JP2016025756A - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
JP2016025756A
JP2016025756A JP2014148428A JP2014148428A JP2016025756A JP 2016025756 A JP2016025756 A JP 2016025756A JP 2014148428 A JP2014148428 A JP 2014148428A JP 2014148428 A JP2014148428 A JP 2014148428A JP 2016025756 A JP2016025756 A JP 2016025756A
Authority
JP
Japan
Prior art keywords
power
detected
voltage
current
effective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014148428A
Other languages
Japanese (ja)
Other versions
JP6327033B2 (en
Inventor
敬一郎 土居
Keiichiro Doi
敬一郎 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2014148428A priority Critical patent/JP6327033B2/en
Publication of JP2016025756A publication Critical patent/JP2016025756A/en
Application granted granted Critical
Publication of JP6327033B2 publication Critical patent/JP6327033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power conversion device capable of solving a problem that supply of generated power to an electric power system is disturbed due to response delay of a control system when the system voltage varies under the state that the amount of generated power is constant during the control of supplying generated power of a dispersion type power source to an interconnected power system.SOLUTION: A correction unit for correcting an effective current instruction is provide at the output side of a voltage controller equipped to a control device of a power conversion device. The control device is provided with a power calculator for calculating effective power from detected voltage and current of a power system, subjecting the effective power to the same normalization as the effective current instruction and then outputting the normalized effective power as detected effective current to the correction unit. The correction unit is configured to correct the effective current instruction by using the input detected effective current as a correction term.SELECTED DRAWING: Figure 1

Description

本発明は、電力変換装置に係わり、特に分散型電源を電力系統に連系して系統に電力を供給する電力変換装置に関するものである。   The present invention relates to a power conversion device, and more particularly to a power conversion device that connects a distributed power source to a power system and supplies power to the system.

分散型電源、特に太陽光発電装置のように再生可能エネルギーによる発電電力を、連系された電力系統に電力変換装置を介して供給する場合、太陽光発電装置からの出力制御は太陽光発電を最大電力追従制御(以下MPPTという)して電力系統に供給する。電力変換装置により電力系統側に電力を供給すると、系統の連系点電圧は、太陽光発電装置が出力する有効電力P、及び無効電力Qに対して電圧上昇する。この場合の電圧変動△Vは、系統電圧をVs、連系線の抵抗をR、連系線のリアクタンスをXとしたとき、次式で近似できることが例えば、特許文献1などによって知られている。
△V=(R・P+X・Q)/Vs
したがって、連系する系統電圧に規制があり、連系点の電圧上昇を抑制する場合には、有効電力と無効電力を制御することで対応している。
When supplying power generated by renewable energy, such as a distributed power source, especially a solar power generator, to a connected power system via a power converter, output control from the solar power generator Maximum power tracking control (hereinafter referred to as MPPT) is supplied to the power system. When power is supplied to the power system side by the power conversion device, the grid connection point voltage increases with respect to the active power P and the reactive power Q output from the photovoltaic power generation device. For example, Patent Document 1 discloses that the voltage fluctuation ΔV in this case can be approximated by the following equation where the system voltage is Vs, the resistance of the interconnection line is R, and the reactance of the interconnection line is X. .
ΔV = (R · P + X · Q) / Vs
Therefore, when there is a restriction on the grid voltage to be linked and the voltage rise at the grid point is suppressed, it is possible to cope with this by controlling the active power and reactive power.

図3は電力変換装置を介して連系される分散型電源と電力系統が電力変換装置を介して連系されるシステム構成図を示したもので、分散型電源として太陽光発電のMPPT制御により系統へ電力供給するものである。太陽光発電部Pvが発電した直流電圧はインバータINVによって交流に変換され、リアクトルL、コンデンサCからなるフィルタ、および連系トランスTrを通って電力系統に供給される。De1〜De3は検出部で、検出部De1は直流電圧、直流電流を検出し、検出部De2はインバータ電流を、検出部De3は系統電圧、系統電流をそれぞれ検出して制御装置CONに入力される。   FIG. 3 shows a system configuration diagram in which a distributed power source and a power system linked via a power conversion device are linked via a power conversion device. As a distributed power source, MPPT control of photovoltaic power generation is used. It supplies power to the grid. The DC voltage generated by the solar power generation unit Pv is converted into AC by the inverter INV, and supplied to the power system through the reactor L, the filter composed of the capacitor C, and the interconnection transformer Tr. De1 to De3 are detection units, the detection unit De1 detects a DC voltage and a DC current, the detection unit De2 detects an inverter current, the detection unit De3 detects a system voltage and a system current, and is input to the control device CON. .

