JPH02276832A - Molding material - Google Patents

Molding material

Info

Publication number
JPH02276832A
JPH02276832A JP1097595A JP9759589A JPH02276832A JP H02276832 A JPH02276832 A JP H02276832A JP 1097595 A JP1097595 A JP 1097595A JP 9759589 A JP9759589 A JP 9759589A JP H02276832 A JPH02276832 A JP H02276832A
Authority
JP
Japan
Prior art keywords
film
fiber
strength
thermosetting resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1097595A
Other languages
Japanese (ja)
Other versions
JP2882638B2 (en
Inventor
Goro Furumoto
五郎 古本
Tsuneo Igarashi
恒夫 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP1097595A priority Critical patent/JP2882638B2/en
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to DE69032210T priority patent/DE69032210D1/en
Priority to CA 2026113 priority patent/CA2026113C/en
Priority to KR1019900702133A priority patent/KR930003894B1/en
Priority to PCT/JP1990/000085 priority patent/WO1990008802A1/en
Priority to EP90902370A priority patent/EP0541795B1/en
Priority to TW079100742A priority patent/TW205053B/zh
Publication of JPH02276832A publication Critical patent/JPH02276832A/en
Priority to US08/034,171 priority patent/US5597631A/en
Priority to US08/709,188 priority patent/US5770313A/en
Application granted granted Critical
Publication of JP2882638B2 publication Critical patent/JP2882638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:To obtain molding material having high tensile strength, bending strength and impact strength, etc., and excellent physical properties even in other direction than direction of fiber orientation by laminating specific film layer and fiberreinforced thermosetting resin layer. CONSTITUTION:The aimed material is composed of laminate of a film layer having >=35kg/mm<2> tensile strength and >=700kg/mm<2> tensile modulus and comprising organic polymer having >=300 deg.C melting point or degrading point and a fiber-reinforced thermosetting resin layer. Adhesion is preferably performed by roughening of the surface or dipping pre-treatment and thickness of the film is preferably in a range of 10-50mum for the two layers are sufficiently adhered. Aramid is preferable as the organic polymer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高強度、高弾性率のフィルム層と繊維強化熱
硬化性樹脂層とを積層一体化したプリプレグ材料に関し
、更には、曲げ、引張、圧縮等の機械的強度に優れ、且
つ耐衝撃性が大きく改良された積層複合材料を製造する
ための熱硬化性樹脂成形用材料に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a prepreg material in which a film layer with high strength and a high modulus of elasticity and a fiber-reinforced thermosetting resin layer are laminated together, and furthermore, The present invention relates to a thermosetting resin molding material for producing a laminated composite material that has excellent mechanical strength such as tensile and compressive strength and greatly improved impact resistance.

(従来技術及びその問題点) 繊維強化熱硬化性樹脂複合材料は、優れた比強度、比弾
性率を有することから高強度、軽量、耐蝕性等が要求さ
れる分野、例えば、航空機構造部材あるいはラケットフ
レームやゴルフシャフト等のスポーツ用品などに広く使
用されている。しかしながら、該材料は、一般に靭性に
乏しく、耐衝撃性に問題があり、又さらには、−旦衝撃
的破壊を起こすと、強化繊維がささくれた鋭利な破壊面
を露出するという欠点を有する。そこで、マトリックス
樹脂である熱硬化性樹脂をゴム状重合体で変性する、あ
るいは熱可塑性樹脂を配合する等により改質することで
靭性の改良が図られているが未だ、満足するものは得ら
れていない。また、米国特許第3472730号あるい
は、特開昭60−63229号公報等において、インタ
ーリーフ層を有するプリプレグの概念が提案され、耐衝
撃性を改善する手法として注目に値するものの、繊維強
化層に比べてインターリーフ層の強度・弾性率が低い為
に生ずる、成形体の引張強度、曲げ強度等の機械的強度
の低下は切り捨てられ、破壊状態の改善には目も向けら
れていない。
(Prior art and its problems) Fiber-reinforced thermosetting resin composite materials have excellent specific strength and specific modulus, so they are used in fields where high strength, light weight, and corrosion resistance are required, such as aircraft structural components and It is widely used in sports equipment such as racket frames and golf shafts. However, such materials generally have poor toughness, have problems with impact resistance, and furthermore, have the disadvantage that - once impact fracture occurs, a sharp fracture surface with broken reinforcing fibers is exposed. Therefore, attempts have been made to improve the toughness by modifying the thermosetting resin, which is the matrix resin, with a rubber-like polymer or by blending it with a thermoplastic resin, but so far, nothing satisfactory has been achieved. Not yet. In addition, the concept of prepreg having an interleaf layer was proposed in U.S. Pat. In this method, the decrease in mechanical strength such as tensile strength and bending strength of the molded body due to the low strength and elastic modulus of the interleaf layer is ignored, and no attention is paid to improving the fracture condition.

