WO2023053834A1 - Epoxy resin composition, prepreg, fiber-reinforced composite material, composite structure, impact-resistant member, and damping member - Google Patents

Epoxy resin composition, prepreg, fiber-reinforced composite material, composite structure, impact-resistant member, and damping member Download PDF

Info

Publication number
WO2023053834A1
WO2023053834A1 PCT/JP2022/032775 JP2022032775W WO2023053834A1 WO 2023053834 A1 WO2023053834 A1 WO 2023053834A1 JP 2022032775 W JP2022032775 W JP 2022032775W WO 2023053834 A1 WO2023053834 A1 WO 2023053834A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
fiber
resin composition
formula
composite material
Prior art date
Application number
PCT/JP2022/032775
Other languages
French (fr)
Japanese (ja)
Inventor
三好雅幸
平野啓之
本間雅登
中山義文
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2023053834A1 publication Critical patent/WO2023053834A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof

Definitions

  • the present invention provides an epoxy resin composition preferably used as a matrix resin for a fiber-reinforced composite material, a prepreg and a fiber-reinforced composite material using this as a matrix resin, and a composite structure and an impact-resistant member using the fiber-reinforced composite material. and damping members.
  • epoxy resin is suitably used as a matrix resin for fiber-reinforced composite materials that are combined with reinforcing fibers such as carbon fiber, glass fiber, and aramid fiber.
  • a sheet-like intermediate base material in which reinforcing fibers are impregnated with epoxy resin, is commonly used for the production of fiber-reinforced composite materials. Molded products are obtained by laminating prepregs and then heating and curing the epoxy resin, and various characteristics can be expressed by prepreg lamination design, so it is applied to various fields such as aircraft, automobiles, sports and medicine.
  • Rubber-like polymers and thermoplastic elastomers are known as matrix resins for fiber-reinforced composite materials suitable for applications requiring such flexibility and impact resistance (Patent Document 1).
  • Patent Document 1 Rubber-like polymers and thermoplastic elastomers have high resin viscosities, there has been a demand for improved impregnation of reinforcing fibers.
  • Patent Documents 2 to 5 low-viscosity flexible epoxy resin compositions are sometimes used as such matrix resins.
  • the epoxy resin compositions described in Patent Documents 2 to 5 sacrifice heat resistance in order to increase flexibility. Therefore, the glass transition temperature of the epoxy resin composition is greatly exceeded when demolding after molding, and the shape cannot be maintained, resulting in poor demoldability after molding, which affects process stability during mass production.
  • an object of the present invention is to overcome the drawbacks of the prior art and to provide an epoxy resin composition that has excellent flexibility, sufficient heat resistance, and excellent releasability.
  • a further object of the present invention is to provide a prepreg and a fiber-reinforced composite material with excellent productivity by using the epoxy resin composition as a matrix resin.
  • the present invention is as follows. [1] An epoxy resin composition containing the following components [A], [B], and [C].
  • [C]: Aromatic urea The epoxy resin composition according to [1], containing 45 to 100 parts by mass of the epoxy resin of component [A] based on 100 parts by mass of the total epoxy resin. [3] The epoxy resin composition according to [1] or [2], wherein the cured product has a glass transition temperature of 80°C or higher. [4] The epoxy resin according to any one of [1] to [3], including both an epoxy resin having a structure of formula (I) and an epoxy resin having a structure of formula (II) as component [A]. Composition.
  • the structure has at least one shape selected from a spherical shape, a hemispherical shape, an eggplant shape, a cylinder, a cylinder, a cone, a prism, a prism, and a pyramid, and is integrated with [14] or [15] Composite structure as described.
  • an epoxy resin composition that has excellent flexibility, sufficient heat resistance, and excellent releasability.
  • the epoxy resin composition of the present invention contains component [A]: epoxy resin, component [B]: dicyandiamide, and component [C]: aromatic urea compound as essential components. Each component will be described below.
  • Component [A] used in the present invention is an epoxy resin having a structure of formula (I) or formula (II).
  • “including an epoxy resin having a structure of formula (I) or formula (II)” means an epoxy resin having a structure of formula (I) and an epoxy resin having a structure of formula (II). (meaning it contains one or both of the epoxy resins.)
  • R 1 and R 2 represent a hydrogen atom, a methyl group, or an ethyl group.
  • X represents a divalent aliphatic group containing 6 or more carbon atoms.
  • n is 1 to 15 represents an integer of.
  • the average epoxy equivalent of formula (I) is 300 to 420.
  • R 3 and R 4 represent a hydrogen atom, a methyl group, or an ethyl group, and n represents an integer of 1 to 10.
  • the epoxy resin having the structure of formula (I) is simply referred to as “the epoxy resin of formula (I)” and the like.
  • the average epoxy equivalent of the epoxy resin of formula (I) is 300-420.
  • an epoxy resin composition having excellent balance between flexibility and heat resistance and excellent demoldability can be obtained.
  • R 1 and R 2 in the epoxy resin of formula (I) are a hydrogen atom, a methyl group, or an ethyl group
  • an epoxy resin composition having an excellent balance between flexibility and heat resistance can be obtained.
  • X in formula (I) is a divalent aliphatic group containing 6 or more carbon atoms, and n is an integer of 1 to 15, the epoxy resin composition has an excellent balance of flexibility and heat resistance. you get something.
  • R 3 and R 4 in the epoxy resin of formula (II) are a hydrogen atom, a methyl group, or an ethyl group, an epoxy resin composition having an excellent balance between flexibility and heat resistance can be obtained. Further, when n in the epoxy resin of formula (II) is an integer of 1 to 10, an epoxy resin composition having an excellent balance of flexibility and heat resistance can be obtained.
  • the component [A] epoxy resin used in the present invention is preferably contained in an amount of 45 to 100 parts by mass based on 100 parts by mass of the total epoxy resin. By including a predetermined amount of these epoxy resins, it is possible to obtain an epoxy resin composition which has an excellent balance between flexibility and heat resistance, and which is also excellent in releasability.
  • the epoxy resin composition of the present invention preferably contains both an epoxy resin having the structure of formula (I) and an epoxy resin having the structure of formula (II) as component [A].
  • the weight mixing ratio of the epoxy resin having the structure of formula (I) and the epoxy resin having the structure of formula (II) as component [A] is 3:2 to 5: 1 is preferred. By setting the weight blending ratio within this range, an epoxy resin composition having a better balance between flexibility and heat resistance can be obtained.
  • component [A] Commercially available products of component [A] include EXA-4850-1000 (manufactured by DIC Corporation), EXA-4816 (manufactured by DIC Corporation), LCE-2615 (manufactured by Nippon Kayaku Co., Ltd.), and the like. .
  • the cured epoxy resin composition of the present invention preferably has a glass transition temperature of 80°C or higher.
  • the glass transition temperature of the cured product By setting the glass transition temperature of the cured product to 80° C. or higher, it is possible to obtain an epoxy resin cured product with a smooth surface without causing deformation or warping during demolding.
  • the cured epoxy resin used for measuring the glass transition temperature shall be prepared by the method described in the examples below.
  • Epoxy resins that can be used in combination with the epoxy resin of component [A] include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, novolak type epoxy resin, and fluorene.
  • Epoxy resins having skeletons epoxy resins made from copolymers of phenol compounds and dicyclopentadiene, glycidyl ether type epoxy resins such as diglycidylresorcinol, tetrakis(glycidyloxyphenyl)ethane, tris(glycidyloxyphenyl)methane , tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylaminocresol, tetraglycidylxylene diamine, glycidylamine type epoxy resins, polypropylene glycol type epoxy resins, polyethylene glycol type epoxy resins, and long-chain aliphatic epoxy resins. . Epoxy resins other than component [A] may be used alone or in combination.
  • Component [B] in the present invention is dicyandiamide.
  • Dicyandiamide is excellent in that it imparts high mechanical properties and heat resistance to cured resins, and is widely used as a curing agent for epoxy resins.
  • Commercial products of such dicyandiamide include DICY7 and DICY15 (manufactured by Mitsubishi Chemical Corporation).
  • Blending dicyandiamide [B] as a powder into the epoxy resin composition is preferable from the viewpoint of storage stability at room temperature and viscosity stability during prepreg production. Further, it is preferable to disperse dicyandiamide [B] in a part of the epoxy resin of component [A] in advance using a triple roll or the like, in order to make the epoxy resin composition uniform and to improve the physical properties of the cured product. .
  • the average particle size is preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less.
  • the average particle size as used herein means a volume average, and can be measured by a laser diffraction particle size distribution analyzer.
  • Component [C] aromatic urea compound
  • the epoxy resin composition of the present invention must contain an aromatic urea compound as component [C].
  • Component [C] functions as a curing accelerator, and can shorten the curing time when used in combination with component [B].
  • aromatic urea compounds for component [C] include 3-(3,4-dichlorophenyl)-1,1-dimethylurea, 3-(4-chlorophenyl)-1,1-dimethylurea, and phenyldimethylurea. , toluenebisdimethylurea, and the like.
  • aromatic urea compounds include DCMU99 (manufactured by Hodogaya Chemical Industry Co., Ltd.), “Omicure (registered trademark)” 24 (manufactured by PTI Japan Co., Ltd.), “Omicure (registered trademark) )”94 (manufactured by PTI Japan Co., Ltd.), “Dyhard (registered trademark)” UR505 (4,4′-methylenebis(phenyldimethylurea, manufactured by AlzChem) and the like can be used.
  • the epoxy resin composition of the present invention is used for the purpose of adjusting the viscoelasticity, improving the tag and drape properties of the prepreg, and improving the mechanical properties and toughness of the resin composition, as long as the effects of the present invention are not lost.
  • It may contain thermoplastic resin, rubber particles, inorganic particles such as silica, nanoparticles such as CNT and graphene, and the like.
  • thermoplastic resins soluble in epoxy resins include polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, polyvinyl alcohol, phenoxy resins, polyamides, polyimides, polyvinylpyrrolidone, polysulfones, and polyethersulfones.
  • rubber particles include crosslinked rubber particles and core-shell rubber particles obtained by graft-polymerizing a different polymer on the surface of crosslinked rubber particles.
  • kneading may be carried out using a machine such as a kneader, planetary mixer, three-roll and twin-screw extruder. You can mix by hand using a spatula or the like.
  • the prepreg of the present invention contains at least one selected from the group consisting of carbon fibers, glass fibers, and aramid fibers as reinforcing fibers in the epoxy resin composition. Further, the reinforcing fibers may be surface-treated.
  • the surface treatment includes, in addition to metal adhesion treatment as a conductor, treatment with a coupling agent, treatment with a sizing agent, treatment with a binding agent, adhesion treatment with additives, and the like.
  • one type of these reinforcing fibers may be used alone, or two or more types may be used in combination.
  • carbon fibers such as polyacrylonitrile (PAN)-based, pitch-based, and rayon-based carbon fibers, which are excellent in specific strength and specific rigidity, are preferably used from the viewpoint of weight reduction effect.
  • glass fibers are preferably used, and it is particularly preferable to use carbon fibers and glass fibers in combination from the viewpoint of the balance between mechanical properties and economic efficiency.
  • aramid fibers are preferably used, and in particular, carbon fibers and aramid fibers are used in combination from the viewpoint of the balance between mechanical properties and impact resistance. is preferred.
  • reinforcing fibers coated with a metal such as nickel, copper, or ytterbium can also be used.
  • a metal such as nickel, copper, or ytterbium
  • PAN-based carbon fibers which are excellent in mechanical properties such as strength and elastic modulus, can be used more preferably.
  • the prepreg of the present invention can be obtained by impregnating a reinforcing fiber base material with the epoxy resin composition of the present invention.
  • the impregnation method include a hot melt method (dry method) and the like.
  • the hot-melt method is a method of directly impregnating reinforcing fibers with an epoxy resin composition whose viscosity has been reduced by heating, or a film is prepared by coating an epoxy resin composition on release paper or the like, and then both sides of the reinforcing fibers.
  • Another method is to stack the films from one side and impregnate the reinforcing fibers with the resin by applying heat and pressure.
  • a method for molding the prepreg for example, a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, etc. can be used as appropriate.
  • the reinforcing fibers contained in the prepreg of the present invention may be discontinuous fibers.
  • discontinuous fibers By using discontinuous fibers as the reinforcing fibers, it becomes easy to form a complex shape when the sheet-like prepreg is molded by applying an external force.
  • the reinforcing fibers are preferably bundled and randomly dispersed in the prepreg. By doing so, when the prepreg is molded by applying an external force, molding into a complicated shape is facilitated.
  • the reinforcing fibers are substantially monofilament-like and randomly dispersed in the prepreg.
  • the number of reinforcing fibers existing as fiber bundles in the prepreg is reduced, so the weak points at the fiber bundle ends of the reinforcing fibers can be minimized, resulting in excellent reinforcement efficiency and isotropy.
  • substantially monofilament-like means that the reinforcing fiber single yarn exists in fine fineness strands of less than 500 strands.
  • the reinforcing fibers are in the form of monofilaments, that is, they are dispersed so as to exist as single yarns, and it is even more preferable that the monofilament-like single fibers are randomly dispersed.
  • the reinforcing fibers are discontinuous fibers, the reinforcing fibers may be in the form of a non-woven fabric.
  • a fiber-reinforced composite material that is one aspect of the present invention is a fiber-reinforced composite material in which a cured product of the epoxy resin composition of the present invention (hereinafter referred to as "cured epoxy resin product of the present invention") is used as a matrix resin. Specifically, it is obtained by curing the prepreg of the present invention described above. More specifically, prepregs made of the epoxy resin composition of the present invention are laminated as necessary, and then cured by heating to obtain a fiber-reinforced composite material containing the cured epoxy resin of the present invention as a matrix resin. be able to.
