JPH02281310A - Reactive power generator and its control method - Google Patents

Reactive power generator and its control method

Info

Publication number
JPH02281310A
JPH02281310A JP1104140A JP10414089A JPH02281310A JP H02281310 A JPH02281310 A JP H02281310A JP 1104140 A JP1104140 A JP 1104140A JP 10414089 A JP10414089 A JP 10414089A JP H02281310 A JPH02281310 A JP H02281310A
Authority
JP
Japan
Prior art keywords
current
control signal
reactive
value
reactive current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1104140A
Other languages
Japanese (ja)
Other versions
JPH0833785B2 (en
Inventor
Koji Betsui
別井 孝司
Shuichi Onishi
修一 大西
Mie Ishizaki
石崎 美恵
Yasuhiko Hosokawa
靖彦 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Kansai Electric Power Co Inc
Priority to JP1104140A priority Critical patent/JPH0833785B2/en
Publication of JPH02281310A publication Critical patent/JPH02281310A/en
Publication of JPH0833785B2 publication Critical patent/JPH0833785B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To reduce the DC voltage fluctuation by detecting the active current actual value of a power system and correcting a control signal in accordance with this detected active current actual value to quickly and stably attain a reactive current target value. CONSTITUTION:In the transient state, the active current flows between a power system 1 and self-excited voltage type inverter 2 when the output voltage is quickly changed. This active current actual value is calculated by an active current computing element 9 and is multiplied by a prescribed constant K, and the value of this product is applied to the control signal obtained from a reactive current controller 7 to correct this control signal. Since charging/ discharging of a DC smoothing capacitor 3 is suppressed by the value of the product applied to the control signal as the result, the voltage between both ends of the capacitor 3 is not very variable, and the variation of the output voltage of the inverter 2 is reduced. That is, such control is possible that a desired reactive current can be quickly obtained through the reactive current target value is quickly changed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電力系統の電圧に応じて可変容量の無効電
力を発生する無効電力発生装置(SVG)の制御方法お
よび無効電力発生装置(SVG)に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for controlling a reactive power generator (SVG) that generates variable capacity reactive power according to the voltage of a power system, and a method for controlling a reactive power generator (SVG). ).

〔従来の技術〕[Conventional technology]

第4図は、例えば昭和53年電気学会東京支部(新潟地
区)大会の論文集第187真に示された従来の無効電力
発生装置(SVG)を示す概略構成図であり、図におい
て、lは電力系統、Vsは電力系統lの系統電圧、2は
電力系統1に接続された自励式電圧型インバータ(以下
、単にインバータと称する)、Lは電力系統lとインバ
ータ2との間のインダクタ、Rは同じく抵抗、Vi は
インバータ2の出力電圧、3はインバータ2に接続され
た直流平滑用のコンデンサ、4は電力系統lの電流の実
際値を検出する電流検出器、5は電力系統1の電圧位相
を検出する位相検出器、6は電流検出器4で検出した電
流の実際値と位相検出器5で検出した電圧位相とから、
無効電流の実際値を算出する無効電流演算器、7は無効
電流演算器6で算出した無効電流実際値より、インバー
タ2の出力電圧Viを制御する制御信号を算出する無効
電流制御器である。8は無効電流制御器7で算出した制
御信号に基づいてインバータ2に供給するゲートパルス
信号を発生するパルス制御器である。
FIG. 4 is a schematic configuration diagram showing a conventional reactive power generator (SVG) shown, for example, in the Proceedings of the 1973 IEEJ Tokyo Branch (Niigata Area) Conference, No. 187, and in the figure, l is In the power system, Vs is the system voltage of power system 1, 2 is a self-excited voltage type inverter (hereinafter simply referred to as an inverter) connected to power system 1, L is an inductor between power system 1 and inverter 2, and R is is the same resistance, Vi is the output voltage of inverter 2, 3 is a DC smoothing capacitor connected to inverter 2, 4 is a current detector that detects the actual value of the current of power system I, and 5 is the voltage of power system 1 A phase detector 6 detects the phase from the actual value of the current detected by the current detector 4 and the voltage phase detected by the phase detector 5.
A reactive current calculator 7 that calculates the actual value of the reactive current is a reactive current controller that calculates a control signal for controlling the output voltage Vi of the inverter 2 from the actual reactive current value calculated by the reactive current calculator 6. A pulse controller 8 generates a gate pulse signal to be supplied to the inverter 2 based on the control signal calculated by the reactive current controller 7.