また、繊維強化材料の別の問題点は、物性の大きな異方
性であり、一般には強化繊維の配向方向を変化させて積
層することによって擬似等労化を行っているものの、プ
リプレグの切り出しから正確な積ね合せまで多大の手間
と労力を必要とする。
Another problem with fiber-reinforced materials is the large anisotropy of their physical properties, and although pseudo-equal labor is generally achieved by laminating the reinforcing fibers by changing their orientation, Accurate stacking requires a great deal of time and effort.

(発明が解決しようとする課題) 本発明は、引張強度、曲げ強度等の機械的強度が大きく
、しかも繊維配向方向以外にも優れた物性を有し、さら
には高い耐衝撃性を併せ持った複合材料を製造すること
ができる熱硬化性樹脂成形用材料を提供することを目的
とする。
(Problems to be Solved by the Invention) The present invention provides a composite material that has high mechanical strength such as tensile strength and bending strength, and also has excellent physical properties other than the direction of fiber orientation, and also has high impact resistance. The object of the present invention is to provide a thermosetting resin molding material that can be used to produce a material.

(課題を解決するための手段) 即ち、本発明は、融点又は分解点が300℃以上である
有機系重合体から実質的になり、35kg/m1以上の
引張強度および700 kg/mm”以上の引張弾性率
を有するフィルム層と繊維強化熱硬化性樹脂層とを積層
してなる成形用の熱硬化性樹脂材料である。
(Means for Solving the Problem) That is, the present invention consists essentially of an organic polymer having a melting point or decomposition point of 300° C. or higher, and has a tensile strength of 35 kg/m or higher and a tensile strength of 700 kg/mm” or higher. This is a thermosetting resin material for molding, which is formed by laminating a film layer having a tensile modulus and a fiber-reinforced thermosetting resin layer.

本発明において用いるフィルムは、下記の要件が必要で
ある。
The film used in the present invention must meet the following requirements.

まず、第1に、フィルムは、300℃未満には融点をも
たない有機系重合体から実質的に構成されている必要が
ある。融点が300 ’C未満であると、樹脂の硬化等
のコンポジットの製造工程で、融解したり、熱変形した
りするので好ましくなく、また製品化されたあとも、使
用環境が少し厳しくなると性能が著しく低下することが
あるので好ましくない。このような高融点の有機系重合
体としては、アラミド、ポリイミド、ポリエーテルエー
テルケトン、全芳香族ポリエステル、ポリヘンライミダ
ゾール、ポリベンツビスチアゾール等が挙げられるが、
樹脂との接着の良さや以下に述べる高強度、高弾性率の
発現のし易さからアラミドとポリイミド、中でもアラミ
ドが好ましい。
First, the film must be substantially composed of an organic polymer that does not have a melting point below 300°C. If the melting point is less than 300'C, it is undesirable because it will melt or be thermally deformed during the composite manufacturing process such as curing the resin, and even after it is commercialized, the performance may deteriorate if the usage environment is a little harsh. This is not preferable as it may cause a significant decrease. Examples of such high melting point organic polymers include aramid, polyimide, polyetheretherketone, wholly aromatic polyester, polyhenreimidazole, polybenzbisthiazole, etc.
Among aramid and polyimide, aramid is preferred because of its good adhesion with resin and ease of developing high strength and high elastic modulus as described below.

好ましく用いられるアラミドには下記の一般式(1)、
(II)で表わされる構造のもの、またはこれらの共重
合体がある。
Preferably used aramids have the following general formula (1),
There are those having the structure represented by (II) and copolymers thereof.

一+−CR+   CNHRz   N)l←ト1−又
は −←C−R3−NH−ト1− (+) (n) (式中において、R8、R2およびR8は、から選ばれ
、これらの水素原子がハロゲン、メチル、エチル、メト
キシ、ニトロ、ヌルホンなどの官能基で置換されていて
もよい。m、nは平均重合度であり約50〜1000で
ある。)本発明に用いられるフィルムが特定の有機系重
合体から実質的になるという意味は、上記した特定の有
機系重合体以外の成分が、本発明の効果を損わない範囲
で少量含まれていてもよいことであり、例えば上記した
以外の有機系重合体、有機系低分子化合物、無機化合物
などを少量含有してもよい。
1+-CR+ CNHRz N)l←1- or -←C-R3-NH-1- (+) (n) (In the formula, R8, R2 and R8 are selected from, and these hydrogen atoms may be substituted with a functional group such as halogen, methyl, ethyl, methoxy, nitro, or nurphone. m and n are the average degree of polymerization and are about 50 to 1000.) Consisting essentially of organic polymers means that components other than the above-mentioned specific organic polymers may be contained in small amounts within the range that does not impair the effects of the present invention. For example, the above-mentioned It may contain small amounts of other organic polymers, organic low molecular compounds, inorganic compounds, etc.