図4は制御装置CONの構成図で、各検出部De1〜De3による検出値は平均値算出部1に出力されて数サンプリング値による移動平均値が求められる。制御方式がMPPTであることから、MPPT制御部2では検出直流電圧Vdcと、この検出直流電圧Vdcと検出直流電流Idcの積による電力Pdcを入力して有効電力を設定するための直流電圧指令Vdc-refを演算し、電圧制御部3に出力する。MPPT制御によることで有効電力の指令値はなく、有効電力は系統の電圧を上昇させるので、必要によって無効電力により系統電圧を制御し、更に制御しきれないときには有効電力を減らす制御も行われる。
電圧制御部3では、入力された直流電圧指令Vdc-refと検出直流電圧Vdcとの差分に基づいて、その差分が無くなるような有効電流指令Id-refをd軸電流演算部4に出力する。
FIG. 4 is a block diagram of the control device CON. The detection values obtained by the detection units De1 to De3 are output to the average value calculation unit 1 to obtain a moving average value based on several sampling values. Since the control method is MPPT, the MPPT control unit 2 inputs the detected DC voltage Vdc and the power Pdc resulting from the product of the detected DC voltage Vdc and the detected DC current Idc, and sets the effective power. - calculates the ref, and outputs the voltage control unit 3. Since there is no command value of active power due to the MPPT control, and the active power increases the system voltage, the system voltage is controlled by reactive power as necessary, and when the control is not possible, the active power is also reduced.
Based on the difference between the input DC voltage command Vdc - ref and the detected DC voltage Vdc, the voltage control unit 3 outputs an effective current command Id - ref that eliminates the difference to the d-axis current calculation unit 4.

5,6は2相/3相変換部、7,8はdq軸変換部で、2相/3相変換部5では検出されたインバータのU相電流とW相電流からIv=−(Iu+Iw)を演算してV相電流を算出し、Iu、Iv、Iwをdq軸変換部7に出力する。また、2相/3相変換部6は、検出された系統電圧のUV相間、およびVW相間電圧Vuv,Vvwを入力してWU相間の電圧Vwu=−(Vuv+Vvw)を演算し、Vuv,Vvw,Vwuをdq軸変換部8に出力する。   5 and 6 are 2-phase / 3-phase converters, 7 and 8 are dq axis converters, and the 2-phase / 3-phase converter 5 calculates the Iv = − (Iu + Iw) is calculated to calculate the V-phase current, and Iu, Iv, and Iw are output to the dq axis converter 7. Further, the 2-phase / 3-phase converter 6 inputs the detected system voltage between the UV phases and between the VW phases Vuv and Vvw, calculates the voltage Vwu = − (Vuv + Vvw) between the WU phases, and outputs Vuv, Vvw, Vwu is output to the dq axis conversion unit 8.

dq軸変換部7,8には、系統電圧の位相情報から位相変換部9によって変換された位相θが入力されて、dq軸変換部7ではd,q軸電流Id,Iqが求められて電流制御部4,10に各別に出力される。無効電流演算部11には、図示省略された上位系統のコントローラから無効電力指令値が入力されており、無効電流演算部11では、この無効電力指令値と算出されたq軸電流Iqによってq軸電流指令Iq-refを演算して電流制御部10に出力する。 The phase q converted by the phase converter 9 from the phase information of the system voltage is input to the dq axis converters 7 and 8, and the dq axis converter 7 obtains d and q axis currents Id and Iq to obtain the current. Output to the control units 4 and 10 separately. A reactive power command value is input to the reactive current calculation unit 11 from a controller of a host system not shown. The reactive current calculation unit 11 uses the reactive power command value and the calculated q-axis current Iq to generate a q-axis. The current command Iq - ref is calculated and output to the current control unit 10.