第5図は第4図の無効電流制御器7の構成図であり、第
4図と同一部分には同一符号が付されている。なお、こ
の第5図の構成は、上記無効電力発生装置(SVG)を
制御する従来の方法として、例えば特公昭56−475
64号公報に示されている。第5図において、7aは無
効電流の目標値を設定する設定器、7bは無効電流演算
器6で算出した無効電流実際値と上記無効電流目標値と
の減算を行う減算要素、7Cは減算要素7bの出力に基
づいて、上記制御信号を作り、上記パルス制御器8に供
給する無効電流調節器である。
FIG. 5 is a block diagram of the reactive current controller 7 shown in FIG. 4, and the same parts as in FIG. 4 are given the same reference numerals. The configuration shown in FIG. 5 is a conventional method for controlling the reactive power generator (SVG) described in Japanese Patent Publication No. 56-475, for example.
This is shown in Publication No. 64. In FIG. 5, 7a is a setting device for setting the target value of reactive current, 7b is a subtraction element that subtracts the actual reactive current value calculated by the reactive current calculator 6 and the reactive current target value, and 7C is a subtraction element. This is a reactive current regulator that generates the control signal based on the output of 7b and supplies it to the pulse controller 8.

次に動作について説明する。この装置は、無効電流演算
器6で算出した無効電流実際値を設定器7aで設定した
無効電流目標値に一致させようと制御する。まず、電流
検出器4で検出された電力系統1の電流の実際値と、位
相検出器5で検出された電力系統1の電圧位相とに基づ
いて、無効電流演算器6は無効電流実際値を算出する。
Next, the operation will be explained. This device controls the reactive current actual value calculated by the reactive current calculator 6 to match the reactive current target value set by the setting device 7a. First, based on the actual value of the current of the power system 1 detected by the current detector 4 and the voltage phase of the power system 1 detected by the phase detector 5, the reactive current calculator 6 calculates the actual value of the reactive current. calculate.

次に、第5図において、減算要素7bは上記無効電流実
際値と無効電流目標値との差を算出し、この差に応じて
無効電流調節器7Cはインバータ2の出力電圧Viを制
御する制御信号を算出する。この制御信号に基づいてパ
ルス制御器8はインバータ2を直接に制御するゲートパ
ルス信号を発生する。
Next, in FIG. 5, the subtraction element 7b calculates the difference between the actual reactive current value and the target reactive current value, and the reactive current regulator 7C controls the output voltage Vi of the inverter 2 according to this difference. Calculate the signal. Based on this control signal, the pulse controller 8 generates a gate pulse signal that directly controls the inverter 2.

これによってインバータ2の出力電圧Viは、無効電流
実際値が無効電流目標値に一致するように制御される。
As a result, the output voltage Vi of the inverter 2 is controlled so that the actual value of the reactive current matches the target value of the reactive current.

なお、インバータ2に接続されたコンデンサ3はインバ
ータ2内の直流電圧を平滑する。
Note that a capacitor 3 connected to the inverter 2 smoothes the DC voltage within the inverter 2.

第6図は、定常状態における無効電力発生装置(SVG
)の動作を説明するものであり、Viはインバータ2の
出力電圧、Vsは電力系統1の系統電圧、Xはインバー
タ2と電力系統1間のインダクタL、抵抗Rから成るリ
アクタンスである。
Figure 6 shows the reactive power generator (SVG) in steady state.
), where Vi is the output voltage of the inverter 2, Vs is the system voltage of the power system 1, and X is the reactance between the inverter 2 and the power system 1, consisting of an inductor L and a resistor R.

出力電圧Viは系統電圧Vsと位相を等しくし、その大
きさのみ制御される。この時、電力系統1からの無効電
流実際値1qは路次式となる。
The output voltage Vi has the same phase as the system voltage Vs, and only its magnitude is controlled. At this time, the actual value 1q of reactive current from the power system 1 becomes a road equation.