次に本発明に用いられるフィルムは35kg/IIII
llz以上の引張強度および700 kg/mm”以上
の引張弾性率を有している必要がある。
Next, the film used in the present invention is 35 kg/III
It is necessary to have a tensile strength of 110 kg/mm" or more and a tensile modulus of 700 kg/mm" or more.

本発明で用いるフィルムは、従来汎用のものと比べれば
、これらの物性が抜きん出ていることは明らかであるが
、繊維強化樹脂層に対しては低いものであり最終成形品
の物性を極力低下させない為には、これらの要件が満足
されねばならず、好ましくは45 kg/Ir1raz
以上の引張強度を有していることであり、又は1000
kg/mm”以上の引張弾性率を有していることである
。フィルムは、コンポジット製品としての抗張力の必要
な方向に引張強度や引張弾性率を増強した、謂ゆるテン
シライズドタイプが用いられてもよいが、もちろん、フ
ィルムとして、等方的な性能を有するものを用いた方が
、得られる成形体の機械的強度や寸法安定性に方向性が
少ないという点でよい。本発明において、引張強度と引
張弾性率は少くとも1つの方向が前記した値を満たして
いればよいが、好ましくは、任意に選んだ互いに直交す
る2つの方向の特性の平均値が前記した値を満している
ことである。
It is clear that the film used in the present invention has outstanding physical properties when compared to conventional general-purpose ones, but it is low in properties relative to the fiber reinforced resin layer, so that the physical properties of the final molded product are not degraded as much as possible. In order for these requirements to be met, preferably 45 kg/Ir1raz
or more than 1000
The film must have a tensile modulus of at least 100 kg/mm".The film used is a so-called tensilized type, which has increased tensile strength and tensile modulus in the direction where tensile strength is required as a composite product. However, it is of course better to use a film with isotropic performance in that the resulting molded product has less directional properties in terms of mechanical strength and dimensional stability.In the present invention, It is sufficient that the tensile strength and tensile modulus satisfy the above values in at least one direction, but preferably, the average value of the properties in two arbitrarily selected directions orthogonal to each other satisfies the above values. It is that you are.

本発明において、補強効果を十分に発現させるために、
フィルムと熱硬化性樹脂とが十分な接着力をもつことが
好ましい。大きな接着力は、フィルム又はテープの表面
を粗にする(製膜上の工夫、製膜後の物理的又は化学的
なエツチング等)、表面に化学活性種を導入する(コロ
ナ放電処理、プラズマ処理、化学分解等)、接着用の含
浸前処理をする(エポキシ化合物、イソシアネート化合
物、レゾルシン・ホルマリン・ラテックス混合物等)、
又はこれらを組み合わせる等の方法が好ましく用いられ
、それにより達成される。
In the present invention, in order to fully express the reinforcing effect,
It is preferable that the film and thermosetting resin have sufficient adhesive strength. A large adhesive force can be achieved by roughening the surface of the film or tape (devices in film formation, physical or chemical etching after film formation, etc.), or by introducing chemically active species to the surface (corona discharge treatment, plasma treatment, etc.). , chemical decomposition, etc.), impregnation pretreatment for adhesion (epoxy compounds, isocyanate compounds, resorcinol/formalin/latex mixtures, etc.),
Alternatively, methods such as a combination of these methods are preferably used and achieved.

本発明に用いられるフィルムの厚みは成形品における繊
維強化樹脂層との積層構成を考慮して適宜決定されるが
通常5〜100μmであり、好ましくは10〜50μm
である。また、望まれる成形品の特性によって、フィル
ム層を複数積層したものと一層以上の繊維強化樹脂層を
積層一体化して用いることも行なわれてよい。
The thickness of the film used in the present invention is appropriately determined in consideration of the laminated structure with the fiber-reinforced resin layer in the molded product, but is usually 5 to 100 μm, preferably 10 to 50 μm.
It is. Furthermore, depending on the desired characteristics of the molded product, a plurality of film layers may be laminated and one or more fiber reinforced resin layers may be laminated and used in an integrated manner.

本発明で言う繊維強化熱硬化性樹脂層は、補強繊維に熱
硬化性樹脂を含浸して得られたプリプレグ材である。
The fiber-reinforced thermosetting resin layer referred to in the present invention is a prepreg material obtained by impregnating reinforcing fibers with a thermosetting resin.