  • the fiber-reinforced composite material of the present invention is preferably a porous structure having voids inside. Typically, it is a porous structure having voids formed by overlapping or intersecting discontinuous reinforcing fibers coated with a cured epoxy resin.
  • a porous structure such a fiber-reinforced composite material is referred to as a "porous structure" in the present specification.
  • the voids of the porous structure are formed, for example, by raising the reinforcing fibers due to the low viscosity of the epoxy resin component accompanying heating when heating the prepreg in which the reinforcing fibers are pre-impregnated with the epoxy resin composition. . This is based on the property that, in the prepreg, the internal reinforcing fibers that have been in a compressed state under pressure are raised by the raising force derived from their elastic modulus.
  • the reinforcing fibers have a mass-average fiber length of 1 to 15 mm, because the reinforcing efficiency of the reinforcing fibers can be increased and excellent mechanical properties can be obtained.
  • the mass-average fiber length of the reinforcing fibers is less than 1 mm, it becomes difficult to efficiently form the voids described above, and the density tends to increase.
  • the mass average fiber length of the reinforcing fibers is longer than 15 mm, the reinforcing fibers tend to bend due to their own weight in the porous structure, which may hinder the development of mechanical properties.
  • the reinforcing fiber strands and/or the intersections of the monofilaments that are in contact with each other are preferably coated with the epoxy resin cured product of the present invention, and the coating thickness is 1 ⁇ m or more and 15 ⁇ m or less.
  • the coating thickness is 1 ⁇ m or more and 15 ⁇ m or less.
  • the density of the porous structure is preferably 0.01 g/cm 3 or more and 0.9 g/cm 3 or less.
  • the density ⁇ is 0.9 g/cm 3 or less, lightness can be ensured, and when the density is 0.01 g/cm 3 or more, sufficient mechanical strength can be maintained.
  • the density of the porous structure of the present invention is 0.2 to 0.5 g/cm 3 .
  • the porous structure preferably has a tear strength of 3.0 N/m or more in a trouser type tear test according to JIS-K6252-1 (2015). There is a correlation between tear strength and impact resistance, and a tear strength of 3.0 N/m or more indicates excellent impact resistance.
  • the composite structure of the present invention is preferably one in which the fiber-reinforced composite material of the present invention is arranged and integrated over 25% or more of the surface area of the structure.
  • the arrangement relationship between the fiber-reinforced composite material and the structure in the composite structure in the present invention, there is no particular limitation as long as the fiber-reinforced composite material is arranged on at least one surface of the structure.
  • a canape structure in which fiber reinforced composite materials are placed only on one surface side of the structure, a structure in which one surface side and the other surface side of the structure are sandwiched between fiber reinforced composite materials, or a structure in which fiber reinforced composite materials are used
  • a sandwich structure which is a sandwiching structure, can be adopted.
  • a sandwich structure which is a structure in which a fiber-reinforced composite material is sandwiched between structures. Furthermore, a sandwich structure is preferable from the viewpoint of a high effect of improving impact resistance and vibration damping properties, and a canape structure is preferable from the viewpoint of achieving both impact resistance and vibration damping properties and light weight.
  • composite structures made of canape structures can be suitably used for flying objects and drones, where light weight is important, and can be easily imparted with excellent impact resistance, so that the composite structure can withstand falls and collisions. It is preferable because it is possible to prevent a failure such as breaking the body.
  • the composite structure of the present invention has at least one shape selected from a spherical shape, a hemispherical shape, an eggplant shape, a cylinder, a cylinder, a cone, a prism, a prism, and a pyramid.
  • the structure has at least one shape selected from spherical, hemispherical, cylindrical, columnar, prismatic, and prismatic. These shapes enable continuous molding of the structure.
  • a hemispherical shape, a cylindrical shape, and a rectangular shape are preferable for use in flying objects and drones.
  • the fiber-reinforced composite material is preferably arranged on 25% or more of the surface area of the structure, and the fiber-reinforced composite material is arranged on 40% or more of the surface area of the structure. is more preferred. Such arrangement makes it possible to easily obtain a composite structure having excellent impact resistance and vibration damping properties.
  • Materials for the structure in the present invention include steel, stainless steel, aluminum alloys, magnesium alloys, copper alloys, titanium alloys, glass, ceramics, thermoplastic resins, GFRP, and CFRP.
  • steel, magnesium alloys, aluminum alloys, and CFRP are preferable from the viewpoint of improving impact resistance and vibration damping properties.
  • the impact-resistant member of the present invention preferably uses the fiber-reinforced composite material of the present invention or a composite structure having this material arranged on the surface.
  • the fiber-reinforced composite material of the present invention has the effect of attenuating impact, and can maintain the shape of the composite structure without being damaged even when an impact that would otherwise damage the structure by itself is applied.
  • the damping member of the present invention preferably uses the fiber-reinforced composite material of the present invention or a composite structure having this material arranged on the surface.
  • the fiber-reinforced composite material of the present invention has the effect of damping vibration, and by arranging it, it can be preferably used for damping applications.
  • the fiber-reinforced composite material which is one aspect of the present invention, is preferably used for sports, aerospace and general industrial applications. More specifically, in sports applications, it is preferably used for golf shafts, fishing rods, shoe soles, tennis and badminton rackets, hockey sticks, and ski poles. In addition, in aerospace applications, it is preferably used for aircraft primary structural material applications such as flying objects, UAM (Urban Air Mobility), drones, main wings, tail wings and floor beams, and secondary structural material applications such as interior materials. Furthermore, in general industrial applications, it is preferably used for structural materials such as automobiles, bicycles, windmills, ships, and railroad vehicles, and electronic device members such as IC trays and notebook computer housings.
  • aircraft primary structural material applications such as flying objects, UAM (Urban Air Mobility), drones, main wings, tail wings and floor beams
  • secondary structural material applications such as interior materials.
  • structural materials such as automobiles, bicycles, windmills, ships, and railroad vehicles, and electronic device members such as IC
  • a continuous carbon fiber having a total of 12,000 single filaments was obtained by subjecting a copolymer containing PAN as a main component to spinning, baking treatment, and surface oxidation treatment.
  • the properties of this continuous carbon fiber were as follows. Average fiber diameter: 7 ⁇ m Mass per unit length: 0.8g/m Specific gravity: 1.8.
  • ⁇ Method for preparing epoxy resin composition Predetermined amounts of components other than [B] dicyandiamide and [C] aromatic urea were placed in a stainless steel beaker, heated to 40 to 150° C., and appropriately kneaded until each component was dissolved. Separately, a predetermined amount of [A] (eg, "EPICLON (registered trademark)" EXA-4816) and [B] dicyandiamide are added to a polyethylene cup, and the mixture is passed through the rolls twice using a triple roll to A master was created.
  • [A] eg, "EPICLON (registered trademark)" EXA-4816
  • the main component prepared above and the dicyandiamide master were kneaded at 60°C or less so as to have a predetermined mixing ratio, and finally [C] aromatic urea was added and kneaded at 60°C for 30 minutes to obtain an epoxy resin composition. got stuff
  • the epoxy resin composition was defoamed in a vacuum, and then poured into a mold set to have a thickness of 2 mm with a "Teflon (registered trademark)" spacer.
  • the temperature was raised from 30° C. to 150° C. by 2.5° C. per minute in a hot air oven, and then held at 150° C. for 90 minutes to cure the epoxy resin composition.
  • the temperature was lowered to 30° C. and removed from the mold to prepare a resin cured product having a thickness of 2 mm.
  • ⁇ Method for measuring glass transition temperature> A test piece with a width of 12.7 mm and a length of 45 mm was cut out from the 2 mm-thick resin cured product obtained by the above ⁇ Method for producing cured resin product>, and a viscoelasticity measuring device (ARES, TA Instruments) DMA measurement was performed in a temperature range of -15 to 250°C under the conditions of a torsional vibration frequency of 1.0 Hz and a heating rate of 5.0°C/min.
  • the glass transition temperature (Tg) was taken as the temperature at the intersection of the tangent line in the glass state and the tangent line in the transition state in the storage modulus G' curve.
  • the demoldability evaluation method of the epoxy resin composition was as follows: The epoxy resin composition obtained by the above method was cast into a fluororubber O-ring (manufactured by ESCO) having an inner diameter of 3 cm and a thickness of 4 mm, and heated at 150°C for 90 minutes. After curing, the epoxy resin cured product released from the mold was visually evaluated according to the following criteria. The surface is smooth, and there is no deformation or warping in the epoxy resin cured product S The surface is almost smooth, but there are slight deformations and warps...A The surface is almost smooth, but there are some deformations and warps ... B Remarkable deformation, warpage and cracking in cured epoxy resin...C.
  • ⁇ Method for producing carbon fiber web The carbon fibers were cut to a length of 6.5 mm with a cartridge cutter to obtain chopped carbon fibers. A dispersion having a concentration of 0.1% by mass consisting of water and a surfactant (polyoxyethylene lauryl ether (trade name), manufactured by Nacalai Tesque Co., Ltd.) was prepared, and this dispersion and the chopped carbon fiber were used. , a papermaking base material was manufactured with a papermaking base material manufacturing apparatus. The manufacturing apparatus includes a cylindrical container with a diameter of 1000 mm having an opening cock at the bottom of the container serving as a dispersing tank, and a linear transport section (tilt angle of 30 degrees) connecting the dispersing tank and the papermaking tank.
  • a stirrer is attached to the opening on the upper surface of the dispersion tank, and the chopped carbon fibers and the dispersion liquid can be introduced through the opening.
  • the papermaking tank is a tank provided with a mesh conveyor having a papermaking surface with a width of 500 mm at the bottom, and a conveyor capable of transporting a carbon fiber base material (papermaking base material) is connected to the mesh conveyor.
  • the mass per unit area was adjusted by adjusting the carbon fiber concentration in the dispersion. If necessary, about 5% by mass of polyvinyl alcohol aqueous solution (Kuraray Poval, manufactured by Kuraray Co., Ltd.) is applied as a binder to the paper-made carbon fiber substrate, and dried in a drying oven at 140° C. for 1 hour to form a carbon fiber web. Obtained.
  • the mass per unit area of the carbon fiber web was 50 g/m 2 .
  • a prepreg sheet was obtained by impregnating a carbon fiber web (fiber length: 6.5 mm, basis weight: 50 g/m 2 ) with the epoxy resin composition prepared according to ⁇ Method for preparing epoxy resin composition>. The obtained sheet was cut into a length of 200 mm and a width of 200 mm. Then, a porous structure was obtained through the following steps (1) to (5). (1) Place the prepreg sheet in a press molding mold cavity preheated to 60° C. and close the mold. (2) A pressure of 5 MPa is applied to the mold and held for an additional 300 seconds.
  • step (2) the mold cavity is opened and metal spacers are inserted into the ends thereof to adjust the thickness of the resulting porous structure to 0.8 mm.
  • step (3) the mold cavity is closed again, and the temperature of the mold is raised to 150° C. while the pressure is maintained, and curing is performed for 90 minutes.
  • step (3) Open the mold and take out the porous structure.
  • the density of the resulting porous structure was 0.2-0.5 g/cm 3 .
  • Vfi fiber volume content
  • JIS K7075 testing method for fiber content and void content of carbon fiber reinforced plastics, 1991.
  • Vfi Va/Vb ⁇ 100 (%)
  • Va fiber volume in the porous structure (mm 3 )
  • Vb Volume of porous structure (mm 3 ).
  • Example 1 [A] 100 parts by mass of "EPICLON (registered trademark)" EXA-4816 as an epoxy resin, [B] 5.2 parts by mass of DICY7 as dicyandiamide, and [C] "Omicure (registered trademark)" as an aromatic urea compound Using 3.1 parts by mass of 24, an epoxy resin composition was prepared according to the above ⁇ Method for preparing epoxy resin composition>. Using this epoxy resin composition, an epoxy resin cured product was prepared according to ⁇ Method for preparing cured epoxy resin>, and measured according to ⁇ Method for measuring glass transition temperature>. showed good heat resistance.
  • Example 2 An epoxy resin composition, a cured epoxy resin and a porous structure were produced in the same manner as in Example 1, except that the resin composition was changed as shown in Table 1. The evaluation results are shown in Table 1.
  • Epoxy resin composition was prepared in the same manner as in Example 1 except that "EPICLON (registered trademark)" EXA-4850-150 and 100 parts of the epoxy resin represented by the formula (I) having an average epoxy equivalent weight of 450 were used as the epoxy resin. A product and an epoxy resin cured product were prepared. The resin composition and evaluation results are shown in Table 2. The resulting resin composition had good flexibility, but was insufficient in heat resistance and releasability.
  • Example 2 An epoxy resin composition and an epoxy resin cured product were prepared in the same manner as in Example 1, except that "Denacol (registered trademark)" EX-991L and 100 parts of an epoxy resin that is a long-chain aliphatic epoxy resin were used as the epoxy resin. made.
  • the resin composition and evaluation results are shown in Table 2. Since the obtained resin composition was not cured, the releasability was insufficient, and the characteristics of the epoxy resin composition could not be evaluated.
  • Example 4 An epoxy resin composition, a cured epoxy resin and a porous structure were produced in the same manner as in Example 1, except that the resin composition was changed as shown in Table 2. The evaluation results are shown in Table 2. The heat resistance and releasability of the obtained resin composition were good, but the resin elongation was as low as 3.2%, which was insufficient. Moreover, the resulting porous structure had a low tear strength of 2.4 N/m and insufficient impact resistance.
  • surface is a mass part when all the epoxy resin components contained in an epoxy-resin composition are set to 100 mass parts.