電流制御部4,10ではそれぞれの指令値Id-ref,Iq-refと検出電流Id,Iqに基づいて各軸の電流制御値を算出し、d軸電圧、及びq軸電圧生成部12,13に出力する。一方、dq軸変換部8では、d軸電圧Vd、及びq軸電圧Vqが求められてd軸電圧、及びq軸電圧生成部12,13に出力され、各電圧生成部12,13においてd軸電圧とq軸電圧が生成され、生成された制御信号に基づきゲート制御回路を介してインバータINVを制御する。 The current control units 4 and 10 calculate current control values for the respective axes based on the command values Id - ref and Iq - ref and the detected currents Id and Iq, and the d-axis voltage and q-axis voltage generation units 12 and 13. Output to. On the other hand, in the dq-axis conversion unit 8, the d-axis voltage Vd and the q-axis voltage Vq are obtained and output to the d-axis voltage and the q-axis voltage generation units 12 and 13, and the voltage generation units 12 and 13 A voltage and a q-axis voltage are generated, and the inverter INV is controlled via the gate control circuit based on the generated control signal.

特開2012−16150JP2012-16150

図4で示すように、太陽光発電装置からの発電出力をMPPT制御方式で制御する場合、MPPT制御では有効電力の指令値はなく、演算された直流電圧指令Vdc-refと検出直流電圧Vdcを基にMPPTに対応する直流電圧指令Vdc-refをMPPT制御部2で算出し、電流制御部4でd軸電流制御値を生成している。このため、太陽光発電装置の発電量が一定のときに系統電圧が変動した場合、制御系の応答が遅くなって太陽光発電装置からの電力が有効に系統へ供給されなくなる虞を有している。 As shown in FIG. 4, when the power generation output from the photovoltaic power generation apparatus is controlled by the MPPT control method, there is no command value of active power in the MPPT control, and the calculated DC voltage command Vdc - ref and the detected DC voltage Vdc are used. Based on this, a DC voltage command Vdc - ref corresponding to MPPT is calculated by the MPPT control unit 2, and a d-axis current control value is generated by the current control unit 4. For this reason, when the system voltage fluctuates when the power generation amount of the photovoltaic power generation device is constant, there is a possibility that the response of the control system will be delayed and the power from the photovoltaic power generation device will not be effectively supplied to the system. Yes.

本発明が目的とするとこは、系統電圧が変動した場合でも即応性をもって系統へ供給できる電力変換装置を提供することにある。   An object of the present invention is to provide a power converter that can be supplied to a system with quick response even when the system voltage fluctuates.

本発明は、電力変換装置を介して分散型電源を電力系統に連系し、分散型電源の発電した電力を、電力変換装置の制御装置により最大電力追従制御によって電力系統に供給するものにおいて、
前記制御装置が有する電圧制御部の出力側に有効電流指令を補正する補正部を設け、
前記制御装置に、検出された電力系統の電圧、電流から有効電力を算出して前記有効電流指令と同一の正規化を行った後に検出有効電流として前記補正部に出力する電力演算部を設け、
前記補正部で、入力された検出有効電流を補正項として前記有効電流指令を補正するよう構成したものである。
In the present invention, a distributed power source is connected to a power system via a power conversion device, and power generated by the distributed power source is supplied to the power system by maximum power tracking control by a control device of the power conversion device.
A correction unit for correcting the active current command is provided on the output side of the voltage control unit included in the control device,
The control device is provided with a power calculation unit that outputs active power from the detected voltage and current of the detected power system and outputs the detected current to the correction unit after performing the same normalization as the active current command,
The correction unit is configured to correct the effective current command using the input detected effective current as a correction term.