本発明に用いられる補強繊維としては、ガラス繊維、カ
ーボン繊維、アラミド繊維、ポリベンゾチアゾール繊維
、ポリベンゾチアゾール繊維、あるいはこれらを金属被
覆(例えばニッケルメッキを施したカーボン繊維等)し
たものや、また、アルミナ繊維、シリコンカーバイド繊
維等の無機繊維も含まれ、これらの繊維の2種以上を併
用することもできる。
Examples of the reinforcing fibers used in the present invention include glass fibers, carbon fibers, aramid fibers, polybenzothiazole fibers, polybenzothiazole fibers, metal-coated fibers (for example, nickel-plated carbon fibers, etc.), and , alumina fiber, silicon carbide fiber, and the like, and two or more of these fibers can also be used in combination.

また繊維は一方向に引き揃えたシート状の形で、あるい
は織物の形で用いられ、特に等友釣な機械物性が要求さ
れる用途においては適当な長さにカットされた繊維がラ
ンダムに配向したマット状でも使用される。
Fibers are also used in the form of sheets aligned in one direction or in the form of woven fabrics, and in applications where uniform mechanical properties are required, fibers are cut into appropriate lengths and randomly oriented. It is also used in matte form.

本発明に用いられる熱硬化性樹脂は特に限定されるもの
ではなく、例えば、エポキシ樹脂、フェノール樹脂、ポ
リイミド樹脂、ポリエステル樹脂などから選ばれる。ま
た、これらの樹脂に、紫外線吸収剤、難燃剤、酸化防止
剤、滑剤、着色剤、熱安定剤、老化防止剤、補強用短繊
維、補強用粉粒体、成形用薬剤、熱可塑性樹脂、エラス
トマーゴム状物、その他通常の樹脂添加剤が添加されて
いてもよい。
The thermosetting resin used in the present invention is not particularly limited, and is selected from, for example, epoxy resins, phenol resins, polyimide resins, polyester resins, and the like. In addition, these resins include ultraviolet absorbers, flame retardants, antioxidants, lubricants, colorants, heat stabilizers, anti-aging agents, reinforcing short fibers, reinforcing powders, molding agents, thermoplastic resins, Elastomer rubbers and other usual resin additives may be added.

本発明の成形用材料は種々の方法で調製することができ
る。
The molding material of the invention can be prepared in various ways.

例えば、B−ステージの繊維強化熱硬化性樹脂プリプレ
グとフィルムを圧着して製造する方法がある。あるいは
、熱硬化性樹脂を含浸した強化繊維シートとフィルムを
圧着後、加熱してB−ステージ化する方法がある。また
、フィルムにあらかじめ熱硬化性樹脂を溶融した状態で
塗布するか、または、適当な溶媒を用いた溶液あるいは
混合液の形で塗布した後、加熱脱溶媒しておき、これと
強化繊維を圧着後、加熱する方法も使用可能である。
For example, there is a method of manufacturing by pressing a B-stage fiber-reinforced thermosetting resin prepreg and a film. Alternatively, there is a method in which a reinforcing fiber sheet impregnated with a thermosetting resin and a film are pressed together and then heated to B-stage the film. In addition, the thermosetting resin can be applied to the film in advance in a molten state, or it can be applied in the form of a solution or mixture using an appropriate solvent, and then the solvent is removed by heating, and this and the reinforcing fibers are crimped together. A method of heating after heating can also be used.

一方積層構成に関しては、上記の如きフィルム層と繊維
強化熱硬化性樹脂層とを各−層ずつ積層するか、または
これを更に複数層積層したものの他にあらかじめ熱硬化
性樹脂を塗布後、Bステージ化したフィルムを2層以上
積層したフィルム層と繊維強化熱硬化性樹脂層とをサイ
ドバイサイドで圧着積層したり、あるいは前者で後者を
サンドインチ状にはさむ形で積層して用いることもでき
る。また、円柱状の金型に繊維強化熱硬化性樹脂を捲回
積層したものに、片面に熱硬化性樹脂を塗布したフィル
ムを捲回し金型を除去することで円筒状の材料を製造す
ることも可能である。
On the other hand, regarding the laminated structure, the film layer and the fiber-reinforced thermosetting resin layer as described above may be laminated one by one, or a plurality of layers may be laminated together. A film layer obtained by laminating two or more staged films and a fiber-reinforced thermosetting resin layer may be laminated side-by-side by pressure bonding, or the former may be laminated with the latter sandwiched between the latter in a sandwich-like manner. Alternatively, a cylindrical material can be manufactured by winding a film coated with thermosetting resin on one side of a cylindrical mold by winding and laminating fiber-reinforced thermosetting resin and removing the mold. is also possible.

本発明の成形用材料から複合材料を成形する方法は、何
ら制限されず、種々の方法で、いろいろな形状の成形体
に加工することができる。
The method of molding a composite material from the molding material of the present invention is not limited at all, and it can be processed into molded bodies of various shapes by various methods.