Abstract

The purpose of the present invention is to provide an epoxy resin composition having adequate heat resistance and exceptional mold release properties while also having exceptional flexibility. The present invention is an epoxy resin composition including the following components [A], [B], and [C]. [A]: An epoxy resin having a structure represented by formula (I) or formula (II). (In formula (I), R1 and R2 represent a hydrogen atom, a methyl group, or an ethyl group. X represents a divalent aliphatic group including six or more carbon atoms. n represents an integer of 1-15. The average epoxy equivalent is 300-420.) (In formula (II), R3 and R4 represent a hydrogen atom, a methyl group, or an ethyl group. n represents an integer of 1-10.) [B]: Dicyandiamide. [C]: An aromatic urea.

Description

エポキシ樹脂組成物、プリプレグ、繊維強化複合材料、複合構造体、耐衝撃部材および制震部材Epoxy resin composition, prepreg, fiber reinforced composite material, composite structure, impact resistant member and vibration damping member
 本発明は、繊維強化複合材料のマトリックス樹脂として好ましく用いられるエポキシ樹脂組成物、ならびに、これをマトリックス樹脂としたプリプレグおよび繊維強化複合材料、繊維強化複合材料を用いた、複合構造体、耐衝撃部材および制震部材に関するものである。 The present invention provides an epoxy resin composition preferably used as a matrix resin for a fiber-reinforced composite material, a prepreg and a fiber-reinforced composite material using this as a matrix resin, and a composite structure and an impact-resistant member using the fiber-reinforced composite material. and damping members.
 エポキシ樹脂は、高い強度や剛性、耐熱性、接着性を活かし、炭素繊維、ガラス繊維、アラミド繊維などの強化繊維と組合せてなる繊維強化複合材料のマトリックス樹脂として好適に用いられている。 Due to its high strength, rigidity, heat resistance, and adhesiveness, epoxy resin is suitably used as a matrix resin for fiber-reinforced composite materials that are combined with reinforcing fibers such as carbon fiber, glass fiber, and aramid fiber.
 繊維強化複合材料の製造には、強化繊維にエポキシ樹脂を含浸したシート状の中間基材(プリプレグ)が汎用される。プリプレグを積層後、加熱してエポキシ樹脂を硬化する方法で成形品が得られ、プリプレグの積層設計により多彩な特性を発現できるため、航空機、自動車、スポーツや医療など、様々な分野へ応用されている。 A sheet-like intermediate base material (prepreg), in which reinforcing fibers are impregnated with epoxy resin, is commonly used for the production of fiber-reinforced composite materials. Molded products are obtained by laminating prepregs and then heating and curing the epoxy resin, and various characteristics can be expressed by prepreg lamination design, so it is applied to various fields such as aircraft, automobiles, sports and medicine. there is
 近年、繊維強化複合材料の用途展開が急速に進んでおり、強度や剛性以外に、柔軟性や耐衝撃性が必要な用途への適用も検討されている。このような柔軟性や耐衝撃性を要する用途に適した繊維強化複合材料のマトリックス樹脂としては、ゴム質重合体や熱可塑性エラストマーが知られている(特許文献1)。しかし、ゴム質重合体や熱可塑性エラストマーは樹脂粘度が高く、強化繊維への含浸性の改善が求められていた。 In recent years, the development of applications for fiber-reinforced composite materials has progressed rapidly, and applications that require flexibility and impact resistance in addition to strength and rigidity are being considered. Rubber-like polymers and thermoplastic elastomers are known as matrix resins for fiber-reinforced composite materials suitable for applications requiring such flexibility and impact resistance (Patent Document 1). However, since rubber-like polymers and thermoplastic elastomers have high resin viscosities, there has been a demand for improved impregnation of reinforcing fibers.
 そこで、このようなマトリックス樹脂として低粘度の可撓性エポキシ樹脂組成物が用いられることがある(特許文献2~5)。 Therefore, low-viscosity flexible epoxy resin compositions are sometimes used as such matrix resins (Patent Documents 2 to 5).
国際公開第2018/117188号WO2018/117188 特開2018-16699号公報JP 2018-16699 A 特開2006-274110号公報JP 2006-274110 A 特開2014-185271号公報JP 2014-185271 A 特開平9-268221号公報JP-A-9-268221
 特許文献2~5に記載されたエポキシ樹脂組成物は、柔軟性を高めるため耐熱性を犠牲にしたものであった。そのため、成形後の脱型時にエポキシ樹脂組成物のガラス転移温度を大きく超えてしまい、形状維持が出来なくなることにより、量産時のプロセス安定性に影響する成形後の脱型性が劣っていた。 The epoxy resin compositions described in Patent Documents 2 to 5 sacrifice heat resistance in order to increase flexibility. Therefore, the glass transition temperature of the epoxy resin composition is greatly exceeded when demolding after molding, and the shape cannot be maintained, resulting in poor demoldability after molding, which affects process stability during mass production.
 そこで、本発明では、かかる従来技術の欠点を克服し、優れた柔軟性を有しつつも、十分な耐熱性を備え、脱型性に優れたエポキシ樹脂組成物を提供することを課題とする。そしてさらには、該エポキシ樹脂組成物をマトリックス樹脂として用いることで、生産性に優れたプリプレグおよび繊維強化複合材料を提供することを目的とする。 Therefore, an object of the present invention is to overcome the drawbacks of the prior art and to provide an epoxy resin composition that has excellent flexibility, sufficient heat resistance, and excellent releasability. . A further object of the present invention is to provide a prepreg and a fiber-reinforced composite material with excellent productivity by using the epoxy resin composition as a matrix resin.
 本発明は以下の通りである。
[1]下記成分[A]、[B]、および[C]を含むエポキシ樹脂組成物。
The present invention is as follows.
[1] An epoxy resin composition containing the following components [A], [B], and [C].
 [A]:後述する式(I)または式(II)の構造を有するエポキシ樹脂。 [A]: An epoxy resin having a structure of formula (I) or formula (II) described later.
 [B]:ジシアンジアミド
 [C]:芳香族ウレア
[2]成分[A]のエポキシ樹脂を、全エポキシ樹脂100質量部中、45~100質量部含む、[1]に記載のエポキシ樹脂組成物。
[3]硬化物のガラス転移温度が80℃以上である、[1]または[2]に記載のエポキシ樹脂組成物。
[4]成分[A]として、式(I)の構造を有するエポキシ樹脂と式(II)の構造を有するエポキシ樹脂の両方を含む、[1]~[3]のいずれかに記載のエポキシ樹脂組成物。
[5]式(I)の構造を有するエポキシ樹脂と式(II)の構造を有するエポキシ樹脂との重量配合比率が、3:2~5:1である、[4]に記載のエポキシ樹脂組成物。
[6][1]~[5]のいずれかに記載のエポキシ樹脂組成物に、強化繊維として、炭素繊維、ガラス繊維、およびアラミド繊維からなる群より選ばれる少なくとも1種を含むプリプレグ。
[7]前記強化繊維が不連続繊維である、[6]に記載のプリプレグ。
[8]前記強化繊維が束状でランダムに分散している[7]に記載のプリプレグ。
[9]前記強化繊維が略モノフィラメント状でランダムに分散している[7]に記載のプリプレグ。
[10][6]~[9]のいずれかに記載のプリプレグを硬化してなる繊維強化複合材料。
[11]内部に空隙を有する多孔質構造体である、[10]に記載の繊維強化複合材料。
[12]密度が0.01g/cm以上0.9g/cm以下である、[11]に記載の繊維強化複合材料。
[13]JIS-K6252-1(2015)に準拠したトラウザ形引裂き試験の引裂き強さが3.0N/m以上である、[11]または[12]に記載の繊維強化複合材料。
[14]構造体の表面積の25%以上に、[10]に記載の繊維強化複合材料が配置され、一体化された複合構造体。
[15]前記繊維強化複合材料を前記構造体で挟み込むサンドイッチ構造であり、一体化された[14]に記載の複合構造体。
[16]構造体が球状、半球状、なす型、円筒、円柱、円錐、角筒、角柱、角錐から選択される少なくとも1種の形状であり、一体化された[14]または[15]に記載の複合構造体。
[17][10]に記載の繊維強化複合材料または、[14]~[16]のいずれかに記載の複合構造体を用いた耐衝撃部材。
[18][10]に記載の繊維強化複合材料または、[14]~[16]のいずれかに記載の複合構造体を用いた制振部材。
[B]: Dicyandiamide [C]: Aromatic urea [2] The epoxy resin composition according to [1], containing 45 to 100 parts by mass of the epoxy resin of component [A] based on 100 parts by mass of the total epoxy resin.
[3] The epoxy resin composition according to [1] or [2], wherein the cured product has a glass transition temperature of 80°C or higher.
[4] The epoxy resin according to any one of [1] to [3], including both an epoxy resin having a structure of formula (I) and an epoxy resin having a structure of formula (II) as component [A]. Composition.
[5] The epoxy resin composition according to [4], wherein the weight mixing ratio of the epoxy resin having the structure of formula (I) and the epoxy resin having the structure of formula (II) is 3:2 to 5:1. thing.
[6] A prepreg containing the epoxy resin composition according to any one of [1] to [5] and at least one selected from the group consisting of carbon fiber, glass fiber and aramid fiber as a reinforcing fiber.
[7] The prepreg according to [6], wherein the reinforcing fibers are discontinuous fibers.
[8] The prepreg according to [7], wherein the reinforcing fibers are bundled and randomly dispersed.
[9] The prepreg according to [7], wherein the reinforcing fibers are substantially monofilament-like and randomly dispersed.
[10] A fiber-reinforced composite material obtained by curing the prepreg according to any one of [6] to [9].
[11] The fiber-reinforced composite material according to [10], which is a porous structure having voids therein.
[12] The fiber-reinforced composite material according to [11], which has a density of 0.01 g/cm 3 or more and 0.9 g/cm 3 or less.
[13] The fiber-reinforced composite material according to [11] or [12], which has a tear strength of 3.0 N/m or more in a trouser-shaped tear test according to JIS-K6252-1 (2015).
[14] A composite structure in which the fiber-reinforced composite material according to [10] is disposed on 25% or more of the surface area of the structure and integrated.
[15] The composite structure according to [14], which has a sandwich structure in which the fiber-reinforced composite material is sandwiched between the structures and is integrated.
[16] The structure has at least one shape selected from a spherical shape, a hemispherical shape, an eggplant shape, a cylinder, a cylinder, a cone, a prism, a prism, and a pyramid, and is integrated with [14] or [15] Composite structure as described.
[17] A shock-resistant member using the fiber-reinforced composite material according to [10] or the composite structure according to any one of [14] to [16].
[18] A damping member using the fiber-reinforced composite material according to [10] or the composite structure according to any one of [14] to [16].
 本発明により、優れた柔軟性を有しつつも、十分な耐熱性を備え、脱型性に優れたエポキシ樹脂組成物を得ることができる。 According to the present invention, it is possible to obtain an epoxy resin composition that has excellent flexibility, sufficient heat resistance, and excellent releasability.
 本発明のエポキシ樹脂組成物は、成分[A]:エポキシ樹脂、成分[B]:ジシアンジアミド、成分[C]:芳香族ウレア化合物を必須成分として含む。それぞれの構成要素について以下説明する。 The epoxy resin composition of the present invention contains component [A]: epoxy resin, component [B]: dicyandiamide, and component [C]: aromatic urea compound as essential components. Each component will be described below.
 (成分[A]:エポキシ樹脂)
 本発明に用いる成分[A]は、式(I)または式(II)の構造を有するエポキシ樹脂である。(なお、本明細書において、「式(I)または式(II)の構造を有するエポキシ樹脂を含む」とは、式(I)の構造を有するエポキシ樹脂、および式(II)の構造を有するエポキシ樹脂の一方または両方を含むことを意味する。)
(Component [A]: epoxy resin)
Component [A] used in the present invention is an epoxy resin having a structure of formula (I) or formula (II). (In this specification, "including an epoxy resin having a structure of formula (I) or formula (II)" means an epoxy resin having a structure of formula (I) and an epoxy resin having a structure of formula (II). (meaning it contains one or both of the epoxy resins.)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(I)中、R、Rは、水素原子またはメチル基、エチル基を表す。Xは炭素原子を6個以上含む2価の脂肪族基を表す。また、nは1~15の整数を表す。式(I)の平均エポキシ当量は300~420である。) (In Formula (I), R 1 and R 2 represent a hydrogen atom, a methyl group, or an ethyl group. X represents a divalent aliphatic group containing 6 or more carbon atoms. n is 1 to 15 represents an integer of. The average epoxy equivalent of formula (I) is 300 to 420.)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(II)中、R、Rは、水素原子またはメチル基、エチル基を表す。また、nは1~10の整数を表す。)
以下、本明細書において、例えば「式(I)の構造を有するエポキシ樹脂」を、単に「式(I)のエポキシ樹脂」等と記載する。
(In formula (II), R 3 and R 4 represent a hydrogen atom, a methyl group, or an ethyl group, and n represents an integer of 1 to 10.)
Hereinafter, in this specification, for example, "the epoxy resin having the structure of formula (I)" is simply referred to as "the epoxy resin of formula (I)" and the like.
 式(I)のエポキシ樹脂の平均エポキシ当量は300~420である。式(I)のエポキシ樹脂の平均エポキシ当量を300~420とすることで、柔軟性と耐熱性のバランスに優れ、さらに脱型性に優れるエポキシ樹脂組成物が得られる。 The average epoxy equivalent of the epoxy resin of formula (I) is 300-420. By setting the average epoxy equivalent weight of the epoxy resin of the formula (I) to 300 to 420, an epoxy resin composition having excellent balance between flexibility and heat resistance and excellent demoldability can be obtained.
 式(I)のエポキシ樹脂において、R、Rが、水素原子、メチル基、またはエチル基であることで、柔軟性と耐熱性のバランスに優れるエポキシ樹脂組成物が得られる。また、式(I)中のXが炭素原子を6個以上含む2価の脂肪族基であり、nが1~15の整数であることで、柔軟性と耐熱性のバランスに優れるエポキシ樹脂組成物が得られる。 When R 1 and R 2 in the epoxy resin of formula (I) are a hydrogen atom, a methyl group, or an ethyl group, an epoxy resin composition having an excellent balance between flexibility and heat resistance can be obtained. Further, when X in formula (I) is a divalent aliphatic group containing 6 or more carbon atoms, and n is an integer of 1 to 15, the epoxy resin composition has an excellent balance of flexibility and heat resistance. you get something.