λ よって、無効電流実際値1qが無効電流目標値より小さ
いときは、インバータ2の出力電圧Viを増加するよう
な制御信号を無効電流調節器7Cから発生して、無効電
流実際値1qを増加させ、逆に、無効電流実際値が無効
電流目標値より大きいときは、出力電圧Viを減少させ
て無効電流実際値1qを減少させる。
λ Therefore, when the reactive current actual value 1q is smaller than the reactive current target value, a control signal for increasing the output voltage Vi of the inverter 2 is generated from the reactive current regulator 7C to increase the reactive current actual value 1q. Conversely, when the actual reactive current value is larger than the target reactive current value, the output voltage Vi is decreased to decrease the actual reactive current value 1q.

しかし、過渡状態においては、出力電圧Viを急激に変
化させると、電力系統lとインバータ2との間に有効電
流が流れ、その結果、直流平滑用のコンデンサ3の充放
電が行われる。従って、このコンデンサ3の両端電圧が
変動し、これに伴いインバータ2の出力電圧Viが変動
してしまい、所望の無効電流が得られなくなる。そのた
め、無効電流目標値はゆっくり変化させる必要がある。
However, in a transient state, when the output voltage Vi is suddenly changed, an effective current flows between the power system 1 and the inverter 2, and as a result, the DC smoothing capacitor 3 is charged and discharged. Therefore, the voltage across the capacitor 3 fluctuates, and the output voltage Vi of the inverter 2 fluctuates accordingly, making it impossible to obtain a desired reactive current. Therefore, it is necessary to change the reactive current target value slowly.

【発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の無効電力発生装置(SVG)は以上のように構成
されているので、設定器7aで設定される無効電流目標
値が急激に変化したとき、無効電流実際値が無効電流目
標値に一致するまでの応答時間が遅くなり、また、この
応答時間を速くしようとすると、無効電流実際値が不安
定になり、さらにコンデンサ3にかかる電圧変動が大き
いために、このコンデンサ3の容量を大きくする必要が
ある等の問題点があった。
Since the conventional reactive power generator (SVG) is configured as described above, when the reactive current target value set by the setting device 7a changes suddenly, the reactive current actual value matches the reactive current target value. If you try to speed up this response time, the actual value of the reactive current will become unstable, and the voltage fluctuation across capacitor 3 will be large, so it is necessary to increase the capacitance of capacitor 3. There were some problems.

この発明は、上記のような問題点を解消するためになさ
れたもので、設定器で設定される無効電流目標値が急激
に変化したとき、無効電流実際値を速やかに且つ安定し
て無効電流目標値に一致させることかできると共に、コ
ンデンサ3にかかる電圧変動を小さくし、このコンデン
サの容量を小さくすることのできる無効電力発生装置(
SVG)の制御方法および無効電力発生装置を得ること
を目的とする。
This invention was made to solve the above-mentioned problems, and when the reactive current target value set by the setting device suddenly changes, the reactive current actual value can be quickly and stably changed to the reactive current value. A reactive power generator (
An object of the present invention is to obtain a control method and a reactive power generation device for SVG.

〔課題を解決するための手段〕[Means to solve the problem]

第1の請求項の発明に係る無効電力発生装置の制御方法
は、電力系統の有効電流実際値を検出すると共に、この
有効電流実際値により上記制御信号を補正するようにし
たものである。
A method for controlling a reactive power generator according to the first aspect of the invention detects an actual value of active current in a power system, and corrects the control signal based on this actual value of active current.

第2の請求項の発明に係る無効電力発生装置は、検出手
段により検出された有効電流実際値を所定倍する乗算器
と、この乗算器からの出力信号と制御信号とを加算し、
補正制御信号とする加算器とを備えたものである。
The reactive power generation device according to the invention of the second claim includes a multiplier that multiplies the actual value of active current detected by the detection means by a predetermined value, and adds an output signal from the multiplier and a control signal,
It is equipped with an adder that uses a correction control signal.

〔作 用〕[For production]

第1の請求項に係る無効電力発生装置の制御方法は、補
正制御信号により、インバータの出力電圧が制御される
ので、直流平滑用のコンデンサの充放電が抑制され、イ
ンバータの出力電圧の変動が低減される。
In the method for controlling a reactive power generator according to the first claim, since the output voltage of the inverter is controlled by the correction control signal, charging and discharging of the DC smoothing capacitor is suppressed, and fluctuations in the output voltage of the inverter are suppressed. Reduced.

