in temperature and humidity, and a pulse signal input circuit. an ohmic electrode 3 connected to the metal thin film resistor 2, and an ohmic electrode 4, which is one electrode forming the capacitor and is for signal output, and connected to the other side of the metal thin film resistor 2.
, an insulator 5 exhibiting a substantially constant dielectric constant against changes in temperature and humidity, and the other ohmic electrode 6 forming a capacitor.

第二の積分回路は、 温度測定用の積分回路(以下、感温用積分回路
という。)であり、温度の変化には反応し,湿度
の変化に対してほぼ一定の変化を示す感温薄膜抵
抗体7と、パルス信号入力用であり,該感温薄膜
抵抗体7に接続されたオーミツク電極8と、コン
デンサを構成する一方の電極であり、該感温薄膜
抵抗体7のもう一方に接続され、しかも信号出力
用であるオーミツク電極9と、温度・湿度の変化
に対してほぼ一定の誘電率を示す絶縁体10と、
前記オーミツク電極9に対向して絶縁体10を挾
んでコンデンサを構成すべく設けられたオーミツ
ク電極11より構成される。
The second integrator circuit is an integrator circuit for temperature measurement (hereinafter referred to as a temperature-sensing integrator circuit), and is a thermosensitive thin film that responds to changes in temperature and exhibits almost constant changes in response to changes in humidity. a resistor 7, an ohmic electrode 8 for pulse signal input and connected to the temperature-sensitive thin-film resistor 7, and one electrode constituting a capacitor, connected to the other side of the temperature-sensitive thin-film resistor 7. and an ohmic electrode 9 for signal output, and an insulator 10 that exhibits a substantially constant dielectric constant against changes in temperature and humidity.
It consists of an ohmic electrode 11 which is provided opposite to the ohmic electrode 9 with an insulator 10 in between to form a capacitor.

第三の積分回路は、 湿度測定用の積分回路(以下、感湿用積分回路
という。)であり、温度・湿度の変化に対してほ
ぼ一定の抵抗値を示す金属薄膜抵抗体12と、パ
ルス信号入力用であり、該金属薄膜抵抗体12と
接続されたオーミツク電極13と、感湿用のコン
デンサを構成する一方の電極であり、該金属薄膜
抵抗体12のもう一方に接続され、しかも信号出
力用であるオーミツク電極14と、湿度の変化に
反応し、温度の変化に対してほぼ一定の誘電率の
変化を示す感湿誘電体15と、前記オーミツク電
極14に対向して該感湿誘電体15を挾んで感湿
コンデンサを構成すべきもう一方のオーミツク電
極16とより構成される。なお、金属薄膜抵抗体
としては窒化タンタル、絶縁体としてはSiO2膜、
感湿誘電体としてはAl2O3、感温薄膜抵抗体とし
てはアモルフアスSiを用いている。
The third integrating circuit is an integrating circuit for humidity measurement (hereinafter referred to as a humidity sensing integrating circuit), and includes a metal thin film resistor 12 that exhibits a nearly constant resistance value against changes in temperature and humidity, and a pulse The ohmic electrode 13 is for signal input and is connected to the metal thin film resistor 12, and one electrode forming a moisture sensing capacitor is connected to the other side of the metal thin film resistor 12, and is connected to the metal thin film resistor 12. an ohmic electrode 14 for output; a moisture-sensitive dielectric 15 that responds to changes in humidity and exhibits a substantially constant change in dielectric constant with respect to changes in temperature; The body 15 is sandwiched between the two ohmic electrodes 16 and the other ohmic electrode 16 constitutes a moisture-sensitive capacitor. Note that tantalum nitride is used as the metal thin film resistor, SiO 2 film is used as the insulator,
Al 2 O 3 is used as the moisture-sensitive dielectric, and amorphous Si is used as the temperature-sensitive thin film resistor.

つぎに、本考案に係る感温薄膜抵抗体に使用す
るアモルフアスSiの温度特性について述べる。
Next, the temperature characteristics of amorphous Si used in the temperature-sensitive thin film resistor according to the present invention will be described.