 式(II)のエポキシ樹脂において、R、Rが、水素原子、メチル基、またはエチル基であることで、柔軟性と耐熱性のバランスに優れるエポキシ樹脂組成物が得られる。また、式(II)のエポキシ樹脂のnが1~10の整数であることで、柔軟性と耐熱性のバランスに優れるエポキシ樹脂組成物が得られる。 When R 3 and R 4 in the epoxy resin of formula (II) are a hydrogen atom, a methyl group, or an ethyl group, an epoxy resin composition having an excellent balance between flexibility and heat resistance can be obtained. Further, when n in the epoxy resin of formula (II) is an integer of 1 to 10, an epoxy resin composition having an excellent balance of flexibility and heat resistance can be obtained.
 本発明に用いる成分[A]のエポキシ樹脂は、全エポキシ樹脂100質量部中、45~100質量部含まれることが好ましい。これらのエポキシ樹脂を所定量含むことにより、柔軟性と耐熱性のバランスに優れ、さらに脱型性に優れたエポキシ樹脂組成物が得られる。 The component [A] epoxy resin used in the present invention is preferably contained in an amount of 45 to 100 parts by mass based on 100 parts by mass of the total epoxy resin. By including a predetermined amount of these epoxy resins, it is possible to obtain an epoxy resin composition which has an excellent balance between flexibility and heat resistance, and which is also excellent in releasability.
 本発明のエポキシ樹脂組成物は、成分[A]として、式(I)の構造を有するエポキシ樹脂と式(II)の構造を有するエポキシ樹脂の両方を含むことが好ましい。これらの可撓性エポキシ樹脂を両方含むことにより、柔軟性と耐熱性のバランスに優れ、より脱型性に優れたエポキシ樹脂組成物が得られる。 The epoxy resin composition of the present invention preferably contains both an epoxy resin having the structure of formula (I) and an epoxy resin having the structure of formula (II) as component [A]. By including both of these flexible epoxy resins, it is possible to obtain an epoxy resin composition that has a good balance between flexibility and heat resistance and is more excellent in releasability.
 さらに、本発明のエポキシ樹脂組成物は、成分[A]として式(I)の構造を有するエポキシ樹脂と式(II)の構造を有するエポキシ樹脂との重量配合比率が、3:2~5:1であることが好ましい。この範囲の重量配合比率であることにより、より柔軟性と耐熱性のバランスに優れたエポキシ樹脂組成物が得られる。 Further, in the epoxy resin composition of the present invention, the weight mixing ratio of the epoxy resin having the structure of formula (I) and the epoxy resin having the structure of formula (II) as component [A] is 3:2 to 5: 1 is preferred. By setting the weight blending ratio within this range, an epoxy resin composition having a better balance between flexibility and heat resistance can be obtained.
 成分[A]の市販品としては、EXA-4850-1000(DIC(株)製)、EXA-4816(DIC(株)製)、LCE-2615 (日本化薬(株)製)などが挙げられる。 Commercially available products of component [A] include EXA-4850-1000 (manufactured by DIC Corporation), EXA-4816 (manufactured by DIC Corporation), LCE-2615 (manufactured by Nippon Kayaku Co., Ltd.), and the like. .
 本発明のエポキシ樹脂組成物は、硬化物のガラス転移温度が80℃以上であることが好ましい。硬化物のガラス転移温度を80℃以上とすることで、脱型の際に変形や反りが生じず、表面が平滑なエポキシ樹脂硬化物が得られる。なお、ガラス転移温度を測定する際のエポキシ樹脂硬化物は、後述する実施例に記載の方法で作製するものとする。 The cured epoxy resin composition of the present invention preferably has a glass transition temperature of 80°C or higher. By setting the glass transition temperature of the cured product to 80° C. or higher, it is possible to obtain an epoxy resin cured product with a smooth surface without causing deformation or warping during demolding. The cured epoxy resin used for measuring the glass transition temperature shall be prepared by the method described in the examples below.
 成分[A]のエポキシ樹脂と併用可能なエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂、フルオレン骨格を有するエポキシ樹脂、フェノール化合物とジシクロペンタジエンの共重合体を原料とするエポキシ樹脂、ジグリシジルレゾルシノール、テトラキス(グリシジルオキシフェニル)エタン、トリス(グリシジルオキシフェニル)メタンのようなグリシジルエーテル型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシレンジアミンのようなグリシジルアミン型エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ポリエチレングリコール型エポキシ樹脂、長鎖脂肪族エポキシ樹脂が挙げられる。成分[A]以外のエポキシ樹脂は、これらを単独で用いても、複数種類を組み合わせても良い。 Epoxy resins that can be used in combination with the epoxy resin of component [A] include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, novolak type epoxy resin, and fluorene. Epoxy resins having skeletons, epoxy resins made from copolymers of phenol compounds and dicyclopentadiene, glycidyl ether type epoxy resins such as diglycidylresorcinol, tetrakis(glycidyloxyphenyl)ethane, tris(glycidyloxyphenyl)methane , tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylaminocresol, tetraglycidylxylene diamine, glycidylamine type epoxy resins, polypropylene glycol type epoxy resins, polyethylene glycol type epoxy resins, and long-chain aliphatic epoxy resins. . Epoxy resins other than component [A] may be used alone or in combination.
 (成分[B]:ジシアンジアミド)
 本発明における成分[B]は、ジシアンジアミドである。ジシアンジアミドは、化学式(H2N)2C=N-CNで表される化合物である。ジシアンジアミドは、樹脂硬化物に高い力学特性や耐熱性を与える点で優れており、エポキシ樹脂の硬化剤として広く用いられる。かかるジシアンジアミドの市販品としては、DICY7、DICY15(以上、三菱化学(株)製)などが挙げられる。
(Component [B]: Dicyandiamide)
Component [B] in the present invention is dicyandiamide. Dicyandiamide is a compound represented by the chemical formula (H2N)2C=N-CN. Dicyandiamide is excellent in that it imparts high mechanical properties and heat resistance to cured resins, and is widely used as a curing agent for epoxy resins. Commercial products of such dicyandiamide include DICY7 and DICY15 (manufactured by Mitsubishi Chemical Corporation).
 ジシアンジアミド[B]を粉体としてエポキシ樹脂組成物に配合することは、室温での保存安定性や、プリプレグ製造時の粘度安定性の観点から好ましい。また、ジシアンジアミド[B]を予め成分[A]のエポキシ樹脂の一部に三本ロールなどを用いて分散させておくことは、エポキシ樹脂組成物を均一にし、硬化物の物性を向上させるため好ましい。 Blending dicyandiamide [B] as a powder into the epoxy resin composition is preferable from the viewpoint of storage stability at room temperature and viscosity stability during prepreg production. Further, it is preferable to disperse dicyandiamide [B] in a part of the epoxy resin of component [A] in advance using a triple roll or the like, in order to make the epoxy resin composition uniform and to improve the physical properties of the cured product. .
 ジシアンジアミドを粉体として樹脂に配合する場合、平均粒径は10μm以下であることが好ましく、さらに好ましくは7μm以下である。例えば、プリプレグ製造工程において加熱加圧により強化繊維束にエポキシ樹脂組成物を含浸させる際、平均粒径が10μm以下であれば、繊維束内部への樹脂の含浸性が良好となる。なお、ここでいう平均粒径とは、体積平均を意味し、レーザー回折型の粒度分布測定装置によって測定することができる。 When the dicyandiamide is powdered and blended with the resin, the average particle size is preferably 10 μm or less, more preferably 7 μm or less. For example, when the reinforcing fiber bundle is impregnated with the epoxy resin composition by heating and pressurizing in the prepreg manufacturing process, if the average particle diameter is 10 μm or less, the impregnating property of the resin into the inside of the fiber bundle will be good. The average particle size as used herein means a volume average, and can be measured by a laser diffraction particle size distribution analyzer.
 ジシアンジアミド[B]は、後述の成分[C]と併用することにより、成分[B]を単独で配合した場合と比較し、樹脂組成物の硬化温度を下げることができる。本発明においては、硬化時間を短縮するためにも、成分[B]と成分[C]を併用することが必要である。 When dicyandiamide [B] is used in combination with component [C], which will be described later, the curing temperature of the resin composition can be lowered compared to the case where component [B] is blended alone. In the present invention, it is necessary to use both component [B] and component [C] in order to shorten the curing time.
 (成分[C]:芳香族ウレア化合物)
 本発明のエポキシ樹脂組成物には、成分[C]として、芳香族ウレア化合物が含まれている必要がある。成分[C]は硬化促進剤としてはたらき、成分[B]と併用した場合に硬化時間を短縮することができる。
(Component [C]: aromatic urea compound)
The epoxy resin composition of the present invention must contain an aromatic urea compound as component [C]. Component [C] functions as a curing accelerator, and can shorten the curing time when used in combination with component [B].
 成分[C]における芳香族ウレア化合物の具体例としては、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、3-(4-クロロフェニル)-1,1-ジメチルウレア、フェニルジメチルウレア、トルエンビスジメチルウレアなどが挙げられる。また、芳香族ウレア化合物の市販品としては、DCMU99(保土ヶ谷化学工業(株)製)、“Omicure(登録商標)”24(ピィ・ティ・アイ・ジャパン(株)製)、“Omicure(登録商標)”94(ピィ・ティ・アイ・ジャパン(株)製)、“Dyhard(登録商標)” UR505(4,4’-メチレンビス(フェニルジメチルウレア、AlzChem製)などを使用することができる。 Specific examples of aromatic urea compounds for component [C] include 3-(3,4-dichlorophenyl)-1,1-dimethylurea, 3-(4-chlorophenyl)-1,1-dimethylurea, and phenyldimethylurea. , toluenebisdimethylurea, and the like. In addition, commercial products of aromatic urea compounds include DCMU99 (manufactured by Hodogaya Chemical Industry Co., Ltd.), "Omicure (registered trademark)" 24 (manufactured by PTI Japan Co., Ltd.), "Omicure (registered trademark) )”94 (manufactured by PTI Japan Co., Ltd.), “Dyhard (registered trademark)” UR505 (4,4′-methylenebis(phenyldimethylurea, manufactured by AlzChem) and the like can be used.
 本発明のエポキシ樹脂組成物は、本発明の効果を失わない範囲において、粘弾性を調整し、プリプレグのタッグやドレープ特性を改良する目的や、樹脂組成物の機械特性や靭性を高めるなどの目的で、熱可塑性樹脂やゴム粒子および、シリカなどの無機粒子、CNTやグラフェンなどのナノ粒子等を含んでいてもよい。エポキシ樹脂に可溶な熱可塑性樹脂としては、ポリビニルホルマールやポリビニルブチラールなどのポリビニルアセタール樹脂、ポリビニルアルコール、フェノキシ樹脂、ポリアミド、ポリイミド、ポリビニルピロリドン、ポリスルホン、ポリエーテルスルホンを挙げることができる。ゴム粒子としては、架橋ゴム粒子、および架橋ゴム粒子の表面に異種ポリマーをグラフト重合したコアシェルゴム粒子を挙げることができる。 The epoxy resin composition of the present invention is used for the purpose of adjusting the viscoelasticity, improving the tag and drape properties of the prepreg, and improving the mechanical properties and toughness of the resin composition, as long as the effects of the present invention are not lost. It may contain thermoplastic resin, rubber particles, inorganic particles such as silica, nanoparticles such as CNT and graphene, and the like. Examples of thermoplastic resins soluble in epoxy resins include polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, polyvinyl alcohol, phenoxy resins, polyamides, polyimides, polyvinylpyrrolidone, polysulfones, and polyethersulfones. Examples of rubber particles include crosslinked rubber particles and core-shell rubber particles obtained by graft-polymerizing a different polymer on the surface of crosslinked rubber particles.
 本発明のエポキシ樹脂組成物の調製には、例えばニーダー、プラネタリーミキサー、3本ロールおよび2軸押出機といった機械を用いて混練しても良いし、均一な混練が可能であれば、ビーカーとスパチュラなどを用い、手で混ぜても良い。 For the preparation of the epoxy resin composition of the present invention, kneading may be carried out using a machine such as a kneader, planetary mixer, three-roll and twin-screw extruder. You can mix by hand using a spatula or the like.
 次に、本発明のプリプレグについて説明する。 Next, the prepreg of the present invention will be explained.
 本発明のプリプレグは、前記エポキシ樹脂組成物に、強化繊維として、炭素繊維、ガラス繊維、およびアラミド繊維からなる群より選ばれる少なくとも1種を含む。さらに強化繊維は、表面処理が施されているものであってもよい。表面処理としては、導電体として金属の被着処理の他に、カップリング剤による処理、サイジング剤による処理、結束剤による処理、添加剤の付着処理等がある。また、これらの強化繊維は1種類を単独で用いてもよいし、2種類以上を併用してもよい。中でも、軽量化効果の観点から、比強度、比剛性に優れるポリアクリロニトリル(PAN)系、ピッチ系、レーヨン系等の炭素繊維が好ましく用いられる。また、得られる繊維強化複合材料の経済性を高める観点からは、ガラス繊維が好ましく用いられ、とりわけ力学特性と経済性とのバランスから炭素繊維とガラス繊維とを併用することが好ましい。さらに、得られる繊維強化複合材料の耐衝撃性や賦形性を高める観点からは、アラミド繊維が好ましく用いられ、とりわけ力学特性と耐衝撃性とのバランスから炭素繊維とアラミド繊維とを併用することが好ましい。また、得られる繊維強化複合材料の導電性を高める観点からは、ニッケルや銅やイッテルビウム等の金属を被覆した強化繊維を用いることもできる。これらの中で、強度と弾性率等の力学特性に優れるPAN系の炭素繊維をより好ましく用いることができる。 The prepreg of the present invention contains at least one selected from the group consisting of carbon fibers, glass fibers, and aramid fibers as reinforcing fibers in the epoxy resin composition. Further, the reinforcing fibers may be surface-treated. The surface treatment includes, in addition to metal adhesion treatment as a conductor, treatment with a coupling agent, treatment with a sizing agent, treatment with a binding agent, adhesion treatment with additives, and the like. Moreover, one type of these reinforcing fibers may be used alone, or two or more types may be used in combination. Among them, carbon fibers such as polyacrylonitrile (PAN)-based, pitch-based, and rayon-based carbon fibers, which are excellent in specific strength and specific rigidity, are preferably used from the viewpoint of weight reduction effect. Further, from the viewpoint of improving the economic efficiency of the resulting fiber-reinforced composite material, glass fibers are preferably used, and it is particularly preferable to use carbon fibers and glass fibers in combination from the viewpoint of the balance between mechanical properties and economic efficiency. Furthermore, from the viewpoint of improving the impact resistance and shapeability of the resulting fiber-reinforced composite material, aramid fibers are preferably used, and in particular, carbon fibers and aramid fibers are used in combination from the viewpoint of the balance between mechanical properties and impact resistance. is preferred. Moreover, from the viewpoint of enhancing the conductivity of the resulting fiber-reinforced composite material, reinforcing fibers coated with a metal such as nickel, copper, or ytterbium can also be used. Among these, PAN-based carbon fibers, which are excellent in mechanical properties such as strength and elastic modulus, can be used more preferably.