第2の請求項に係る無効電力発生装置は、乗算器で有効
電流実際値を所定倍した信号と、制御信号とを加算器で
加算し、補正制御信号となし、この補正制御信号により
インバータの出力電圧が制御されるので、直流平滑用の
コンデンサの充放電が抑制され、インバータの出力電圧
の変動が低減される。
The reactive power generation device according to the second claim adds a signal obtained by multiplying the actual value of active current by a predetermined value using a multiplier and a control signal using an adder to obtain a corrected control signal, and uses this corrected control signal to control the inverter. Since the output voltage is controlled, charging and discharging of the DC smoothing capacitor is suppressed, and fluctuations in the output voltage of the inverter are reduced.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図においては第4図と対応する部分には同一符号を付し
て説明を省略する。9は電流検出器4で検出した電流の
実際値と位相検出器5で検出した電圧位相とに基づいて
、電力系統1の有効電流実際値を算出する有効電流演算
器である。この有効電流演算器9と電流検出器42位相
検出器5により有効電流実際値を検出する検出手段が構
成されている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, parts corresponding to those in FIG. 4 are designated by the same reference numerals, and their explanation will be omitted. Reference numeral 9 denotes an active current calculator that calculates the actual value of the active current of the power system 1 based on the actual value of the current detected by the current detector 4 and the voltage phase detected by the phase detector 5. The effective current calculator 9, the current detector 42, and the phase detector 5 constitute a detection means for detecting the actual value of the effective current.

10は無効電流制御器7から得られる制御信号を上記有
効電流実際値に応じて補正し、この補正された制御信号
をパルス制御器8に供給する補正手段で、この実施例で
は無効電流補助制御器10が用いられている。
Reference numeral 10 denotes a correction means for correcting the control signal obtained from the reactive current controller 7 according to the actual value of the active current and supplying the corrected control signal to the pulse controller 8, which in this embodiment is used for reactive current auxiliary control. A container 10 is used.

第2図は無効電流補助制御器lOの構成と他の関連部分
を示し、第1図および第5図と同一部分には同一符号が
付されている。第2図において、10aは有効電流演算
器9から得られる有効電流実際値を所定の定数に倍する
乗算器、10bは乗算器10aの出力信号と無効電流調
節器7Cから得られる制御信号とを加算し、その加算信
号を補正された制御信号(補正制御信号)としてパルス
制御器8に供給する加算器である。
FIG. 2 shows the configuration of the reactive current auxiliary controller IO and other related parts, and the same parts as in FIGS. 1 and 5 are given the same reference numerals. In FIG. 2, 10a is a multiplier that multiplies the actual value of active current obtained from active current calculator 9 by a predetermined constant, and 10b is a multiplier that multiplies the output signal of multiplier 10a and the control signal obtained from reactive current regulator 7C. This is an adder that adds the signals and supplies the added signal to the pulse controller 8 as a corrected control signal (corrected control signal).

次に動作について説明する。この装置は、従来と同様に
、無効電流演算器6で算出した無効電流実際値を設定器
7aで設定した無効電流目標値に一致させようと制御す
る。このために従来と同様にして、無効電流調節器7C
からは無効電流実際値を無効電流目標値に一致させるよ
うな制御信号が得られる。一方、有効電流演算器9は上
記電流の実際値と電圧位相とに基づいて、電力系統1の
有効電流実際値を算出して、第2図の乗算器10aに加
える。乗算器10aは上記有効電流実際値をに倍し、そ
の積の値が加算要素10bにおいて、無効電流調節器7
cから得られる上記制御信号に加算されることにより、
この制御信号が補正される。この補正された制御信号(
補正制御信号)に応じてパルス制御器8はゲートパルス
信号を発生し、これによってインバータ2の出力電圧V
iが制御される。
Next, the operation will be explained. As in the prior art, this device controls the actual reactive current value calculated by the reactive current calculator 6 to match the reactive current target value set by the setting device 7a. For this purpose, a reactive current regulator 7C is used in the same manner as before.
A control signal is obtained from which the actual value of the reactive current matches the target value of the reactive current. On the other hand, the active current calculator 9 calculates the actual value of the active current of the power system 1 based on the actual value of the current and the voltage phase, and adds it to the multiplier 10a in FIG. The multiplier 10a multiplies the active current actual value by , and the product value is added to the reactive current regulator 7 in the summing element 10b.
By being added to the above control signal obtained from c,
This control signal is corrected. This corrected control signal (
The pulse controller 8 generates a gate pulse signal in response to the correction control signal), thereby increasing the output voltage V of the inverter 2.
i is controlled.