(実施例) 次に、本発明を実施例を用いて詳細に説明する。(Example) Next, the present invention will be explained in detail using examples.

参考例I  アラミドフィルムの製造 対数粘度(98%濃硫酸中に溶解して、C−0,5g/
100+j!にて、30℃で測定)が5.5のポリp 
フェニレンテレフタルアミド(PPTAと略す)を99
.5%の硫酸にポリマー濃度12%で溶解し、光学異方
性のあるドープを得た。このドープを真空下に脱気し、
濾過したのち、ギアポンプを通して、スリットダイから
押出し、鏡面に慶いたタンタル類のベルトにキャストし
、相対湿度約40%の約90℃の空気の雰囲気のゾーン
を通して、流延ドープを光学等方化し、ベルトとともに
20′Cの30%硫酸水溶液中に導いて凝固させた。次
いで、凝固フィルムをベルトからひきはがし、カセイソ
ーダ水溶液で中和し、水洗した。洗浄の終了したフィル
ムを乾燥させずに、ローラで長さ方向に約1.15倍延
伸し、次いでテンターで幅方向に1.3倍延伸したのち
、定長に保持しつつ、200℃で乾燥し更に300℃で
定長熱処理した。
Reference Example I Manufacture of aramid film Logarithmic viscosity (dissolved in 98% concentrated sulfuric acid, C-0.5g/
100+j! Polyp with a temperature of 5.5 (measured at 30°C)
Phenylene terephthalamide (abbreviated as PPTA) 99
.. A dope with optical anisotropy was obtained by dissolving the polymer in 5% sulfuric acid at a polymer concentration of 12%. This dope is degassed under vacuum,
After filtration, the cast dope is extruded through a gear pump, extruded through a slit die, cast onto a tantalum belt with a mirror finish, and passed through an air atmosphere zone at about 90°C with a relative humidity of about 40% to optically isotropicize the cast dope. The belt was introduced into a 30% aqueous sulfuric acid solution at 20'C and coagulated. The coagulated film was then peeled off from the belt, neutralized with an aqueous solution of caustic soda, and washed with water. Without drying the washed film, it was stretched approximately 1.15 times in the length direction using rollers, then 1.3 times in the width direction using a tenter, and then dried at 200°C while maintaining the film at a constant length. Then, it was further heat-treated at 300°C for a fixed length.

上記、条件下で10am及び25amのPPTA フィ
ルムを製造した。
10 am and 25 am PPTA films were manufactured under the above conditions.

得られたフィルムは淡黄色透明で、熱分析において50
0℃以下には転移温度は見られなかった。
The resulting film was pale yellow and transparent, with a thermal analysis of 50
No transition temperature was observed below 0°C.

これらのフィルムの機械物性を第1表に示す。The mechanical properties of these films are shown in Table 1.

参考例2  繊維強化熱硬化性樹脂の製造エポキシ樹脂
(化成ファイバーライト社製、”7714) (メチル
エチルケトン混合液、固形分50重世%)を一方向に引
きそろえたPAN系炭素繊維(旭日本カーボンファイバ
ー社製ハイカーボロン@12k)に含浸しつつ、これを
シリコン離型紙を巻き付けた500mmφのドラム上に
巻き取った。
Reference Example 2 Production of fiber-reinforced thermosetting resin PAN-based carbon fiber (Asahi Nippon Carbon) made of epoxy resin (manufactured by Kasei Fiberlite Co., Ltd., "7714") (methyl ethyl ketone mixed liquid, solid content 50%) aligned in one direction While impregnated with Hicarboron@12k (manufactured by Fiber Co., Ltd.), this was wound onto a 500 mm diameter drum wrapped with silicone release paper.

これを繊維方向と直角な方向に切り開き、100℃で3
0分加熱して一方向プリブレグを調製した。
Cut this in the direction perpendicular to the fiber direction and heat it at 100℃ for 3 minutes.
A unidirectional pre-reg was prepared by heating for 0 minutes.

繊維の体積含有率が63%、厚さは約0.2mmであっ
た。
The fiber volume content was 63% and the thickness was about 0.2 mm.

実施例1 厚さ10μmのPPTAフィルムを炭素繊維一方向プリ
プレグと各−層ずつホントラミネークロールで圧着して
成形用材料とした。
Example 1 A PPTA film having a thickness of 10 μm was bonded to a carbon fiber unidirectional prepreg layer by layer using a real laminate roll to obtain a molding material.

これを150mmX150mmの大きさに切り出し18
N積層し、オートクレーブ中で、140℃で3時間、4
kg/cIIIの窒素圧下におき硬化成形し、厚さ約3
11II11の平板を得た。
Cut this into a size of 150mm x 150mm 18
N layered and in an autoclave at 140°C for 3 hours, 4
Cured and molded under nitrogen pressure of kg/cIII, with a thickness of approximately 3
11II11 plates were obtained.