 本発明のプリプレグは、本発明のエポキシ樹脂組成物を強化繊維基材に含浸させて得ることができる。含浸の方法としては、ホットメルト法(ドライ法)などを挙げることができる。ホットメルト法は、加熱により低粘度化したエポキシ樹脂組成物を直接強化繊維に含浸させる方法、または離型紙などの上にエポキシ樹脂組成物をコーティングしたフィルムを作製しておき、次いで強化繊維の両側または片側から前記フィルムを重ね、加熱加圧することにより強化繊維に樹脂を含浸させる方法である。 The prepreg of the present invention can be obtained by impregnating a reinforcing fiber base material with the epoxy resin composition of the present invention. Examples of the impregnation method include a hot melt method (dry method) and the like. The hot-melt method is a method of directly impregnating reinforcing fibers with an epoxy resin composition whose viscosity has been reduced by heating, or a film is prepared by coating an epoxy resin composition on release paper or the like, and then both sides of the reinforcing fibers. Another method is to stack the films from one side and impregnate the reinforcing fibers with the resin by applying heat and pressure.
 プリプレグを成形する方法としては、例えばプレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法などを適宜使用することができる。 As a method for molding the prepreg, for example, a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, etc. can be used as appropriate.
 本発明のプリプレグに含まれる強化繊維は、不連続繊維であってもよい。強化繊維を不連続繊維とすることで、シート状のプリプレグに外力を加えて成形する場合に、複雑形状への賦型が容易となる。 The reinforcing fibers contained in the prepreg of the present invention may be discontinuous fibers. By using discontinuous fibers as the reinforcing fibers, it becomes easy to form a complex shape when the sheet-like prepreg is molded by applying an external force.
 また、強化繊維は、プリプレグ中において、束状でランダムに分散していることが好ましい。そうすることで、プリプレグに外力を加えて成形する場合に、複雑形状への賦型が容易となる。 In addition, the reinforcing fibers are preferably bundled and randomly dispersed in the prepreg. By doing so, when the prepreg is molded by applying an external force, molding into a complicated shape is facilitated.
 また、強化繊維は、プリプレグ中において、略モノフィラメント状でランダムに分散していることも好ましい。強化繊維を略モノフィラメント状でランダムに分散させることで、プリプレグに繊維束として存在する強化繊維が少なくなるため、強化繊維の繊維束端における弱部が極小化でき、優れた補強効率と等方性が付与される。ここで、略モノフィラメント状とは、強化繊維単糸が500本未満の細繊度ストランドにて存在することを指す。強化繊維は、モノフィラメント状、すなわち単糸として存在するように分散していることがより好ましく、モノフィラメント状の単繊維がランダムに分散していることがさらに好ましい。強化繊維が不連続繊維である場合、強化繊維は不織布状の形態であってもよい。 It is also preferable that the reinforcing fibers are substantially monofilament-like and randomly dispersed in the prepreg. By randomly dispersing the reinforcing fibers in a substantially monofilament shape, the number of reinforcing fibers existing as fiber bundles in the prepreg is reduced, so the weak points at the fiber bundle ends of the reinforcing fibers can be minimized, resulting in excellent reinforcement efficiency and isotropy. is given. Here, the term "substantially monofilament-like" means that the reinforcing fiber single yarn exists in fine fineness strands of less than 500 strands. More preferably, the reinforcing fibers are in the form of monofilaments, that is, they are dispersed so as to exist as single yarns, and it is even more preferable that the monofilament-like single fibers are randomly dispersed. When the reinforcing fibers are discontinuous fibers, the reinforcing fibers may be in the form of a non-woven fabric.
 次に、本発明の繊維強化複合材料について説明する。 Next, the fiber-reinforced composite material of the present invention will be explained.
 本発明の一側面である繊維強化複合材料は、本発明のエポキシ樹脂組成物の硬化物(以下、「本発明のエポキシ樹脂硬化物」という)をマトリクス樹脂とする繊維強化複合材料であり、典型的には前述の本発明のプリプレグを硬化させてなるものである。より具体的には、本発明のエポキシ樹脂組成物からなるプリプレグを必要に応じて積層した後、加熱し硬化させることにより、本発明のエポキシ樹脂硬化物をマトリックス樹脂として含む繊維強化複合材料を得ることができる。 A fiber-reinforced composite material that is one aspect of the present invention is a fiber-reinforced composite material in which a cured product of the epoxy resin composition of the present invention (hereinafter referred to as "cured epoxy resin product of the present invention") is used as a matrix resin. Specifically, it is obtained by curing the prepreg of the present invention described above. More specifically, prepregs made of the epoxy resin composition of the present invention are laminated as necessary, and then cured by heating to obtain a fiber-reinforced composite material containing the cured epoxy resin of the present invention as a matrix resin. be able to.
 本発明の繊維強化複合材料は、内部に空隙を有する多孔質構造体であることが好ましい。典型的には、エポキシ樹脂硬化物により被覆された不連続の強化繊維が重なり合い、又は、交差することにより形成された空隙を有する多孔質構造体である。以下、本明細書において、このような繊維強化複合材料を、「多孔質構造体」と呼ぶ。多孔質構造体の空隙は、例えば、強化繊維にエポキシ樹脂組成物が予め含浸されたプリプレグを加熱する際に、加熱に伴うエポキシ樹脂成分の低粘度化によって強化繊維が起毛することで形成される。これは、プリプレグにおいて、加圧により圧縮状態とされていた内部の強化繊維が、その弾性率に由来する起毛力によって起毛する性質に基づく。 The fiber-reinforced composite material of the present invention is preferably a porous structure having voids inside. Typically, it is a porous structure having voids formed by overlapping or intersecting discontinuous reinforcing fibers coated with a cured epoxy resin. Hereinafter, such a fiber-reinforced composite material is referred to as a "porous structure" in the present specification. The voids of the porous structure are formed, for example, by raising the reinforcing fibers due to the low viscosity of the epoxy resin component accompanying heating when heating the prepreg in which the reinforcing fibers are pre-impregnated with the epoxy resin composition. . This is based on the property that, in the prepreg, the internal reinforcing fibers that have been in a compressed state under pressure are raised by the raising force derived from their elastic modulus.
 前記多孔質構造体において、強化繊維の質量平均繊維長さが1~15mmであると、強化繊維による補強効率を高めることができ、優れた力学特性を与えられるため好ましい。強化繊維の質量平均繊維長さが1mm未満である場合、前述の空隙を効率よく形成しにくくなるため、密度が高くなる傾向にある。一方、強化繊維の質量平均繊維長さが15mmより長い場合には、多孔質構造体中で強化繊維が自重により屈曲しやすくなり、力学特性の発現を阻害する要因となる場合がある。ここで、強化繊維の質量平均繊維長さは、繊維強化樹脂中の樹脂成分を焼失や溶出等の方法により取り除き、残った強化繊維から無作為に400本を選択し、その長さを10μm単位まで測定し、次式により求めることができる。
質量平均繊維長さ=Σ(Li×Wi/100)
Li:測定した繊維長さ(i=1、2、3、・・・、n)
Wi:繊維長さLiの繊維の質量分率(i=1、2、3、・・・、n)。
In the porous structure, it is preferable that the reinforcing fibers have a mass-average fiber length of 1 to 15 mm, because the reinforcing efficiency of the reinforcing fibers can be increased and excellent mechanical properties can be obtained. When the mass-average fiber length of the reinforcing fibers is less than 1 mm, it becomes difficult to efficiently form the voids described above, and the density tends to increase. On the other hand, when the mass average fiber length of the reinforcing fibers is longer than 15 mm, the reinforcing fibers tend to bend due to their own weight in the porous structure, which may hinder the development of mechanical properties. Here, the mass average fiber length of the reinforcing fiber is obtained by removing the resin component in the fiber-reinforced resin by a method such as burning off or elution, randomly selecting 400 fibers from the remaining reinforcing fibers, and measuring the length in units of 10 μm. It can be obtained by the following formula.
Mass average fiber length = Σ (Li x Wi/100)
Li: measured fiber length (i = 1, 2, 3, ..., n)
Wi: Mass fraction of fibers with fiber length Li (i=1, 2, 3, . . . , n).
 前記多孔質構造体においては、互いに接触した強化繊維のストランドおよび/又はモノフィラメント同士の交点が、本発明のエポキシ樹脂硬化物によって被覆されていることが好ましく、その被覆厚みが1μm以上、15μm以下の範囲にあると、柔軟性や耐衝撃性を発現させる上で好ましい。形状安定性や柔軟性、耐衝撃性の発現の観点からは、少なくとも強化繊維の単繊維同士の交差する点が被覆されていれば十分である。また、強化繊維の交点全てが被覆されている必要はなく、形状安定性や柔軟性、耐衝撃性を損なわない範囲内で、交点の50%以上が被覆されている状態が好ましく、さらに好ましくは、柔軟性の観点から80%以上である。 In the porous structure, the reinforcing fiber strands and/or the intersections of the monofilaments that are in contact with each other are preferably coated with the epoxy resin cured product of the present invention, and the coating thickness is 1 μm or more and 15 μm or less. When it exists in a range, it is preferable when expressing flexibility and impact resistance. From the viewpoint of shape stability, flexibility, and impact resistance, it is sufficient that at least the crossing points of the single fibers of the reinforcing fibers are covered. In addition, it is not necessary that all the intersections of the reinforcing fibers are covered, and it is preferable that 50% or more of the intersections are covered within a range that does not impair the shape stability, flexibility, and impact resistance, and more preferably. , is 80% or more from the viewpoint of flexibility.
 前記多孔質構造体の密度は、0.01g/cm以上、0.9g/cm以下であることが好ましい。密度ρが0.9g/cm以下であることにより軽量性を担保することができ、密度が0.01g/cm以上であることにより十分な機械強度を保つことができる。本発明の多孔質構造体の密度は、0.2~0.5g/cmであることがより好ましい。 The density of the porous structure is preferably 0.01 g/cm 3 or more and 0.9 g/cm 3 or less. When the density ρ is 0.9 g/cm 3 or less, lightness can be ensured, and when the density is 0.01 g/cm 3 or more, sufficient mechanical strength can be maintained. More preferably, the density of the porous structure of the present invention is 0.2 to 0.5 g/cm 3 .
 前記多孔質構造体は、JIS-K6252-1(2015)に準拠したトラウザ形引裂き試験の引裂き強さが3.0N/m以上であることが好ましい。引裂き強さと耐衝撃性には相関性があり、引裂き強さが3.0N/m以上であることは、優れた耐衝撃性を示している。 The porous structure preferably has a tear strength of 3.0 N/m or more in a trouser type tear test according to JIS-K6252-1 (2015). There is a correlation between tear strength and impact resistance, and a tear strength of 3.0 N/m or more indicates excellent impact resistance.
 さらに、前記多孔質構造体は、JIS K7075(炭素繊維強化プラスチックの繊維含有率および空洞率試験方法、1991年)に準拠して求められる繊維体積含有率(Vfi)が2%以上、15%以下であることが好ましい。Vfiが15%以下であることにより柔軟性を担保することができ、Vfiが2%以上であることで十分な機械強度を保つことが出来る。Vfiは、4~6%であることがより好ましい。
Vfi=Va/Vb×100(%)・・・(I)
Va:多孔質構造体内の繊維体積(mm
Vb:多孔質構造体の体積(mm)。
Furthermore, the porous structure has a fiber volume content (Vfi) of 2% or more and 15% or less, which is determined in accordance with JIS K7075 (Test method for fiber content and void content of carbon fiber reinforced plastics, 1991). is preferably When Vfi is 15% or less, flexibility can be ensured, and when Vfi is 2% or more, sufficient mechanical strength can be maintained. Vfi is more preferably 4 to 6%.
Vfi=Va/Vb×100 (%) (I)
Va: fiber volume in the porous structure (mm 3 )
Vb: Volume of porous structure (mm 3 ).
 本発明の複合構造体は、本発明の繊維強化複合材料が、構造体の表面積の25%以上に、配置され、一体化されたものであることが好ましい。複合構造体中の繊維強化複合材料と構造体の配置関係について、本発明においては、構造体の少なくとも一方の面に繊維強化複合材料が配置されていれば特に制限は設けないが、一般的に、構造体の一方の表面側のみに繊維強化複合材料を配置するカナッペ構造や、構造体の一方の表面側と他方の表面側を繊維強化複合材料で挟み込む構造または繊維強化複合材料を構造体で挟み込む構造であるサンドイッチ構造を採用することができる。かかる構造とすることで、構造体を補強し、耐衝撃性や制振性の向上効果を簡便に付与することが可能である。中でも、繊維強化複合材料を構造体で挟み込む構造であるサンドイッチ構造が好ましい。さらに、耐衝撃性や制振性の向上効果の高さの観点からは、サンドイッチ構造が好ましく、耐衝撃性や制振性と軽量性とを両立させる観点からはカナッペ構造が好ましい。 The composite structure of the present invention is preferably one in which the fiber-reinforced composite material of the present invention is arranged and integrated over 25% or more of the surface area of the structure. Regarding the arrangement relationship between the fiber-reinforced composite material and the structure in the composite structure, in the present invention, there is no particular limitation as long as the fiber-reinforced composite material is arranged on at least one surface of the structure. , a canape structure in which fiber reinforced composite materials are placed only on one surface side of the structure, a structure in which one surface side and the other surface side of the structure are sandwiched between fiber reinforced composite materials, or a structure in which fiber reinforced composite materials are used A sandwich structure, which is a sandwiching structure, can be adopted. By adopting such a structure, it is possible to reinforce the structure and easily impart an effect of improving impact resistance and vibration damping properties. Among them, a sandwich structure, which is a structure in which a fiber-reinforced composite material is sandwiched between structures, is preferred. Furthermore, a sandwich structure is preferable from the viewpoint of a high effect of improving impact resistance and vibration damping properties, and a canape structure is preferable from the viewpoint of achieving both impact resistance and vibration damping properties and light weight.