また、本発明の補正部は、前記有効電流指令と検出有効電流との比を算出する補正値算出部と、補正値算出部による算出値を通過させるローパスフィルタと、ローパスフィルタの出力値と前記有効電流指令との乗算を行って電流指令値とをする乗算部を備えたことを特徴としたものである。   The correction unit according to the present invention includes a correction value calculation unit that calculates a ratio between the effective current command and the detected active current, a low-pass filter that passes a calculation value by the correction value calculation unit, an output value of the low-pass filter, and the A multiplication unit that multiplies the effective current command to obtain a current command value is provided.

以上のとおり、本発明によれば、電力系統が安定状態のときには補正項を1とし、有効電流指令と検出有効電流を同等としている。この状態で、電力系統が変動して有効電流指令に対して検出有効電流が小さくなったときには補正項を大にし、また、有効電流指令に対して検出有効電流が大きくさくなったときには補正項を小にする。これにより、系統電圧の変動に対して応答性が向上し、有効電力の出力減衰を抑制することが可能となるものである。   As described above, according to the present invention, when the power system is in a stable state, the correction term is set to 1, and the effective current command and the detected effective current are made equal. In this state, when the power system fluctuates and the detected effective current becomes smaller than the effective current command, the correction term is increased, and when the detected active current becomes smaller than the effective current command, the correction term is increased. Make it small. As a result, responsiveness is improved with respect to fluctuations in the system voltage, and output attenuation of active power can be suppressed.

本発明の実施形態を示す制御装置の構成図。The block diagram of the control apparatus which shows embodiment of this invention. 補正部の構成図。The block diagram of a correction | amendment part. 分散型電源と電力系統の連系システム構成図。The interconnection system block diagram of a distributed power supply and an electric power system. 従来の電力変換装置の制御装置の構成図。The block diagram of the control apparatus of the conventional power converter device.

図1は本発明の制御装置の構成図を示したもので、図3と同一部分に同一符号を付してその説明を省略する。すなわち、図1で図3との相違点は、電圧制御部3の出力側に補正部20と、2相/3相変換部21、及びその出力側に接続された電力演算部22を設けたことで、他は図3と同様である。2相/3相変換部21は検出されたインバータのU相電流とW相電流からIv=−(Iu+Iw)を演算してV相電流を算出し、Iu、Iv、Iwを電力演算部22に出力する。電力演算部22は、2相/3相変換部21から入力された系統電流と2相/3相変換部6から入力された系統電圧を基に有効電力を演算する。この検出された有効電力から有効電流指令と同一の正規化を行って検出有効電流detとし、これを系統の有効電流として補正部20に出力する。   FIG. 1 shows a block diagram of the control device of the present invention. The same parts as those in FIG. That is, FIG. 1 is different from FIG. 3 in that a correction unit 20, a two-phase / three-phase conversion unit 21, and a power calculation unit 22 connected to the output side are provided on the output side of the voltage control unit 3. The others are the same as in FIG. The 2-phase / 3-phase converter 21 calculates Iv =-(Iu + Iw) from the detected U-phase current and W-phase current of the inverter to calculate the V-phase current, and Iu, Iv, and Iw are calculated as a power calculator. 22 to output. The power calculator 22 calculates active power based on the system current input from the 2-phase / 3-phase converter 21 and the system voltage input from the 2-phase / 3-phase converter 6. The detected normal power is normalized in the same manner as the active current command to obtain a detected active current det, which is output to the correction unit 20 as a system active current.

図2は補正部20の構成図を示したもので、電圧制御部3による有効電流指令Id-refを設定refとし、検出された有効電力から有効電流指令と同一の正規化を行った値の検出有効電流detを補正項として用いて補正演算し、求まった値を補正された電流指令値REFとして電流制御部4へ出力する。そのため、補正値算出部20aにおいてGain=ref/detの演算を行って補正項を算出する。すなわち、有効電流指令(設定)ref、検出有効電流det、及び補正項Gainの関係性を以下のようにしている。
(1)有効電流指令ref>検出有効電流det →補正項大
(2)有効電流指令ref<検出有効電流det →補正項小
(3)有効電流指令ref=検出有効電流det →補正項1
上記(1)の関係で補正項Gainが大きい場合に電流制御部4に入力される指令値が急変する可能性がある。ローパスフィルタ20bはこれを防止するために設けられたもので、指令値急変に対する対応を可能にしている。乗算部20cでは補正項Gainと有効電流指令Id-refとを乗算し、補正された電流指令値REFを算出する。
FIG. 2 shows a configuration diagram of the correction unit 20. The active current command Id - ref by the voltage control unit 3 is set as ref, and a value obtained by performing the same normalization as the active current command from the detected active power. A correction calculation is performed using the detected effective current det as a correction term, and the obtained value is output to the current control unit 4 as a corrected current command value REF. Therefore, the correction value calculation unit 20a calculates Gain = ref / det to calculate the correction term. That is, the relationship between the effective current command (setting) ref, the detected effective current det, and the correction term Gain is as follows.
(1) Effective current command ref> detection effective current det → large correction item (2) Effective current command ref <detection effective current det → correction item small (3) Effective current command ref = detection effective current det → correction item 1
When the correction term Gain is large due to the relationship (1) above, the command value input to the current control unit 4 may change suddenly. The low-pass filter 20b is provided to prevent this, and can cope with a sudden change in the command value. The multiplier 20c multiplies the correction term Gain and the active current command Id - ref to calculate a corrected current command value REF.

以上のように動作することにより、本発明では、電力系統が安定状態のときには上記(3)の状態に該当し、電圧制御部3による有効電流指令Id-ref=電流指令値REFとなっている。この状態より、電力系統が変動して上記(1)の状態になったときにはREFを大きくし、(2)の状態になったときにはREFを小さくすることで系統電圧の変動に対して応答性が向上し、有効電力の出力減衰を抑制することが可能となるものである。 By operating as described above, according to the present invention, when the power system is in the stable state, the state corresponds to the state (3), and the effective current command Id - ref = current command value REF by the voltage control unit 3 is satisfied. . From this state, when the power system fluctuates and the state (1) is reached, the REF is increased, and when the state (2) is reached, the REF is decreased to make the system more responsive to fluctuations in the system voltage. It is possible to improve and suppress output attenuation of active power.

1… 平均値算出部
2… MPPT(最大電力追従)制御部
3… 電圧制御部
4,10… 電流制御部
5,6… 2相/3相変換部
7,8… dq軸変換部
9… 位相変換部
11… 無効電流演算部
12… d軸電圧生成部
13… q軸電圧生成部
20… 補正部
21… 2相/3相変換部
22… 電力演算部
DESCRIPTION OF SYMBOLS 1 ... Average value calculation part 2 ... MPPT (maximum power follow-up) control part 3 ... Voltage control part 4, 10 ... Current control part 5, 6 ... 2-phase / 3-phase conversion part 7, 8 ... dq axis conversion part 9 ... Phase Conversion unit 11 ... Reactive current calculation unit 12 ... d-axis voltage generation unit 13 ... q-axis voltage generation unit 20 ... correction unit 21 ... 2-phase / 3-phase conversion unit 22 ... power calculation unit

Claims (2)

電力変換装置を介して分散型電源を電力系統に連系し、分散型電源の発電した電力を、電力変換装置の制御装置により最大電力追従制御によって電力系統に供給するものにおいて、
前記制御装置が有する電圧制御部の出力側に有効電流指令を補正する補正部を設け、
前記制御装置に、検出された電力系統の電圧、電流から有効電力を算出して前記有効電流指令と同一の正規化を行った後に検出有効電流として前記補正部に出力する電力演算部を設け、
前記補正部で、入力された検出有効電流を補正項として前記有効電流指令を補正するよう構成したことを特徴とした電力変換装置。
In connecting the distributed power source to the power system via the power converter, and supplying the power generated by the distributed power source to the power system by maximum power tracking control by the control device of the power converter,
A correction unit for correcting the active current command is provided on the output side of the voltage control unit included in the control device,
The control device is provided with a power calculation unit that outputs active power from the detected voltage and current of the detected power system and outputs the detected current to the correction unit after performing the same normalization as the active current command,
The power conversion device, wherein the correction unit is configured to correct the effective current command using the input detected effective current as a correction term.
前記補正部は、前記有効電流指令と検出有効電流との比を算出する補正値算出部と、補正値算出部による算出値を通過させるローパスフィルタと、ローパスフィルタの出力値と前記有効電流指令との乗算を行って電流指令値とする乗算部を備えたことを特徴とした請求項1記載の電力変換装置。
The correction unit includes a correction value calculation unit that calculates a ratio between the effective current command and the detected active current, a low-pass filter that passes a calculation value by the correction value calculation unit, an output value of the low-pass filter, and the effective current command The power conversion device according to claim 1, further comprising a multiplication unit that performs multiplication of the current command value.
JP2014148428A 2014-07-22 2014-07-22 Power converter Active JP6327033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014148428A JP6327033B2 (en) 2014-07-22 2014-07-22 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014148428A JP6327033B2 (en) 2014-07-22 2014-07-22 Power converter

Publications (2)

Publication Number Publication Date
JP2016025756A true JP2016025756A (en) 2016-02-08
JP6327033B2 JP6327033B2 (en) 2018-05-23

Family

ID=55272098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014148428A Active JP6327033B2 (en) 2014-07-22 2014-07-22 Power converter

Country Status (1)

Country Link
JP (1) JP6327033B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281310A (en) * 1989-04-24 1990-11-19 Kansai Electric Power Co Inc:The Reactive power generator and its control method
JP2002281670A (en) * 2001-03-19 2002-09-27 Mitsubishi Electric Corp Power converter
WO2012098769A1 (en) * 2011-01-20 2012-07-26 株式会社 東芝 Photovoltaic power generation system and power feeding system
JP2015100224A (en) * 2013-11-20 2015-05-28 株式会社ダイヘン Control circuit for controlling inverter circuit, inverter device including the control circuit, power system including the inverter device, and control method
JP2015192477A (en) * 2014-03-27 2015-11-02 株式会社東芝 Controller, control method, and power generation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281310A (en) * 1989-04-24 1990-11-19 Kansai Electric Power Co Inc:The Reactive power generator and its control method
JP2002281670A (en) * 2001-03-19 2002-09-27 Mitsubishi Electric Corp Power converter
WO2012098769A1 (en) * 2011-01-20 2012-07-26 株式会社 東芝 Photovoltaic power generation system and power feeding system
JP2015100224A (en) * 2013-11-20 2015-05-28 株式会社ダイヘン Control circuit for controlling inverter circuit, inverter device including the control circuit, power system including the inverter device, and control method
JP2015192477A (en) * 2014-03-27 2015-11-02 株式会社東芝 Controller, control method, and power generation system

Also Published As

Publication number Publication date
JP6327033B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
EP3232530B1 (en) Cascaded photovoltaic grid-connected inverter, control method and control device for the same
US9509233B2 (en) Power converter, power generation system, control apparatus, and power conversion method
US10826378B2 (en) Power conversion apparatus for interconnection with a three-phrase ac power supply
JP5877648B2 (en) Distributed power system
EP2020740B1 (en) Power converter
JP4763676B2 (en) Solar power system
JP2012205325A5 (en)
EP2763301B1 (en) Power converter control method
JP2018129963A (en) Controller of power converter
US11063530B2 (en) Method for removing direct current component at output terminal of MMC converter
JP5351390B2 (en) Power converter
JP5498100B2 (en) Inverter control circuit, grid-connected inverter system equipped with this inverter control circuit
JPWO2020105133A1 (en) Power converter
JP2009247136A (en) Power converter and method for controlling harmonic current of the power converter
JP6078416B2 (en) Inverter
KR101639825B1 (en) Apparatus for controlling current of inverter
JP7224565B1 (en) Power conversion device and control device
JP6327033B2 (en) Power converter
JP2012231606A (en) System interconnection power conversion device
JP2016111810A (en) Control circuit for controlling inverter circuit, and inverter device with control circuit
JP6392708B2 (en) Self-excited power converter
JP7136368B2 (en) power converter
JP2017153277A (en) Self-excited reactive power compensation apparatus
KR101027937B1 (en) A power converting apparatus for a grid-connected transformerless type photovoltaic generation system
JP6110093B2 (en) Inverter device and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6327033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150