この平板から幅1000皿、長さ150圓の0゜曲げ試
験片を切り出し、島津製作所製万能試験機AC−10T
Aで曲げ破壊強度を測定した。
A 0° bending test piece with a width of 1,000 plates and a length of 150 mm was cut out from this flat plate, and was tested using a universal testing machine AC-10 manufactured by Shimadzu Corporation.
Bending fracture strength was measured in A.

破壊した試験片は2つに折れたが飛散はしなかった。曲
げ破壊強度を第2表に示す。
The destroyed test piece broke in two, but did not scatter. The bending fracture strength is shown in Table 2.

実施例2 炭素繊維プリプレグを150mmX150■の大きさに
切り出し10層積層し、その両側に予め、”7714エ
ポキシを10μmの厚さで塗布しBステージ化した25
μmのPPTAフィルムを各4層ずつ、ラミネークロー
ルで圧着し、サンドインチ型の成形用材料とした。
Example 2 Carbon fiber prepreg was cut out to a size of 150 mm x 150 cm and 10 layers were laminated, and both sides of the prepreg were pre-coated with ``7714 epoxy to a thickness of 10 μm to form a B stage.
Four layers of PPTA films each having a thickness of 1.5 μm were pressed together using a lamination roll to obtain a sandwich-type molding material.

これを実施例1と同じ条件下に硬化成形し、約2鴫厚の
平板を得、幅12.7 mm、長さ100mmの0°曲
げ試験片を切り出した。
This was cured and molded under the same conditions as in Example 1 to obtain a flat plate with a thickness of about 2 mm, and a 0° bending test piece with a width of 12.7 mm and a length of 100 mm was cut out.

曲げ破壊後の試験片は、くの字に曲がったものの破断は
しなかった。曲げ破壊強度を第2表に示す。
The test piece after the bending fracture was bent in a dogleg shape but did not break. The bending fracture strength is shown in Table 2.

比較例1 炭素繊維プリプレグを150mmX150mmにカット
し19層積層し、実施例1と同じ条件下にオートクレー
ブ成形し、平板を得、0°曲げ試験に供した。
Comparative Example 1 Carbon fiber prepreg was cut into 150 mm x 150 mm, 19 layers were laminated, and autoclaved under the same conditions as in Example 1 to obtain a flat plate, which was subjected to a 0° bending test.

曲げ破壊した試験は完全に破断し周囲に飛散した。曲げ
破壊強度を第2表に示す。
In the test that caused bending failure, it completely broke and was scattered around. The bending fracture strength is shown in Table 2.

実施例3 テフロンフィルムを巻いて径91Tl111としたステ
ンレスの円柱状金型に、炭素繊維プリプレグを繊維軸が
長さ方向と一致する様に4層捲回した後、更に実施例2
と同様のエポキシ塗工PPTAフィルムを4層または1
.0層捲回し、金型を除去して円筒状の成形用材料2種
を得た。
Example 3 After winding four layers of carbon fiber prepreg in a stainless steel cylindrical mold with a diameter of 91Tl111 by wrapping a Teflon film so that the fiber axis coincides with the length direction, Example 2
4 layers or 1 layer of epoxy-coated PPTA film similar to
.. After 0-layer winding, the mold was removed to obtain two kinds of cylindrical molding materials.

これにテフロンフィルムを巻き付は内径12mmのステ
ンレス管に押し込み、エアバッグで内側から加圧(4k
g/C1a)しつつ140゛C×2時間加熱硬化して、
内径約10mm、肉厚約1mmの管を得た。
Wrapping a Teflon film around this, we pushed it into a stainless steel tube with an inner diameter of 12 mm, and then pressurized it from the inside with an air bag (4k
g/C1a) and heat curing at 140°C for 2 hours.
A tube with an inner diameter of about 10 mm and a wall thickness of about 1 mm was obtained.

これを長さ65mmに切り出し、秤量150kg −c
m(ハンマー重量3.874kg、振上げ角135度)
でアイゾツト衝撃試験を行った結果、消費エネルギーは
、第3表に示す通りとなった。
Cut this into a length of 65 mm, weighing 150 kg -c
m (hammer weight 3.874 kg, swinging angle 135 degrees)
As a result of conducting an Izot impact test, the energy consumption was as shown in Table 3.

アイゾツト衝撃試験後の試験片は、くの字に座屈し内部
の炭素繊維強化層は繊維軸に沿って破壊するものの、外
層は破壊することなく、従って鋭利な破壊面が露出する
ことはなかった。
After the Izotsu impact test, the test piece buckled in a dogleg shape and the internal carbon fiber reinforced layer broke along the fiber axis, but the outer layer did not break, so no sharp fracture surface was exposed. .