 特に、カナッペ構造からなる複合構造体は、軽量性が重視される飛翔体やドローンに好適に使用することができ、優れた耐衝撃性が簡便に付与できることで、落下や衝突の際に複合構造体が割れるといった故障を防ぐことが可能となるため好ましい。 In particular, composite structures made of canape structures can be suitably used for flying objects and drones, where light weight is important, and can be easily imparted with excellent impact resistance, so that the composite structure can withstand falls and collisions. It is preferable because it is possible to prevent a failure such as breaking the body.
 本発明の複合構造体は、球状、半球状、なす型、円筒、円柱、円錐、角筒、角柱、角錐から選択される少なくとも1種の形状である。 The composite structure of the present invention has at least one shape selected from a spherical shape, a hemispherical shape, an eggplant shape, a cylinder, a cylinder, a cone, a prism, a prism, and a pyramid.
 また、構造体は球状、半球状、円筒、円柱、角筒、角柱から選択される少なくとも1種の形状であることが好ましい。これらの形状とすることで、構造体を連続成形することが可能になる。特に、飛翔体やドローン用途では、半球状、円筒、角筒が好ましい。かかる構成の構造体の表面に本発明の繊維強化複合材料を配置し、補強することで、軽量性と耐衝撃性とを簡便に両立させることが可能となるため好ましい。 In addition, it is preferable that the structure has at least one shape selected from spherical, hemispherical, cylindrical, columnar, prismatic, and prismatic. These shapes enable continuous molding of the structure. In particular, a hemispherical shape, a cylindrical shape, and a rectangular shape are preferable for use in flying objects and drones. By arranging the fiber-reinforced composite material of the present invention on the surface of the structure having such a configuration and reinforcing it, it is possible to easily achieve both lightness and impact resistance, which is preferable.
 本発明の複合構造体は、前記構造体の、表面積の25%以上に、繊維強化複合材料が配置されることが好ましいが、構造体の表面積の40%以上に、繊維強化複合材料が配置されることがさらに好ましい。かかる配置とすることで、耐衝撃性や制振性に優れた複合構造体を簡便に得ることが出来る。 In the composite structure of the present invention, the fiber-reinforced composite material is preferably arranged on 25% or more of the surface area of the structure, and the fiber-reinforced composite material is arranged on 40% or more of the surface area of the structure. is more preferred. Such arrangement makes it possible to easily obtain a composite structure having excellent impact resistance and vibration damping properties.
 本発明において構造体の素材としては、スチール、ステンレス鋼、アルミニウム合金、マグネシウム合金、銅合金、チタン合金、ガラス、セラミックス、熱可塑性樹脂、GFRP、CFRPなどが挙げられる。これらの中でも、耐衝撃性や制振性の向上効果の観点から、スチール、マグネシウム合金、アルミニウム合金、CFRPが好ましい。 Materials for the structure in the present invention include steel, stainless steel, aluminum alloys, magnesium alloys, copper alloys, titanium alloys, glass, ceramics, thermoplastic resins, GFRP, and CFRP. Among these, steel, magnesium alloys, aluminum alloys, and CFRP are preferable from the viewpoint of improving impact resistance and vibration damping properties.
 本発明の耐衝撃部材は、本発明の繊維強化複合材料やこれを表面に配置した複合構造体を用いたものであることが好ましい。本発明の繊維強化複合材料は衝撃を減衰させる効果があり、構造体単独では破損するような衝撃が負荷された際にも破損せず複合構造体の形状を維持することが可能となる。 The impact-resistant member of the present invention preferably uses the fiber-reinforced composite material of the present invention or a composite structure having this material arranged on the surface. The fiber-reinforced composite material of the present invention has the effect of attenuating impact, and can maintain the shape of the composite structure without being damaged even when an impact that would otherwise damage the structure by itself is applied.
 本発明の制振部材は、本発明の繊維強化複合材料やこれを表面に配置した複合構造体を用いたものであることが好ましい。本発明の繊維強化複合材料は振動を減衰させる効果があり、これを配置することで制振用途に好ましく使用することができる。 The damping member of the present invention preferably uses the fiber-reinforced composite material of the present invention or a composite structure having this material arranged on the surface. The fiber-reinforced composite material of the present invention has the effect of damping vibration, and by arranging it, it can be preferably used for damping applications.
 本発明の一側面である上記の繊維強化複合材料は、スポーツ用途、航空宇宙用途および一般産業用途に好ましく用いられる。より具体的には、スポーツ用途では、ゴルフシャフト、釣り竿、シューズソール、テニスやバドミントンのラケット、ホッケーなどのスティック、およびスキーポールなどに好ましく用いられる。また、航空宇宙用途では、飛翔体、UAM(Urban Air Mobility)、ドローン、主翼、尾翼およびフロアビーム等の航空機一次構造材用途、および内装材等の二次構造材用途に好ましく用いられる。さらに一般産業用途では、自動車、自転車、風車、船舶、鉄道車両などの構造材およびICトレイやノートパソコンの筐体(ハウジング)等の電子機器部材に好ましく用いられる。 The fiber-reinforced composite material, which is one aspect of the present invention, is preferably used for sports, aerospace and general industrial applications. More specifically, in sports applications, it is preferably used for golf shafts, fishing rods, shoe soles, tennis and badminton rackets, hockey sticks, and ski poles. In addition, in aerospace applications, it is preferably used for aircraft primary structural material applications such as flying objects, UAM (Urban Air Mobility), drones, main wings, tail wings and floor beams, and secondary structural material applications such as interior materials. Furthermore, in general industrial applications, it is preferably used for structural materials such as automobiles, bicycles, windmills, ships, and railroad vehicles, and electronic device members such as IC trays and notebook computer housings.
 以下に実施例を示し、本発明をさらに具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。 The present invention will be explained more specifically by showing examples below, but the present invention is not limited to the description of these examples.
 <使用した材料>
 [成分[A]:エポキシ樹脂]
・“EPICLON(登録商標)”EXA-4816(可撓性エポキシ樹脂、式(I)の構造を有する化合物、エポキシ当量:403、DIC(株)製)
・LCE-2615(結晶性の可撓性エポキシ樹脂、式(II)の構造を有する化合物、エポキシ当量:494、日本化薬(株)製)
・“EPICLON(登録商標)”EXA-4850-1000(可撓性エポキシ樹脂、(式1)の化合物、エポキシ当量:348、DIC(株)製)。
<Materials used>
[Component [A]: epoxy resin]
- "EPICLON (registered trademark)" EXA-4816 (flexible epoxy resin, compound having the structure of formula (I), epoxy equivalent: 403, manufactured by DIC Corporation)
・LCE-2615 (crystalline flexible epoxy resin, compound having the structure of formula (II), epoxy equivalent: 494, manufactured by Nippon Kayaku Co., Ltd.)
- "EPICLON (registered trademark)" EXA-4850-1000 (flexible epoxy resin, compound of (formula 1), epoxy equivalent: 348, manufactured by DIC Corporation).
 [成分[B]:ジシアンジアミド]
・DICY7(ジシアンジアミド、三菱化学(株)製)。
[Component [B]: dicyandiamide]
- DICY7 (dicyandiamide, manufactured by Mitsubishi Chemical Corporation).
 [成分[C]:芳香族ウレア]
・“Omicure(登録商標)”24(4,4’-メチレンビス(フェニルジメチルウレア)、ピィ・ティ・アイ・ジャパン(株)製)
・“Omicure(登録商標)”52(4,4’-メチレンビス(フェニルジメチルウレア)、ピィ・ティ・アイ・ジャパン(株)製)。
[Component [C]: aromatic urea]
- "Omicure (registered trademark)" 24 (4,4'-methylenebis (phenyldimethylurea), manufactured by PTI Japan Co., Ltd.)
- "Omicure (registered trademark)" 52 (4,4'-methylenebis(phenyldimethylurea), manufactured by PTI Japan Co., Ltd.).
 [成分[A]以外のエポキシ樹脂]
・“EPICLON(登録商標)”EXA-4850-150(可撓性エポキシ樹脂、エポキシ当量:450、DIC(株)製)
・“デナコール(登録商標)” EX-931(ポリプロピレングリコール型エポキシ樹脂、エポキシ当量:471、ナガセケムテックス(株)製)
・“デナコール(登録商標)” EX-991L(長鎖脂肪族エポキシ樹脂、エポキシ当量:450、ナガセケムテックス(株)製)
・“デナコール(登録商標)” EX-841(ポリエチレングリコール型エポキシ樹脂、エポキシ当量:372、ナガセケムテックス(株)製)
・“デナコール(登録商標)” EX-211(ネオペンチルグリコール型エポキシ樹脂、エポキシ当量:138、ナガセケムテックス(株)製)
・“jER(登録商標)”828(ビスフェノールA型エポキシ樹脂、エポキシ当量:189、三菱化学(株)製)
・“jER(登録商標)”1001(ビスフェノールA型エポキシ樹脂、エポキシ当量:475、三菱化学(株)製)
・“jER(登録商標)”154(フェノールノボラック型エポキシ樹脂、エポキシ当量:178、三菱化学(株)製)。
[Epoxy resin other than component [A]]
・"EPICLON (registered trademark)" EXA-4850-150 (flexible epoxy resin, epoxy equivalent: 450, manufactured by DIC Corporation)
・ “Denacol (registered trademark)” EX-931 (polypropylene glycol type epoxy resin, epoxy equivalent: 471, manufactured by Nagase ChemteX Co., Ltd.)
・ “Denacol (registered trademark)” EX-991L (long-chain aliphatic epoxy resin, epoxy equivalent: 450, manufactured by Nagase ChemteX Co., Ltd.)
・ “Denacol (registered trademark)” EX-841 (polyethylene glycol type epoxy resin, epoxy equivalent: 372, manufactured by Nagase ChemteX Co., Ltd.)
・ “Denacol (registered trademark)” EX-211 (neopentyl glycol type epoxy resin, epoxy equivalent: 138, manufactured by Nagase ChemteX Co., Ltd.)
・ “jER (registered trademark)” 828 (bisphenol A type epoxy resin, epoxy equivalent: 189, manufactured by Mitsubishi Chemical Corporation)
・ “jER (registered trademark)” 1001 (bisphenol A type epoxy resin, epoxy equivalent: 475, manufactured by Mitsubishi Chemical Corporation)
- "jER (registered trademark)" 154 (phenol novolac type epoxy resin, epoxy equivalent: 178, manufactured by Mitsubishi Chemical Corporation).
 [熱可塑性樹脂]
・“ビニレック(登録商標)”K(ポリビニルホルマール、JNC(株)製)。
[Thermoplastic resin]
- "Vinylec (registered trademark)" K (polyvinyl formal, manufactured by JNC Corporation).
 [強化繊維]
 PANを主成分とする共重合体から紡糸、焼成処理、表面酸化処理を行い、総単繊維数12,000本の連続炭素繊維を得た。この連続炭素繊維の特性は次に示す通りであった。
平均繊維径:7μm
単位長さ当たりの質量:0.8g/m
比重:1.8。
[Reinforcing fiber]
A continuous carbon fiber having a total of 12,000 single filaments was obtained by subjecting a copolymer containing PAN as a main component to spinning, baking treatment, and surface oxidation treatment. The properties of this continuous carbon fiber were as follows.
Average fiber diameter: 7 μm
Mass per unit length: 0.8g/m
Specific gravity: 1.8.
 <エポキシ樹脂組成物の調製方法>
 ステンレスビーカーに、[B]ジシアンジアミド、[C]芳香族ウレア以外の成分を所定量入れ、40~150℃まで昇温し、各成分が相溶するまで適宜混練した。別途、ポリエチレン製カップに所定量の[A](例えば“EPICLON(登録商標)”EXA-4816)および[B]ジシアンジアミドを添加し、三本ロールを用いて混合物をロール間に2回通し、ジシアンジアミドマスターを作製した。所定の配合割合になるように上記で作製した主剤成分とジシアンジアミドマスターを60℃以下で混練し、最後に[C]芳香族ウレアを添加し、60℃において30分間混練することにより、エポキシ樹脂組成物を得た。
<Method for preparing epoxy resin composition>
Predetermined amounts of components other than [B] dicyandiamide and [C] aromatic urea were placed in a stainless steel beaker, heated to 40 to 150° C., and appropriately kneaded until each component was dissolved. Separately, a predetermined amount of [A] (eg, "EPICLON (registered trademark)" EXA-4816) and [B] dicyandiamide are added to a polyethylene cup, and the mixture is passed through the rolls twice using a triple roll to A master was created. The main component prepared above and the dicyandiamide master were kneaded at 60°C or less so as to have a predetermined mixing ratio, and finally [C] aromatic urea was added and kneaded at 60°C for 30 minutes to obtain an epoxy resin composition. got stuff
 <樹脂硬化物の作製方法>
 まず、エポキシ樹脂組成物を、真空中で脱泡した後、“テフロン(登録商標)”製スペーサーにより厚み2mmになるように設定したモールドに注入した。次に、熱風オーブン中で30℃から150℃まで1分間に2.5℃ずつ昇温した後、150℃で90分間保持して該エポキシ樹脂組成物を硬化した。続いて、30℃まで降温し、モールドから脱型することで、2mm厚の樹脂硬化物を作製した。
<Method for preparing cured resin>
First, the epoxy resin composition was defoamed in a vacuum, and then poured into a mold set to have a thickness of 2 mm with a "Teflon (registered trademark)" spacer. Next, the temperature was raised from 30° C. to 150° C. by 2.5° C. per minute in a hot air oven, and then held at 150° C. for 90 minutes to cure the epoxy resin composition. Subsequently, the temperature was lowered to 30° C. and removed from the mold to prepare a resin cured product having a thickness of 2 mm.
 <ガラス転移温度の測定方法>
 上記<樹脂硬化物の作製方法>により得られた2mm厚の樹脂硬化物から、幅12.7mm、長さ45mmの試験片を切り出し、粘弾性測定装置(ARES、ティー・エイ・インスツルメント社製)を用いて、ねじり振動周波数1.0Hz、昇温速度5.0℃/分の条件下で、-15~250℃の温度範囲でDMA測定を行った。ガラス転移温度(Tg)は、貯蔵弾性率G’曲線において、ガラス状態での接線と転移状態での接線との交点における温度とした。
<Method for measuring glass transition temperature>
A test piece with a width of 12.7 mm and a length of 45 mm was cut out from the 2 mm-thick resin cured product obtained by the above <Method for producing cured resin product>, and a viscoelasticity measuring device (ARES, TA Instruments) DMA measurement was performed in a temperature range of -15 to 250°C under the conditions of a torsional vibration frequency of 1.0 Hz and a heating rate of 5.0°C/min. The glass transition temperature (Tg) was taken as the temperature at the intersection of the tangent line in the glass state and the tangent line in the transition state in the storage modulus G' curve.
 <樹脂硬化物の引張試験方法>
 上記<樹脂硬化物の作製方法>により得られた2mm厚の樹脂硬化物から、JIS K 7113(1995)に従い、小型1(1/2)号形試験片を切り出し、インストロン万能試験機(インストロン社製)を用いてクロスヘッドスピード1.0mm/分で引張伸度を測定した。サンプル数n=6で測定した値の平均値を樹脂伸度とした。
<Tensile test method for cured resin>
From the 2 mm thick resin cured product obtained by the above <Method for producing cured resin product>, according to JIS K 7113 (1995), a small No. 1 (1/2) type test piece was cut out, and an Instron universal testing machine (Instron (manufactured by Ron Co.) was used to measure the tensile elongation at a crosshead speed of 1.0 mm/min. The average value of the values measured with the number of samples n=6 was taken as the resin elongation.
 <エポキシ樹脂組成物の脱型性評価方法>
 エポキシ樹脂組成物の脱型性評価方法は、前記の方法で得たエポキシ樹脂組成物を内径3cm、厚み4mmのフッ素ゴム製オーリング(ESCO社製)に注型し、150℃で90分加熱硬化した後に、型から脱型したエポキシ樹脂硬化物を、目視により以下の基準で判定した。
表面が平滑で、エポキシ樹脂硬化物に変形や反りがない・・・S
表面はほぼ平滑だが、わずかに変形や反りがある・・・A
表面はほぼ平滑だが、部分的に変形や反りがある・・・B
エポキシ樹脂硬化物に顕著な変形、反りおよび割れがある・・・C。
<Method for evaluating demoldability of epoxy resin composition>
The demoldability evaluation method of the epoxy resin composition was as follows: The epoxy resin composition obtained by the above method was cast into a fluororubber O-ring (manufactured by ESCO) having an inner diameter of 3 cm and a thickness of 4 mm, and heated at 150°C for 90 minutes. After curing, the epoxy resin cured product released from the mold was visually evaluated according to the following criteria.
The surface is smooth, and there is no deformation or warping in the epoxy resin cured product S
The surface is almost smooth, but there are slight deformations and warps...A
The surface is almost smooth, but there are some deformations and warps ... B
Remarkable deformation, warpage and cracking in cured epoxy resin...C.
 <炭素繊維ウェブの作製方法>
 炭素繊維をカートリッジカッターで6.5mm長さにカットし、チョップド炭素繊維を得た。水と界面活性剤(ポリオキシエチレンラウリルエーテル(商品名)、ナカライテスク(株)製)からなる濃度0.1質量%の分散液を作製し、この分散液と上記チョップド炭素繊維とを用いて、抄紙基材の製造装置で抄紙基材を製造した。製造装置は、分散槽としての容器下部に開口コックを有する直径1000mmの円筒形状の容器、分散槽と抄紙槽とを接続する直線状の輸送部(傾斜角30度)を備えている。分散槽の上面の開口部には撹拌機が付属され、開口部からチョップド炭素繊維および分散液を投入可能である。抄紙槽は、底部に幅500mmの抄紙面を有するメッシュコンベアを備える槽であり、炭素繊維基材(抄紙基材)を運搬可能なコンベアをメッシュコンベアに接続している。抄紙の際は、分散液中の炭素繊維濃度を調整することで、単位面積当たりの質量を調整した。必要に応じて、抄紙した炭素繊維基材にバインダーとしてポリビニルアルコール水溶液(クラレポバール、(株)クラレ製)を5質量%ほど付着させ、140℃の乾燥炉で1時間乾燥し、炭素繊維ウェブを得た。炭素繊維ウェブの単位面積あたりの質量は50g/mであった。
<Method for producing carbon fiber web>
The carbon fibers were cut to a length of 6.5 mm with a cartridge cutter to obtain chopped carbon fibers. A dispersion having a concentration of 0.1% by mass consisting of water and a surfactant (polyoxyethylene lauryl ether (trade name), manufactured by Nacalai Tesque Co., Ltd.) was prepared, and this dispersion and the chopped carbon fiber were used. , a papermaking base material was manufactured with a papermaking base material manufacturing apparatus. The manufacturing apparatus includes a cylindrical container with a diameter of 1000 mm having an opening cock at the bottom of the container serving as a dispersing tank, and a linear transport section (tilt angle of 30 degrees) connecting the dispersing tank and the papermaking tank. A stirrer is attached to the opening on the upper surface of the dispersion tank, and the chopped carbon fibers and the dispersion liquid can be introduced through the opening. The papermaking tank is a tank provided with a mesh conveyor having a papermaking surface with a width of 500 mm at the bottom, and a conveyor capable of transporting a carbon fiber base material (papermaking base material) is connected to the mesh conveyor. During papermaking, the mass per unit area was adjusted by adjusting the carbon fiber concentration in the dispersion. If necessary, about 5% by mass of polyvinyl alcohol aqueous solution (Kuraray Poval, manufactured by Kuraray Co., Ltd.) is applied as a binder to the paper-made carbon fiber substrate, and dried in a drying oven at 140° C. for 1 hour to form a carbon fiber web. Obtained. The mass per unit area of the carbon fiber web was 50 g/m 2 .
 <多孔質構造体の作製方法>
 上記<エポキシ樹脂組成物の調製方法>に従い調製したエポキシ樹脂組成物を炭素繊維ウェブ(繊維長6.5mm、目付50g/m)に含浸させ、プリプレグシートを得た。得られたシートを縦200mm、横200mmに裁断した。次いで、以下の工程(1)~(5)を経ることにより多孔質構造体を得た。
(1)プリプレグシートを60℃に予熱したプレス成形用金型キャビティ内に配置して金型を閉じる。
(2)金型に5MPaの圧力を付与してさらに300秒間保持する。
(3)工程(2)の後、金型キャビティを開放し、その末端に金属スペーサーを挿入し、多孔質構造体を得る際の厚みが0.8mmとなるように調整する。
(4)その後、再度、金型キャビティを締結し、圧力を保持した状態で金型を150℃まで昇温して、90分間硬化する。
(5)金型を開いて多孔質構造体を取り出す。得られた多孔質構造体の密度は0.2~0.5g/cmであった。
<Method for producing porous structure>
A prepreg sheet was obtained by impregnating a carbon fiber web (fiber length: 6.5 mm, basis weight: 50 g/m 2 ) with the epoxy resin composition prepared according to <Method for preparing epoxy resin composition>. The obtained sheet was cut into a length of 200 mm and a width of 200 mm. Then, a porous structure was obtained through the following steps (1) to (5).
(1) Place the prepreg sheet in a press molding mold cavity preheated to 60° C. and close the mold.
(2) A pressure of 5 MPa is applied to the mold and held for an additional 300 seconds.
(3) After step (2), the mold cavity is opened and metal spacers are inserted into the ends thereof to adjust the thickness of the resulting porous structure to 0.8 mm.
(4) After that, the mold cavity is closed again, and the temperature of the mold is raised to 150° C. while the pressure is maintained, and curing is performed for 90 minutes.
(5) Open the mold and take out the porous structure. The density of the resulting porous structure was 0.2-0.5 g/cm 3 .
 <繊維体積含有率(Vfi)の測定方法>
 JIS K7075(炭素繊維強化プラスチックの繊維含有率および空洞率試験方法、1991年)に準拠して求められる。
Vfi=Va/Vb×100(%)・・・(I)
Va:多孔質構造体内の繊維体積(mm
Vb:多孔質構造体の体積(mm)。
<Method for measuring fiber volume content (Vfi)>
It is determined in accordance with JIS K7075 (testing method for fiber content and void content of carbon fiber reinforced plastics, 1991).
Vfi=Va/Vb×100 (%) (I)
Va: fiber volume in the porous structure (mm 3 )
Vb: Volume of porous structure (mm 3 ).
 <引裂き強さ測定方法>
 上記<多孔質構造体の作製方法>により得られた多孔質構造体から、JIS K 6252-1(2015)に従い、長さ100mm、幅15mm、厚み0.8mm、切り裂き長さ40mmの試験片を切り出し、インストロン万能試験機(インストロン社製)を用いてクロスヘッドスピード10mm/分で引裂き強さを測定した。サンプル数n=6で測定した値の平均値を引裂き強さとした。
<Tear strength measurement method>
A test piece having a length of 100 mm, a width of 15 mm, a thickness of 0.8 mm, and a tear length of 40 mm was prepared from the porous structure obtained by <Method for producing porous structure> according to JIS K 6252-1 (2015). It was cut out and measured for tear strength at a crosshead speed of 10 mm/min using an Instron universal tester (manufactured by Instron). The average value of the values measured with the number of samples n=6 was taken as the tear strength.
 (実施例1)
 [A]エポキシ樹脂として“EPICLON(登録商標)”EXA-4816を100質量部、[B]ジシアンジアミドとしてDICY7を5.2質量部、および[C]芳香族ウレア化合物として“Omicure(登録商標)”24を3.1質量部用いて、上記<エポキシ樹脂組成物の作製方法>に従ってエポキシ樹脂組成物を調製した。
このエポキシ樹脂組成物を用いて、<エポキシ樹脂硬化物の作製方法>に従ってエポキシ樹脂硬化物を作成し、<ガラス転移温度の測定方法>に従って測定したところ、ガラス転移温度は59℃であり、良好な耐熱性を示した。
<樹脂硬化物の引張試験方法>に従って測定したところ、樹脂伸度は6.6%であり、良好な柔軟性を示した。
<エポキシ樹脂組成物の脱型性評価方法>に従って評価した脱型性はBであり、部分的に変形や反りがあるが表面はほぼ平滑であり、良好な脱型性を示した。
<多孔質構造体の作製方法>に記載の方法で、多孔質構造体を作成し、<多孔質構造体の引裂き強さ測定方法>に従って測定した引裂き強さは5.2N/mであり、良好な耐衝撃性を示した。
(Example 1)
[A] 100 parts by mass of "EPICLON (registered trademark)" EXA-4816 as an epoxy resin, [B] 5.2 parts by mass of DICY7 as dicyandiamide, and [C] "Omicure (registered trademark)" as an aromatic urea compound Using 3.1 parts by mass of 24, an epoxy resin composition was prepared according to the above <Method for preparing epoxy resin composition>.
Using this epoxy resin composition, an epoxy resin cured product was prepared according to <Method for preparing cured epoxy resin>, and measured according to <Method for measuring glass transition temperature>. showed good heat resistance.
When measured according to <Tensile test method for cured resin>, the resin elongation was 6.6%, indicating good flexibility.
The demoldability evaluated according to <Method for Evaluating Demoldability of Epoxy Resin Composition> was B, and the surface was almost smooth although there was partial deformation and warping, indicating good demoldability.
A porous structure was prepared by the method described in <Method for producing porous structure>, and the tear strength measured according to <Method for measuring tear strength of porous structure> was 5.2 N / m. It showed good impact resistance.
 (実施例2~11)
 樹脂組成をそれぞれ表1に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物および多孔質構造体を作製した。評価結果は表1に示した。
(Examples 2 to 11)
An epoxy resin composition, a cured epoxy resin and a porous structure were produced in the same manner as in Example 1, except that the resin composition was changed as shown in Table 1. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (比較例1)
 エポキシ樹脂として“EPICLON(登録商標)”EXA-4850-150と平均エポキシ当量が450である式(I)で示されるエポキシ樹脂を100部とした以外は、実施例1と同じ方法でエポキシ樹脂組成物およびエポキシ樹脂硬化物を作製した。樹脂組成および評価結果は表2に示した。得られた樹脂組成物の柔軟性は良好であったが、耐熱性および脱型性は不十分であった。
(Comparative example 1)
Epoxy resin composition was prepared in the same manner as in Example 1 except that "EPICLON (registered trademark)" EXA-4850-150 and 100 parts of the epoxy resin represented by the formula (I) having an average epoxy equivalent weight of 450 were used as the epoxy resin. A product and an epoxy resin cured product were prepared. The resin composition and evaluation results are shown in Table 2. The resulting resin composition had good flexibility, but was insufficient in heat resistance and releasability.
 (比較例2)
 エポキシ樹脂として、“デナコール(登録商標)” EX-991Lと長鎖脂肪族エポキシ樹脂であるエポキシ樹脂を100部とした以外は、実施例1と同じ方法でエポキシ樹脂組成物およびエポキシ樹脂硬化物を作製した。樹脂組成および評価結果は表2に示した。得られた樹脂組成物は硬化しなかったため脱型性が不十分であり、エポキシ樹脂組成物の特性を評価することが出来なかった。
(Comparative example 2)
An epoxy resin composition and an epoxy resin cured product were prepared in the same manner as in Example 1, except that "Denacol (registered trademark)" EX-991L and 100 parts of an epoxy resin that is a long-chain aliphatic epoxy resin were used as the epoxy resin. made. The resin composition and evaluation results are shown in Table 2. Since the obtained resin composition was not cured, the releasability was insufficient, and the characteristics of the epoxy resin composition could not be evaluated.
 (比較例3)
 樹脂組成を表2に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物および多孔質構造体を作製した。評価結果は表2に示した。得られた樹脂組成物の耐熱性および脱型性は良好であったが、樹脂伸度が3.0%と低く不十分であった。また、得られた多孔質構造体の引裂き強さは2.3N/mと低く耐衝撃性が不十分であった。
(Comparative Example 3)
An epoxy resin composition, a cured epoxy resin and a porous structure were produced in the same manner as in Example 1, except that the resin composition was changed as shown in Table 2. The evaluation results are shown in Table 2. The heat resistance and releasability of the obtained resin composition were good, but the resin elongation was as low as 3.0%, which was insufficient. Moreover, the resulting porous structure had a low tear strength of 2.3 N/m and insufficient impact resistance.
 (比較例4)
 樹脂組成を表2に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物および多孔質構造体を作製した。評価結果は表2に示した。得られた樹脂組成物の耐熱性および脱型性は良好であったが、樹脂伸度が3.2%と低く不十分であった。また、得られた多孔質構造体の引裂き強さは2.4N/mと低く耐衝撃性が不十分であった。
(Comparative Example 4)
An epoxy resin composition, a cured epoxy resin and a porous structure were produced in the same manner as in Example 1, except that the resin composition was changed as shown in Table 2. The evaluation results are shown in Table 2. The heat resistance and releasability of the obtained resin composition were good, but the resin elongation was as low as 3.2%, which was insufficient. Moreover, the resulting porous structure had a low tear strength of 2.4 N/m and insufficient impact resistance.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 なお、表中の各成分の数値は、エポキシ樹脂組成物に含まれる全エポキシ樹脂成分を100質量部とした質量部である。
 
In addition, the numerical value of each component in a table|surface is a mass part when all the epoxy resin components contained in an epoxy-resin composition are set to 100 mass parts.

Claims (18)

  1. 下記成分[A]、[B]、および[C]を含むエポキシ樹脂組成物。
    [A]:式(I)または式(II)の構造を有するエポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、R、Rは、水素原子またはメチル基、エチル基を表す。Xは炭素原子を6個以上含む2価の脂肪族基を表す。また、nは1~15の整数を表す。平均エポキシ当量は300~420である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(II)中、R、Rは、水素原子またはメチル基、エチル基を表す。また、nは1~10の整数を表す。)
    [B]:ジシアンジアミド
    [C]:芳香族ウレア
    An epoxy resin composition containing the following components [A], [B], and [C].
    [A]: An epoxy resin having a structure of formula (I) or formula (II).
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (I), R 1 and R 2 represent a hydrogen atom, a methyl group, or an ethyl group. X represents a divalent aliphatic group containing 6 or more carbon atoms. n is 1 to 15 represents an integer of. The average epoxy equivalent is 300 to 420.)
    Figure JPOXMLDOC01-appb-C000002
    (In formula (II), R 3 and R 4 represent a hydrogen atom, a methyl group, or an ethyl group, and n represents an integer of 1 to 10.)
    [B]: dicyandiamide [C]: aromatic urea
  2. 成分[A]のエポキシ樹脂を、全エポキシ樹脂100質量部中、45~100質量部含む、請求項1に記載のエポキシ樹脂組成物。 2. The epoxy resin composition according to claim 1, comprising 45 to 100 parts by mass of the epoxy resin as component [A] based on 100 parts by mass of the total epoxy resin.
  3. 硬化物のガラス転移温度が80℃以上である、請求項1に記載のエポキシ樹脂組成物。 2. The epoxy resin composition according to claim 1, wherein the cured product has a glass transition temperature of 80[deg.] C. or higher.
  4. 成分[A]として、式(I)の構造を有するエポキシ樹脂と式(II)の構造を有するエポキシ樹脂の両方を含む、請求項1に記載のエポキシ樹脂組成物。 2. The epoxy resin composition according to claim 1, comprising both an epoxy resin having a structure of formula (I) and an epoxy resin having a structure of formula (II) as component [A].
  5. 式(I)の構造を有するエポキシ樹脂と式(II)の構造を有するエポキシ樹脂との重量配合比率が、3:2~5:1である、請求項4に記載のエポキシ樹脂組成物。 5. The epoxy resin composition according to claim 4, wherein the weight mixing ratio of the epoxy resin having the structure of formula (I) and the epoxy resin having the structure of formula (II) is 3:2 to 5:1.
  6. 請求項1~5のいずれかに記載のエポキシ樹脂組成物に、強化繊維として、炭素繊維、ガラス繊維、およびアラミド繊維からなる群より選ばれる少なくとも1種を含むプリプレグ。 A prepreg containing the epoxy resin composition according to any one of claims 1 to 5 and at least one selected from the group consisting of carbon fiber, glass fiber and aramid fiber as a reinforcing fiber.
  7. 前記強化繊維が不連続繊維である、請求項6に記載のプリプレグ。 A prepreg according to claim 6, wherein the reinforcing fibers are discontinuous fibers.
  8. 前記強化繊維が束状でランダムに分散している請求項7に記載のプリプレグ。 The prepreg according to claim 7, wherein the reinforcing fibers are bundled and randomly dispersed.
  9. 前記強化繊維が略モノフィラメント状でランダムに分散している請求項7に記載のプリプレグ。 The prepreg according to claim 7, wherein the reinforcing fibers are substantially monofilament-like and randomly dispersed.
  10. 請求項6に記載のプリプレグを硬化してなる繊維強化複合材料。 A fiber-reinforced composite material obtained by curing the prepreg according to claim 6.
  11. 内部に空隙を有する多孔質構造体である、請求項10に記載の繊維強化複合材料。 The fiber-reinforced composite material according to claim 10, which is a porous structure having voids therein.
  12. 密度が0.01g/cm以上0.9g/cm以下である、請求項11に記載の繊維強化複合材料。 The fiber-reinforced composite material according to claim 11, having a density of 0.01 g/cm 3 or more and 0.9 g/cm 3 or less.
  13. JIS-K6252-1(2015)に準拠したトラウザ形引裂き試験の引裂き強さが3.0N/m以上である、請求項11に記載の繊維強化複合材料。 The fiber-reinforced composite material according to claim 11, which has a tear strength of 3.0 N/m or more in a trouser type tear test according to JIS-K6252-1 (2015).
  14. 構造体の表面積の25%以上に、請求項10に記載の繊維強化複合材料が配置され、一体化された複合構造体。 A composite structure in which the fiber-reinforced composite material according to claim 10 is arranged and integrated over 25% or more of the surface area of the structure.
  15. 前記繊維強化複合材料を前記構造体で挟み込むサンドイッチ構造であり、一体化された請求項14に記載の複合構造体。 15. The composite structure according to claim 14, which has a sandwich structure in which the fiber-reinforced composite material is sandwiched between the structures and is integrated.
  16. 構造体が球状、半球状、なす型、円筒、円柱、円錐、角筒、角柱、角錐から選択される少なくとも1種の形状であり、請求項14に記載の複合構造体。 15. The composite structure according to claim 14, wherein the structure has at least one shape selected from spherical, hemispherical, eggplant-shaped, cylindrical, columnar, conical, prismatic, prismatic, and pyramidal.
  17. 請求項10に記載の繊維強化複合材料を用いた耐衝撃部材。 A shock-resistant member using the fiber-reinforced composite material according to claim 10.
  18. 請求項10に記載の繊維強化複合材料を用いた制振部材。 A damping member using the fiber-reinforced composite material according to claim 10 .
PCT/JP2022/032775 2021-09-29 2022-08-31 Epoxy resin composition, prepreg, fiber-reinforced composite material, composite structure, impact-resistant member, and damping member WO2023053834A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021158867 2021-09-29
JP2021-158867 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023053834A1 true WO2023053834A1 (en) 2023-04-06

Family

ID=85780619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032775 WO2023053834A1 (en) 2021-09-29 2022-08-31 Epoxy resin composition, prepreg, fiber-reinforced composite material, composite structure, impact-resistant member, and damping member

Country Status (1)

Country Link
WO (1) WO2023053834A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016504472A (en) * 2013-01-07 2016-02-12 東レ株式会社 Epoxy resin composition, prepreg, fiber reinforced plastic material, and method for producing fiber reinforced plastic material
JP2017536441A (en) * 2014-12-02 2017-12-07 東レ株式会社 Epoxy resin composition, prepreg, fiber reinforced plastic material and method for producing fiber reinforced plastic material
JP2018104482A (en) * 2016-12-22 2018-07-05 東レ株式会社 Structure
JP2019189750A (en) * 2018-04-25 2019-10-31 三菱ケミカル株式会社 Epoxy resin composition, prepreg containing epoxy resin composition, and cured article thereof
WO2020003926A1 (en) * 2018-06-26 2020-01-02 東レ株式会社 Laminated body
JP2021004314A (en) * 2019-06-26 2021-01-14 味の素株式会社 Resin composition
WO2021106562A1 (en) * 2019-11-29 2021-06-03 東レ株式会社 Thermal conductor and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016504472A (en) * 2013-01-07 2016-02-12 東レ株式会社 Epoxy resin composition, prepreg, fiber reinforced plastic material, and method for producing fiber reinforced plastic material
JP2017536441A (en) * 2014-12-02 2017-12-07 東レ株式会社 Epoxy resin composition, prepreg, fiber reinforced plastic material and method for producing fiber reinforced plastic material
JP2018104482A (en) * 2016-12-22 2018-07-05 東レ株式会社 Structure
JP2019189750A (en) * 2018-04-25 2019-10-31 三菱ケミカル株式会社 Epoxy resin composition, prepreg containing epoxy resin composition, and cured article thereof
WO2020003926A1 (en) * 2018-06-26 2020-01-02 東レ株式会社 Laminated body
JP2021004314A (en) * 2019-06-26 2021-01-14 味の素株式会社 Resin composition
WO2021106562A1 (en) * 2019-11-29 2021-06-03 東レ株式会社 Thermal conductor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5967084B2 (en) Carbon fiber substrate, prepreg and carbon fiber reinforced composite material
JPWO2013015299A1 (en) Prepreg and fiber reinforced composites
WO2011040602A1 (en) Manufacturing method for fibre-reinforced composite material, heat resistant material using said composite material, and heat resistant structural material using said composite material
WO2019225442A1 (en) Towpreg, method for manufacturing same, and method for manufacturing pressure container
EP3766926A1 (en) Prepreg and fiber-reinforced composite material
WO2018003691A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP4428978B2 (en) Epoxy resin composition
US20190194404A1 (en) Compositions and methods for making thermoplastic composite materials
TWI815628B (en) Carbon fiber bundles, prepregs, fiber reinforced composites
TWI780182B (en) Epoxy resin compositions, prepregs and fiber reinforced composites
WO2023053834A1 (en) Epoxy resin composition, prepreg, fiber-reinforced composite material, composite structure, impact-resistant member, and damping member
CN115210318B (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP7423891B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP2017122205A (en) Epoxy resin composition, prepreg, and method for producing fiber-reinforced composite material
JP7180446B2 (en) Resin feedstock, preform, and method for producing fiber-reinforced composite material using same
TWI805651B (en) Prepregs and Fiber Reinforced Composites
JPS63289034A (en) Thermoplastic resin composition and its production
JP2004300222A (en) Vapor grown carbon fiber-containing prepreg and method for producing the same
JP7215002B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite
JP7215001B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP2020158594A (en) Towpreg and production method thereof and production method of pressure vessel
WO2021153644A1 (en) Epoxy resin composition, cured resin product, prepreg, and fiber-reinforced composite material
JP2023140493A (en) Fabric prepreg, fiber-reinforced composite material, and structural material for automobile
JP2013209474A (en) Resin composition, prepreg using the same and method for producing resin composition
JP2015108052A (en) Epoxy resin composition, prepreg and fiber reinforced composite material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022555085

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875706

Country of ref document: EP

Kind code of ref document: A1