定常状態において、無効電力発生装置(SVC)は第6
図について前述したように動作し、この時電力系統1の
無効電流実際値1qは前記0式で表される。
In steady state, the reactive power generator (SVC)
It operates as described above with reference to the figure, and at this time, the actual reactive current value 1q of the power system 1 is expressed by the above equation 0.

よって、インバータ2の出力電圧Viを増加すれば無効
電流実際値1qは増加し、出力電圧Viを減少すれば無
効電流実際値1qは減少する。
Therefore, if the output voltage Vi of the inverter 2 is increased, the reactive current actual value 1q will increase, and if the output voltage Vi is decreased, the reactive current actual value 1q will be decreased.

しかし、過渡状態においては、出力電圧Viを急激に変
化させると、電力系統lとインバータ2との間に有効電
流が流れる。そこで、この有効電流実際値を有効電流演
算器9で算出して所定の定数にと掛は合わせ、この積の
値を無効電流調節器7Cから得られる制御信号に加えて
、この制御信号を補正する。その結果、直流平滑用のコ
ンデンサ3の充放電が制御信号に加えられた上記積の値
の分だけ抑制されるため、このコンデンサ3の両端電圧
は余り変動しなくなり、従って、インバータ2の出力電
圧Viの変動も小さくなる。すなわち、無効電流目標値
が急変した場合も、高速に所望の無効電流が得られるよ
うに制御することが可能となる。
However, in a transient state, when the output voltage Vi is suddenly changed, an effective current flows between the power system l and the inverter 2. Therefore, this effective current actual value is calculated by the active current calculator 9, multiplied by a predetermined constant, and the value of this product is added to the control signal obtained from the reactive current regulator 7C to correct this control signal. do. As a result, the charging and discharging of the DC smoothing capacitor 3 is suppressed by the value of the above-mentioned product added to the control signal, so the voltage across this capacitor 3 does not fluctuate much, and therefore the output voltage of the inverter 2 Fluctuations in Vi also become smaller. That is, even if the reactive current target value suddenly changes, it is possible to perform control so that the desired reactive current can be obtained quickly.

なお、上記実施例においては、電力系統1の有効電流実
際値を有効電流演算器9で検出する例を示したが、第3
図に示すように、直流平滑用のコンデンサ3へ流れるコ
ンデンサ電流を検出する検出器11を検出手段として設
けてもよい、何故ならば、有効電流が流れる時は、これ
に応じた大きさのコンデンサ電流が流れるので、第3図
のように、検出器11で検出したコンデンサ電流に定数
Kを乗算して制御信号を補正しても、上記実施例と同様
の効果が得られる。
In the above embodiment, an example was shown in which the actual value of the active current of the power system 1 is detected by the active current calculator 9, but the third
As shown in the figure, a detector 11 for detecting the capacitor current flowing to the DC smoothing capacitor 3 may be provided as a detection means, because when an effective current flows, a capacitor of a size corresponding to the current flows. Since a current flows, the same effect as in the above embodiment can be obtained even if the control signal is corrected by multiplying the capacitor current detected by the detector 11 by a constant K as shown in FIG.

また、上記実施例では、直流平滑用のコンデンサ3のコ
ンデンサ電流を直接に検出する例について説明したが、
このコンデンサ3の両端にかかる直流電圧を検出し、そ
の検出値を微分してコンデンサ電流を算出しても同様の
効果が得られる。
Further, in the above embodiment, an example was explained in which the capacitor current of the DC smoothing capacitor 3 is directly detected.
A similar effect can be obtained by detecting the DC voltage applied across the capacitor 3 and differentiating the detected value to calculate the capacitor current.

〔発明の効果〕〔Effect of the invention〕

以上のように、この第1の請求項に係る発明によれば、
インバータの出力電圧を制御する制御信号を、電力系統
の有効電流実際値に応じて補正するように構成したので
、無効電流実際値を速く且つ安定に無効電流目標値に一
敗させることができ、また、直流電圧変動も小さくでき
るので、直流平滑用のコンデンサを小容量にすることが
でき、装置が小型で安価となる効果がある。
As described above, according to the invention according to the first claim,
Since the control signal for controlling the output voltage of the inverter is configured to be corrected according to the actual value of the active current of the power system, it is possible to quickly and stably bring the actual value of the reactive current to the target value of the reactive current. Furthermore, since DC voltage fluctuations can be reduced, the capacitance of the DC smoothing capacitor can be reduced, which has the effect of making the device smaller and cheaper.

また、第2の請求項に係る発明によれば、有効電流実際
値を乗算器で所定倍にした信号と制御信号とを加算器で
加算して補正制御信号とする構成にしたので、無効電流
実際値を速く且つ安定に無効電流目標値に一敗させるこ
とができ、また、直流電圧変動も小さくできるので、直
流平滑用のコンデンサを小容量にすることができ、装置
が小型で安価となる効果がある。
Further, according to the invention according to the second claim, since the configuration is such that the signal obtained by multiplying the actual value of the effective current by a predetermined value using the multiplier and the control signal are added together using the adder to obtain the corrected control signal, the reactive current value is The actual value can be quickly and stably set to the reactive current target value, and DC voltage fluctuations can also be reduced, so the capacitance of the DC smoothing capacitor can be reduced, making the device smaller and cheaper. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による無効電力発生装置(
S V G)を示す概略構成図、第2図は同装置の無効
電流制御器を示す構成図、第3図はこの発明の他の実施
例による無効電力発生装置(SVG)を示す概略構成図
、第4図は従来の無効電力発生装置(S V G)を示
す概略構成図、第5図は同装置の無効電流制御器を示す
構成図、第6図は同装置の動作を説明するための概略構
成図である。 1は電力系統、2は自励式電圧型インバータ、4は電流
検出器、5は位相検出器、6は無効電流演算器、7は無
効電流制御器、9は有効電流演算器、10は無効電流補
助制御器。 なお、図中、同一符号は同一、又は相当部分を示す。 第2図 に
FIG. 1 shows a reactive power generation device (
FIG. 2 is a schematic configuration diagram showing a reactive current controller of the device; FIG. 3 is a schematic configuration diagram showing a reactive power generator (SVG) according to another embodiment of the present invention. , Fig. 4 is a schematic configuration diagram showing a conventional reactive power generation device (S V G), Fig. 5 is a configuration diagram showing a reactive current controller of the device, and Fig. 6 is a diagram for explaining the operation of the device. FIG. 1 is a power system, 2 is a self-excited voltage type inverter, 4 is a current detector, 5 is a phase detector, 6 is a reactive current calculator, 7 is a reactive current controller, 9 is an active current calculator, 10 is a reactive current Auxiliary controller. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. In Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)電力系統と自励式電圧型インバータとを接続し、
上記電力系統の無効電流実際値が無効電流目標値に一致
するように、上記自励式電圧型インバータの出力電圧を
制御する制御信号を得る無効電力発生装置の制御方法に
おいて、上記電力系統の有効電流実際値を検出し、この
検出された有効電流実際値に応じて上記制御信号を補正
することを特徴とする無効電力発生装置の制御方法。
(1) Connect the power system and the self-excited voltage type inverter,
In a method for controlling a reactive power generator that obtains a control signal for controlling an output voltage of the self-excited voltage type inverter so that an actual reactive current value of the power system matches a target value of reactive current, the active current of the power system A method for controlling a reactive power generator, comprising detecting an actual value and correcting the control signal according to the detected actual value of active current.
(2)電力系統と自励式電圧型インバータとを接続し、
上記電力系統の無効電流実際値が無効電流目標値に一致
するように、上記自励式電圧型インバータの出力電圧を
制御する制御信号を得る無効電力発生装置において、上
記電力系統の有効電流実際値を検出する検出手段と、上
記検出手段で検出した有効電流実際値に所定の定数を乗
算する乗算器と、上記乗算器の出力信号と上記制御信号
とを加算し、その加算出力信号を補正制御信号とする加
算器とを備えたことを特徴とする無効電力発生装置。
(2) Connect the power system and the self-excited voltage type inverter,
In a reactive power generator that obtains a control signal for controlling the output voltage of the self-excited voltage type inverter, the actual value of the active current of the power system is adjusted so that the actual value of the active current of the power system matches the target reactive current value. a detection means for detecting; a multiplier for multiplying the actual value of effective current detected by the detection means by a predetermined constant; and a multiplier for adding the output signal of the multiplier and the control signal, and using the added output signal as a correction control signal. What is claimed is: 1. A reactive power generation device comprising: an adder.
JP1104140A 1989-04-24 1989-04-24 Control method of reactive power generation device and reactive power generation device Expired - Lifetime JPH0833785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1104140A JPH0833785B2 (en) 1989-04-24 1989-04-24 Control method of reactive power generation device and reactive power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1104140A JPH0833785B2 (en) 1989-04-24 1989-04-24 Control method of reactive power generation device and reactive power generation device