また、成形体の一部を長さ15IIII11に切り出し
、管の長さ方向と、径方向の圧縮試験を1mm1分の圧
縮速さで実施し圧縮破壊強度(軸圧縮強度及び面圧縮強
度)を測定した。
In addition, a part of the molded body was cut out to a length of 15III11, and a compression test was performed in the length direction and radial direction of the tube at a compression speed of 1 mm/min to measure the compressive fracture strength (axial compressive strength and surface compressive strength). did.

その結果を第3表に示す。The results are shown in Table 3.

比較例2 炭素繊維プリプレグのみを実施例3と同様の金型に6層
、繊維軸が長さ方向と一致する様に捲回して、成形用材
料とし実施例3と同様の条件で成形し2種の管を得た。
Comparative Example 2 Only carbon fiber prepreg was wound in 6 layers in the same mold as in Example 3 so that the fiber axis coincided with the length direction, and used as a molding material and molded under the same conditions as in Example 3. I got a tube of seeds.

アイゾツト衝撃及び圧縮試験の結果を第3表に示す。The results of the Izot impact and compression tests are shown in Table 3.

試験の際、これらの管は繊維配向方向に沿ってバラバラ
に破壊し飛散した。
During the test, these tubes broke apart and scattered along the fiber orientation direction.

比較例3 炭素繊維プリプレグのみを6層、長さ方向に対して45
度の積層角で積層して円筒状の材料を得、実施例3と同
様の条件下に成形して管を調製した。
Comparative Example 3 6 layers of carbon fiber prepreg only, 45 layers in the length direction
A cylindrical material was obtained by laminating the material at a lamination angle of 1.5 degrees, and the material was molded under the same conditions as in Example 3 to prepare a tube.

アイゾツト衝撃及び圧縮試験の結果を第3表に示す。The results of the Izot impact and compression tests are shown in Table 3.

試験により管は2つに破壊し、炭素繊維の鋭利な破壊面
が露出した。
During the test, the tube broke in two, exposing the sharp broken surface of the carbon fiber.

(発明の効果) 本発明の成形用材料は、強化用繊維と共に引張強度・弾
性率が極めて大きく、耐熱性の優れたフィルム層を一体
化させて使用し、これによって成形した複合材料は、優
秀な機械的強度を有し、且つこれまでにない高い耐衝撃
性を有するという極めて優れた効果を示すものである。
(Effects of the Invention) The molding material of the present invention uses reinforcing fibers in combination with a film layer that has extremely high tensile strength and elastic modulus and excellent heat resistance, and the composite material molded using this is excellent. This material has excellent mechanical strength and unprecedented impact resistance.

また、極めて手間と技術を要するアングルプライ積層に
よる機械物性の等力比効果も容易に達成され、工業的製
造において大きな意義を有するものである。
In addition, the isoforce ratio effect on mechanical properties can be easily achieved through angle ply lamination, which requires a great deal of effort and skill, and is of great significance in industrial manufacturing.

従って本発明の成形用材料は、これらの特徴を活かして
様々の形状に賦形することにより、例えばゴルフクラブ
シャフトやテニスラケットフレーム等スポーツやレジャ
ーの分野から航空機の構造部材等航空宇宙分野において
も極めて好ましく利用される。
Therefore, the molding material of the present invention can be formed into various shapes by taking advantage of these characteristics, and can be used in the field of sports and leisure, such as golf club shafts and tennis racket frames, as well as in the aerospace field, such as structural members of aircraft. Very preferably used.

特許出願人 旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 融点又は分解点が300℃以上である有機系重合体から
実質的になり、35kg/mm^2以上の引張強度およ
び700kg/mm^2以上の引張弾性率を有するフィ
ルム層と繊維強化熱硬化性樹脂層とを積層してなる成形
用の熱硬化性樹脂材料。
A fiber-reinforced thermosetting film layer consisting essentially of an organic polymer having a melting point or decomposition point of 300°C or higher and having a tensile strength of 35 kg/mm^2 or higher and a tensile modulus of 700 kg/mm^2 or higher. A thermosetting resin material for molding made by laminating resin layers.
JP1097595A 1989-01-25 1989-04-19 Molding material Expired - Fee Related JP2882638B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP1097595A JP2882638B2 (en) 1989-04-19 1989-04-19 Molding material
CA 2026113 CA2026113C (en) 1989-01-25 1990-01-25 Prepreg, composite molded body, and method of manufacture of the composite molded body
KR1019900702133A KR930003894B1 (en) 1989-01-25 1990-01-25 New prepreg and composite molding and production of composite molding
PCT/JP1990/000085 WO1990008802A1 (en) 1989-01-25 1990-01-25 New prepreg and composite molding, and production of composite molding
DE69032210T DE69032210D1 (en) 1989-01-25 1990-01-25 PRE-IMPREGNATED COMPOSITE MOLDS AND PRODUCTION OF A COMPOSITE MOLD
EP90902370A EP0541795B1 (en) 1989-01-25 1990-01-25 New prepreg and composite molding, and production of composite molding
TW079100742A TW205053B (en) 1989-01-25 1990-02-02
US08/034,171 US5597631A (en) 1989-01-25 1993-02-12 Prepreg, composite molding body, and method of manufacture of the composite molded body
US08/709,188 US5770313A (en) 1989-01-25 1996-09-06 Prepreg, composite molded body and method of manufacture of the composite molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1097595A JP2882638B2 (en) 1989-04-19 1989-04-19 Molding material