第3図は、SiF4とH2の混合ガスを用い,DCグ
ロー放電法によりガラス基板上に堆積したp形及
びn形のアモルフアスSi薄膜の導電率−温度特性
の一例を示す。
FIG. 3 shows an example of conductivity-temperature characteristics of p-type and n-type amorphous Si thin films deposited on a glass substrate by a DC glow discharge method using a mixed gas of SiF 4 and H 2 .

図において、+印はp形、黒丸印はn形、横軸
は1/T(Tは絶対温度)、縦軸はアモルフアス半
導体薄膜の導電率σ(Ω・cm)-1を示す。
In the figure, the + mark indicates p-type, the black circle indicates n-type, the horizontal axis indicates 1/T (T is absolute temperature), and the vertical axis indicates conductivity σ (Ω·cm) -1 of the amorphous semiconductor thin film.

p形アモルフアス半導体薄膜は、SiF4とH2
混合ガス中に,ドーピングガスとしてB2H6を添
加し、B2H6/SiF4=500ppm,放電圧力0.8〜
1.4Torr,基板温度350℃の条件で堆積した。
The p-type amorphous semiconductor thin film is produced by adding B 2 H 6 as a doping gas to a mixed gas of SiF 4 and H 2 , B 2 H 6 /SiF 4 = 500 ppm, discharge pressure 0.8 ~
Deposition was carried out under conditions of 1.4 Torr and a substrate temperature of 350°C.

測定結果より、導電率の大きさは周囲温度によ
り変化し、次式で与えられる。
From the measurement results, the magnitude of electrical conductivity changes depending on the ambient temperature, and is given by the following equation.

σ=σ0exp(−A/KT) (1) 但し、σ0はT=T0における導電率、Kはボル
ツマン定数、Aは定数である。
σ=σ 0 exp(-A/KT) (1) However, σ 0 is the conductivity at T=T 0 , K is Boltzmann's constant, and A is a constant.

n形アモルフアス半導体薄膜は、SiF4とH2
混合ガス中に、ドーピングガスとしてPH3を添加
し、B2H6/SiF4=740ppm、放電圧力1Torr、基
板温度300℃の条件で堆積した。
The n-type amorphous semiconductor thin film was deposited by adding PH 3 as a doping gas to a mixed gas of SiF 4 and H 2 under conditions of B 2 H 6 /SiF 4 = 740 ppm, discharge pressure of 1 Torr, and substrate temperature of 300°C. .

測定結果より、n形アモルフアス半導体薄膜の
導電率は上記(1)式で表現できる。
From the measurement results, the conductivity of the n-type amorphous semiconductor thin film can be expressed by the above equation (1).

以上に述べた実験結果より、グロー放電法を用
いて低温で堆積したアモルフアス半導体薄膜はp
形,n形ともに室温で高導電率を示し、かつ、温
度による抵抗変化率も0.3%/℃以上あり、抵抗
変化型の感温材料として最適であることが確認さ
れた。
From the experimental results described above, it is clear that an amorphous semiconductor thin film deposited at low temperature using the glow discharge method has a p
Both type and n-type exhibit high conductivity at room temperature, and the rate of change in resistance due to temperature is 0.3%/°C or more, confirming that they are optimal as resistance-variable temperature-sensitive materials.

第5図は、本考案で使用する感湿用のコンデン
サに使用するA2O3の特性、すなわち、静電容
量−相対湿度特性を示す。図において、黒丸は平
均値を、縦線の範囲は最大値と最小値をそれぞれ
示す。測定温度は20℃において11%,43%,59%
の3点とし、飽和塩はそれぞれLiC,K2CO3
NaBrを使用した。零調整用の低露点ガスは市販
されている露点−60℃のN2ガスを使用した。測
定容器は温度計を装着した270mlの容積を持つス
テンレス容器を使用した。湿度特性の測定はステ
ンレス容器に飽和塩の入つた50mlのビーカを入
れ、温度と湿度が平衡に達したのち、行つた。静
電容量の測定は、測定周波数1MHzのLCRメータ
を用いて行つた。
FIG. 5 shows the characteristics of A 2 O 3 used in the humidity-sensitive capacitor used in the present invention, that is, the capacitance-relative humidity characteristics. In the figure, black circles indicate average values, and vertical line ranges indicate maximum and minimum values, respectively. Measurement temperature is 11%, 43%, 59% at 20℃
The saturated salts are LiC, K 2 CO 3 and
NaBr was used. Commercially available N2 gas with a dew point of -60°C was used as the low dew point gas for zero adjustment. The measurement container used was a stainless steel container with a capacity of 270 ml and equipped with a thermometer. The humidity characteristics were measured by placing a 50 ml beaker containing saturated salt in a stainless steel container and after the temperature and humidity reached equilibrium. The capacitance was measured using an LCR meter with a measurement frequency of 1 MHz.

具体的な数値によつて本考案を,さらに詳細に
説明すると、次のようになる。
The present invention will be explained in more detail using specific numerical values as follows.

(1) 感温特性 感温薄膜抵抗体にアモルフアスSiを使用すると
第3図より、p形の場合、導電率は20℃
(293゜K)のとき0.92(Ω・cm)-1となり、40℃
(313゜K)のとき0.94(Ω・cm)-1となる。そこで、
20℃のとき、抵抗値が150KΩになるように感温
薄膜抵抗体を構成する。この感温薄膜抵抗体は40
℃のとき153KΩの抵抗値を示す。また基準用の
コンデンサは静電容量が200pFになるように形成
する。
(1) Temperature-sensing characteristics When amorphous Si is used as a temperature-sensitive thin film resistor, the conductivity is 20°C in the case of p-type, as shown in Figure 3.
(293°K) becomes 0.92 (Ω・cm) -1 , which is 40°C.
(313°K), it becomes 0.94 (Ω・cm) -1 . Therefore,
The temperature-sensitive thin film resistor is constructed so that the resistance value is 150KΩ at 20°C. This temperature sensitive thin film resistor is 40
It shows a resistance value of 153KΩ at ℃. Also, form the reference capacitor so that its capacitance is 200pF.

以上、述べたような特性を示す感温薄膜抵抗体
と,基準用のコンデンサとで積分回路を構成する
と、温度20℃のときの時定数は30.0×10-6secと
なり、温度40℃のときの時定数は30.6×10-6sec
となる。他方、基準用のコンデンサの静電容量を
200pF,基準用の抵抗体の抵抗値を100KΩにな
るように基準用積分回路を構成すると、時定数は
20・0×10-6secとなる。これら2つの積分回路
に振幅5V,パルス幅40.0×10-6secのパルス信号
を入力し、出力信号を差動増幅器に入力し、さら
に差動増幅器の出力信号を最大値保持回路に入力
すると、20℃のとき最大値保持回路より出力され
る電圧は、0.74Vとなる。また、40℃の場合は、
0.78Vとなる。
When an integrating circuit is constructed using a temperature-sensitive thin film resistor exhibiting the characteristics described above and a reference capacitor, the time constant at a temperature of 20°C is 30.0×10 -6 sec, and at a temperature of 40°C, the time constant is 30.0×10 -6 sec. The time constant of is 30.6×10 -6 sec
becomes. On the other hand, the capacitance of the reference capacitor is
When the reference integration circuit is configured so that the resistance value of the reference resistor is 200pF and 100KΩ, the time constant is
20・0×10 -6 sec. If you input a pulse signal with an amplitude of 5V and a pulse width of 40.0×10 -6 sec to these two integrating circuits, input the output signal to the differential amplifier, and input the output signal of the differential amplifier to the maximum value holding circuit, The voltage output from the maximum value holding circuit at 20°C is 0.74V. Also, if the temperature is 40℃,
It becomes 0.78V.

(2) 感湿特性 感湿コンデンサをA2O3を用いて構成する
と、例えば第5図に示すように、温度20℃,相対
湿度20%のとき静電容量は210pFとなり、温度20
℃,相対湿度40%のとき静電容量は275pFとな
る。基準用の抵抗体の抵抗値は100KΩになるよ
うに構成する。これらの感湿コンデンサと基準用
の抵抗体とを用いて積分回路を構成すると、温度
20℃,相対湿度20%のときの時定数は21.0×
10-6secとなり、温度20℃,相対湿度40%のとき
の時定数は27.5×10-6secとなる。他方、基準用
の積分回路を温度測定と同様に、静電容量
200pF、抵抗値100KΩになるように構成すると、
時定数は20.0×10-6secとなる。これら2つの積
分回路に、振幅5V、パルス幅40.0×10-6secのパ
ルス信号を入力して、出力信号を差動増幅器に入
力し、さらに差動増幅器の出力信号を最大値保持
回路に入力すると、温度20℃,相対湿度20%のと
き最大値保持回路より出力される電圧は0.09Vに
なる。
(2) Moisture-sensitive characteristics When a humidity-sensitive capacitor is constructed using A 2 O 3 , for example, as shown in Figure 5, the capacitance is 210 pF at a temperature of 20°C and a relative humidity of 20%;
At ℃ and 40% relative humidity, the capacitance is 275pF. The resistance value of the reference resistor is configured to be 100KΩ. When an integrating circuit is constructed using these humidity-sensitive capacitors and a reference resistor, the temperature
The time constant at 20℃ and 20% relative humidity is 21.0×
The time constant is 27.5× 10 -6 sec when the temperature is 20°C and the relative humidity is 40%. On the other hand, as with temperature measurement, the reference integrating circuit is
When configured to have a resistance of 200pF and a resistance of 100KΩ,
The time constant is 20.0×10 -6 sec. Input a pulse signal with an amplitude of 5V and a pulse width of 40.0×10 -6 sec to these two integration circuits, input the output signal to the differential amplifier, and input the output signal of the differential amplifier to the maximum value holding circuit. Then, when the temperature is 20°C and the relative humidity is 20%, the voltage output from the maximum value holding circuit will be 0.09V.

また、温度20℃,相対湿度40%のとき最大値保
持回路より出力される電圧は0.58Vとなる。
Furthermore, when the temperature is 20°C and the relative humidity is 40%, the voltage output from the maximum value holding circuit is 0.58V.

このように、温度,湿度の変化を電圧差で検出
することができる。
In this way, changes in temperature and humidity can be detected by voltage differences.

本考案の感温感湿素子20を使用した温湿度検
出装置の一実施例について第4図により説明す
る。
An embodiment of a temperature/humidity detection device using the temperature/humidity sensing element 20 of the present invention will be described with reference to FIG.

温度測定の場合は、 まず、切換えスイツチ17及び切換えスイツチ
18を温度測定用の感温用積分回路(感温抵抗体
26と第2の基準コンデンサ27で構成される)
に信号の入力、出力ができるように接続する。次
にパルス信号発生器19より感温感湿素子20の
基準用積分回路(第1の基準抵抗体24と第1の
基準コンデンサ25で構成される)と、温度測定
用の前記感温用積分回路に同時にパルス信号を入
力し、それぞれの出力信号を差動増幅器21に入
力し、その差電圧を検出する。この差電圧を最大
値保持回路22に入力し電圧を保持する。この最
大値保持回路22は、パルス信号発生器19の出
力パルスの周期に同期してリセツトパルス信号を
出すリセツトパルス回路23で駆動させる。この
最大値保持回路22の出力電圧に温度を対応させ
れば温度測定装置とすることができる。
In the case of temperature measurement, first, the changeover switch 17 and the changeover switch 18 are connected to a temperature sensing integral circuit for temperature measurement (consisting of a temperature sensing resistor 26 and a second reference capacitor 27).
Connect so that signals can be input and output. Next, the pulse signal generator 19 connects the reference integrating circuit (comprised of a first reference resistor 24 and first reference capacitor 25) of the temperature-sensitive and humidity-sensitive element 20, and the temperature-sensing integral circuit for temperature measurement. Pulse signals are simultaneously input to the circuit, respective output signals are input to the differential amplifier 21, and the difference voltage is detected. This differential voltage is input to the maximum value holding circuit 22 to hold the voltage. This maximum value holding circuit 22 is driven by a reset pulse circuit 23 which outputs a reset pulse signal in synchronization with the period of the output pulse of the pulse signal generator 19. If the temperature is made to correspond to the output voltage of the maximum value holding circuit 22, a temperature measuring device can be obtained.

湿度測定の場合は、 まず、切換えスイツチ17と切換えスイツチ1
8を湿度測定用の感湿用積分回路(第2の基準抵
抗体28と感湿コンデンサ29で構成される)に
信号が入力、出力できるように切換える。次にパ
ルス信号発生器19より感温感湿素子20の前記
基準用積分回路と該感湿用積分回路に同時にパル
ス信号を入力して、それぞれの出力信号を差動増
幅器21に入力し、その差電圧を検出する。この
差電圧を最大値保持回路22に入力し、電圧を保
持する。最大値保持回路22はパルス信号発生器
19の出力パルスの周期に同期してリセツトパル
スを出すリセツトパルス回路23で駆動させる。
この最大値保持回路22の出力電圧に湿度を対応
させれば湿度測定装置とすることができる。
For humidity measurement, first select switch 17 and switch 1.
8 is switched so that a signal can be input to and output from a humidity sensing integrating circuit (consisting of a second reference resistor 28 and a humidity sensing capacitor 29) for humidity measurement. Next, a pulse signal is simultaneously inputted from the pulse signal generator 19 to the reference integrating circuit and the humidity sensing integrating circuit of the temperature and humidity sensing element 20, and the respective output signals are inputted to the differential amplifier 21. Detect differential voltage. This differential voltage is input to the maximum value holding circuit 22, and the voltage is held. The maximum value holding circuit 22 is driven by a reset pulse circuit 23 which outputs a reset pulse in synchronization with the cycle of the output pulse of the pulse signal generator 19.
By making the output voltage of the maximum value holding circuit 22 correspond to the humidity, a humidity measuring device can be obtained.

以上、図面に従つて本考案の感温感湿素子の原
理と,その実施例について説明を行つた。
The principle of the temperature-sensitive and moisture-sensitive element of the present invention and its embodiments have been explained above with reference to the drawings.

本考案の構成上の特徴は、 三つの積分回路すなわち、温度湿度で変化しな
い素材,例えば金属薄膜抵抗体と誘電体とを使用
した基準用積分回路と、アモルフアスSiを抵抗体
として用いた感温用積分回路と、Al2O3を誘電体
とした感湿用積分回路とを同一の絶縁性基板上に
設ける構造とした点にあり、したがつて、本考案
の感温感湿素子は半導体製造プロセスと両立し得
るため、微細加工が容易にでき、小型の感温感湿
素子とすることができる。
The structural features of this invention are three integrating circuits: a reference integrating circuit that uses materials that do not change with temperature and humidity, such as a metal thin film resistor and a dielectric, and a temperature-sensitive integrating circuit that uses amorphous Si as a resistor. The temperature- and humidity-sensing element of the present invention has a structure in which a humidity-sensing integrating circuit and a humidity-sensing integrating circuit using Al 2 O 3 as a dielectric are provided on the same insulating substrate. Since it is compatible with the manufacturing process, it can be easily microfabricated and can be made into a small temperature and humidity sensing element.

よつて、例えば腕時計に本考案の感温感湿素子
を組み込んで温度湿度計付き腕時計とすることが
できるほか、各種測定器に組み込んで温度、湿度
のモニターとして使用することができる。
Therefore, for example, the temperature and humidity sensing element of the present invention can be incorporated into a wristwatch to create a wristwatch with a temperature and humidity meter, and can also be incorporated into various measuring instruments to be used as a temperature and humidity monitor.

また、素子が小型のため空間的に狭い場所の測
定用のセンサとして使用できる。
Furthermore, since the element is small, it can be used as a sensor for measurements in spatially narrow places.

さらに、半導体製造プロセスが利用できるため
量産が可能であり、安価な素子を提供できる。
Furthermore, since a semiconductor manufacturing process can be used, mass production is possible, and inexpensive elements can be provided.

性能の面から見ると、本考案の感温感湿素子は
パルス信号で駆動するため素子自体の発熱による
測定誤差が少なく、信頼性が向上する。加えて温
度、湿度を同一の素子で測定できるため安価な測
定装置とすることができる。
In terms of performance, since the temperature and humidity sensing element of the present invention is driven by a pulse signal, there are fewer measurement errors due to heat generated by the element itself, and reliability is improved. In addition, since temperature and humidity can be measured with the same element, the measuring device can be inexpensive.

以上述べたように、本考案の感温感湿素子は従
来になかつた利点を有し、かつ、工業的に利用価
値が多いものである。
As described above, the temperature-sensitive and humidity-sensitive element of the present invention has advantages that have not been seen before, and is of great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の感温感湿素子に係る一実施例
における構成の正面図を示す。第2図は第1図の
破線X−X′における断面を示す断面図である。
第3図は本考案の感温感湿素子に使用するアモル
フアスSiの導電率−温度特性の一例を示す図であ
る。第4図は本考案による感温感湿素子を使用し
て構成した温湿度測定装置の一実施例を示す図で
ある。また、第5図は本考案に使用するA2O3
の静電容量−相対湿度特性の一例を示す。 図において、1は絶縁性基板、2は金属薄膜抵
抗体、3と4はオーミツク電極、5は絶縁体、6
はオーミツク電極、7は感温薄膜抵抗体、8と9
はオーミツク電極、10は絶縁体、11はオーミ
ツク電極、12は金属薄膜抵抗体、13と14は
オーミツク電極、15は感湿誘電体、16はオー
ミツク電極、17と18は切換えスイツチ、19
はパルス信号発生器、20は感温感湿素子、21
は差動増幅器、22は最大値保持回路、23はリ
セツトパルス回路、24は第1の基準抵抗体、2
5は第1の基準コンデンサ、26は感温抵抗体、
27は第2の基準コンデンサ、28は第2の基準
抵抗体、29は感湿コンデンサである。
FIG. 1 shows a front view of the configuration of an embodiment of the temperature and humidity sensing element of the present invention. FIG. 2 is a sectional view taken along the broken line X-X' in FIG.
FIG. 3 is a diagram showing an example of the conductivity-temperature characteristics of amorphous Si used in the temperature-sensitive and humidity-sensitive element of the present invention. FIG. 4 is a diagram showing an embodiment of a temperature and humidity measuring device constructed using the temperature and humidity sensing element according to the present invention. In addition, Fig. 5 shows the A 2 O 3 used in this invention.
An example of the capacitance-relative humidity characteristics of is shown. In the figure, 1 is an insulating substrate, 2 is a metal thin film resistor, 3 and 4 are ohmic electrodes, 5 is an insulator, and 6 is an insulating substrate.
is an ohmic electrode, 7 is a temperature-sensitive thin film resistor, 8 and 9
10 is an ohmic electrode, 10 is an insulator, 11 is an ohmic electrode, 12 is a metal thin film resistor, 13 and 14 are ohmic electrodes, 15 is a moisture sensitive dielectric, 16 is an ohmic electrode, 17 and 18 are changeover switches, 19
20 is a pulse signal generator, 20 is a temperature and humidity sensing element, 21
2 is a differential amplifier, 22 is a maximum value holding circuit, 23 is a reset pulse circuit, 24 is a first reference resistor, 2
5 is a first reference capacitor, 26 is a temperature sensitive resistor,
27 is a second reference capacitor, 28 is a second reference resistor, and 29 is a moisture sensitive capacitor.

Claims (1)

【実用新案登録請求の範囲】 (1) 基準用積分回路、感温用積分回路及び感湿用
積分回路が同一の絶縁性基板上1に堆積されて
成る感温感湿素子であつて、 前記基準用積分回路は第1の基準抵抗体24
及び第1の基準コンデンサ25で、 前記感温用積分回路は感温抵抗体26及び第
2の基準コンデンサ27で、 前記感湿用積分回路は第2の基準抵抗体28
及び感湿コンデンサ29でそれぞれ構成され、 前記基準用積分回路の積分特性と,前記感温
用積分回路及び感湿用積分回路の積分特性との
比較から同一個所における温度・湿度を検出す
るようにしたことを特徴とする感温感湿素子。 (2) 前記感温抵抗体26が、アモルフアス半導体
であることを特徴とする実用新案登録請求の範
囲第1項に記載の感温感湿素子。
[Claims for Utility Model Registration] (1) A temperature-sensitive and humidity-sensitive element comprising a reference integrating circuit, a temperature-sensitive integrating circuit, and a humidity-sensitive integrating circuit deposited on the same insulating substrate, The reference integrating circuit includes the first reference resistor 24
and a first reference capacitor 25, the temperature-sensing integrating circuit includes a temperature-sensitive resistor 26 and a second reference capacitor 27, and the humidity-sensing integrating circuit includes a second reference resistor 28.
and a humidity-sensitive capacitor 29, and detect the temperature and humidity at the same location by comparing the integration characteristics of the reference integration circuit with the integration characteristics of the temperature-sensing integration circuit and the humidity-sensing integration circuit. A temperature and humidity sensing element characterized by: (2) The temperature-sensitive and moisture-sensitive element according to claim 1, wherein the temperature-sensitive resistor 26 is an amorphous semiconductor.
JP14893482U 1982-09-30 1982-09-30 Temperature and humidity sensing element Granted JPS5953264U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14893482U JPS5953264U (en) 1982-09-30 1982-09-30 Temperature and humidity sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14893482U JPS5953264U (en) 1982-09-30 1982-09-30 Temperature and humidity sensing element

Publications (2)

Publication Number Publication Date
JPS5953264U JPS5953264U (en) 1984-04-07
JPH0228442Y2 true JPH0228442Y2 (en) 1990-07-31

Family

ID=30330753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14893482U Granted JPS5953264U (en) 1982-09-30 1982-09-30 Temperature and humidity sensing element

Country Status (1)

Country Link
JP (1) JPS5953264U (en)

Also Published As

Publication number Publication date
JPS5953264U (en) 1984-04-07

Similar Documents

Publication Publication Date Title
US7552635B2 (en) Humidity sensor capable of self-regulating temperature compensation and manufacturing method thereof
EP0033520A2 (en) Multi-functional sensing or measuring system
US7924028B2 (en) Method and system for adjusting characteristics of integrated relative humidity sensor
JPH0228442Y2 (en)
JPH0228443Y2 (en)
CN217304182U (en) Gas-phase temperature and humidity detection device
JPS58105047A (en) Monolithic type temperature-humidity sensor
JPH0829370A (en) Thermal-conductivity moisture sensor
JPS6118850A (en) Humidity and dew condensation detection element
JPS5812129Y2 (en) Dew point detection element
JPS589054A (en) Humidity detecting apparatus
JPS5832154A (en) Detecting apparatus of humidity
JPS58166248A (en) Temperature-and humidity-sensitive element
JPS61245049A (en) Humidity sensor
JPS63134944A (en) Humidity detecter
JPS5835902A (en) Moisture sensitive element
JPH05119010A (en) Moisture sensor
JPS61112953A (en) Apparatus for detecting external atmosphere
JPH02283002A (en) Humidity sensor
JPH0658901A (en) Hygrometer
JPH01321350A (en) Moisture detector
JPS6140124B2 (en)
JPH05119009A (en) Moisture sensor
JPH05196591A (en) Humidity sensor
JPS6359521B2 (en)