Publications (2)

Publication Number Publication Date
JPH02281310A true JPH02281310A (en) 1990-11-19
JPH0833785B2 JPH0833785B2 (en) 1996-03-29

Family

ID=14372793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1104140A Expired - Lifetime JPH0833785B2 (en) 1989-04-24 1989-04-24 Control method of reactive power generation device and reactive power generation device

Country Status (1)

Country Link
JP (1) JPH0833785B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025756A (en) * 2014-07-22 2016-02-08 株式会社明電舎 Power conversion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872677A (en) * 1981-10-27 1983-04-30 Nippon Electric Ind Co Ltd Electric generator with float system dalius type hydraulic turbine
JPS5937848A (en) * 1982-08-26 1984-03-01 関西電力株式会社 Control system for dc transmission system
JPS62118414A (en) * 1985-11-18 1987-05-29 Nissin Electric Co Ltd Reactive power compensator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872677A (en) * 1981-10-27 1983-04-30 Nippon Electric Ind Co Ltd Electric generator with float system dalius type hydraulic turbine
JPS5937848A (en) * 1982-08-26 1984-03-01 関西電力株式会社 Control system for dc transmission system
JPS62118414A (en) * 1985-11-18 1987-05-29 Nissin Electric Co Ltd Reactive power compensator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025756A (en) * 2014-07-22 2016-02-08 株式会社明電舎 Power conversion device

Also Published As

Publication number Publication date
JPH0833785B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
US6215287B1 (en) Power supply apparatus
US4593240A (en) Method and apparatus for determining the flux vector of a rotating-field machine from the stator current and the stator voltage, and the application thereof
JP3493644B2 (en) Maximum power tracking method for photovoltaic system
JPH02281310A (en) Reactive power generator and its control method
JPS6399770A (en) Method for controlling circulating current type cycloconverter
JPH06233530A (en) Variable-gain voltage control system of dc/dc converter using detection of load current
JP3567783B2 (en) Static var compensator
JPH02261059A (en) Dc voltage pulsation correcting power source device
JP2006146525A (en) Power supply and method for compensating load voltage of power supply
JPS63115202A (en) Feedback process controller
JP3252634B2 (en) Inverter circuit output voltage control method
JP3770286B2 (en) Vector control method for induction motor
JPH08223927A (en) Control apparatus of uninterruptible power-supply system
JP2672621B2 (en) Static var compensator
JPH03256565A (en) Controller for voltage type inverter connected with power system
JPH09154284A (en) Power converter controller
JPH0638537A (en) Pwm inverter with variable gain adaptive control function
JPH0626457B2 (en) Control system of reactive power compensator
JPS634302A (en) Feedback process controller
JPS5928130B2 (en) Control method for reactive power regulator
JPH0767255A (en) Control circuit for reactive power compensator
JPS61142960A (en) Controller of booster chopper
JPH0487571A (en) Control device for inverter device
JPS61264416A (en) Control system for reactive power compensating device
JPS60247718A (en) Continuously variable voltage type direct current generating device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080329

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 14