Publications (2)

Publication Number Publication Date
JPH02276832A true JPH02276832A (en) 1990-11-13
JP2882638B2 JP2882638B2 (en) 1999-04-12

Family

ID=14196590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1097595A Expired - Fee Related JP2882638B2 (en) 1989-01-25 1989-04-19 Molding material

Country Status (1)

Country Link
JP (1) JP2882638B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688703A (en) * 1995-09-05 1997-11-18 Motorola, Inc. Method of manufacturing a gate structure for a metal semiconductor field effect transistor
JP2013071846A (en) * 2011-09-28 2013-04-22 Boeing Co:The Material placement system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717886A (en) * 1980-07-07 1982-01-29 Hitachi Ltd Electronic timer
JPS62234233A (en) * 1986-04-04 1987-10-14 Konika Corp Magnetic recording medium having aramide resin substrate
JPS6397635A (en) * 1986-10-14 1988-04-28 Ube Ind Ltd Fiber-reinforced epoxy resin prepreg having interleaf
JPS64129A (en) * 1987-02-27 1989-01-05 Ube Ind Ltd Interleaf-containing, fiber-reinforced epoxy resin prepreg material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717886A (en) * 1980-07-07 1982-01-29 Hitachi Ltd Electronic timer
JPS62234233A (en) * 1986-04-04 1987-10-14 Konika Corp Magnetic recording medium having aramide resin substrate
JPS6397635A (en) * 1986-10-14 1988-04-28 Ube Ind Ltd Fiber-reinforced epoxy resin prepreg having interleaf
JPS64129A (en) * 1987-02-27 1989-01-05 Ube Ind Ltd Interleaf-containing, fiber-reinforced epoxy resin prepreg material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688703A (en) * 1995-09-05 1997-11-18 Motorola, Inc. Method of manufacturing a gate structure for a metal semiconductor field effect transistor
JP2013071846A (en) * 2011-09-28 2013-04-22 Boeing Co:The Material placement system
US10137648B2 (en) 2011-09-28 2018-11-27 The Boeing Company Material placement system

Also Published As

Publication number Publication date
JP2882638B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
KR930003894B1 (en) New prepreg and composite molding and production of composite molding
US3691000A (en) Glass fiber reinforced composite article exhibiting enhanced longitudinal tensile and compressive moduli
CA2566447A1 (en) Self-adhesive prepreg
CN109196026B (en) Prepreg and method for producing same
JP2010229211A (en) Prepreg for fiber reinforced composite material and molded product thereof
KR101155765B1 (en) Composite of aramid and Method for manufacturing tComposite of aramid and Method for manufacturing the same he same
JP2016520446A (en) High-strength fiber composite material, method for producing the same, and helmet using the same
US20160115300A1 (en) Thermoplastic composite material comprising a reinforcing component and a poly(phenylene) polymer and process to make said thermoplastic composite material
CN110461919B (en) Method for producing fiber-reinforced composite material
JP4736246B2 (en) Prepreg
CN111989359B (en) Prepreg, laminate, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
JPH02276832A (en) Molding material
JP2892061B2 (en) Laminate
EP0560922A4 (en) Matrix composites in which the matrix contains polybenzoxazole or polybenzothiazole
JP2019065111A (en) Epoxy resin composition, prepreg, and carbon fiber reinforced composite material
JP2744637B2 (en) Composite material
JP2805633B2 (en) Laminated molding
CN111448244B (en) Semi-preg with thermoplastic toughened linear phenolic-based epoxy resin matrix
JP2004346190A (en) Prepreg and fiber reinforced resin composite
KR20170004633A (en) Complex materials having excellent thermal and excellent moldability and Preparing method thereof
JP2710383B2 (en) Thermosetting resin composition
JPH03186278A (en) Pole for pole jump
JPH03161321A (en) Manufacture of laminated pipe
WO2023053834A1 (en) Epoxy resin composition, prepreg, fiber-reinforced composite material, composite structure, impact-resistant member, and damping member
RU2661575C1 (en) Polymer composition for manufacturing honeycomb panels

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090205

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees