JPH02275769A - Production of sintered aluminum nitride - Google Patents

Production of sintered aluminum nitride

Info

Publication number
JPH02275769A
JPH02275769A JP1095382A JP9538289A JPH02275769A JP H02275769 A JPH02275769 A JP H02275769A JP 1095382 A JP1095382 A JP 1095382A JP 9538289 A JP9538289 A JP 9538289A JP H02275769 A JPH02275769 A JP H02275769A
Authority
JP
Japan
Prior art keywords
alkaline earth
earth metal
aluminum nitride
metal oxide
pts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1095382A
Other languages
Japanese (ja)
Inventor
Tadashi Nakano
正 中野
Makoto Yokoi
誠 横井
Masato Kumagai
正人 熊谷
Toshihiko Funabashi
敏彦 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1095382A priority Critical patent/JPH02275769A/en
Publication of JPH02275769A publication Critical patent/JPH02275769A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To produce a sintered AlN having high density and high thermal conductivity by adding specific amounts of an alkaline earth metal oxide, B2O3 and Al as sintering assistants to AlN powder, forming the mixture and calcining the product under specific condition. CONSTITUTION:100 pts.wt. of AlN powder (having fine particle size and low oxygen and metallic impurity contents as far as possible) used as a main component is mixed with (A) 0.01 to 5 pts.wt. (in terms of alkaline earth metal oxide) of one or more substances selected from alkaline earth metal oxides (e.g. BeO) and alkaline earth metal compound capable of forming alkaline earth metal oxide by thermal decomposition (e.g. hydroxide), (B) 0.01 to 5 pts.wt. (in terms of B2O3) of B2O3 or a boron compound capable of forming B2O3 by thermal decomposition (e.g. metaboric acid) and (C) 0.01 to 5 pts.wt. of Al powder as sintering assistants. The sum of the components A to C is <=10 pts.wt. The mixed powder is slurried with ethanol, etc., mixed with a binder, formed into a prescribed form, dried, heated to decompose and dissipate the binder and calcined at 1400 to 2000 deg.C in a non-oxidizing atmosphere.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は窒化アルミニウム焼結体の製造方法に関し、特
に産業上の要求の高い、高密度かつ高熱伝導率の窒化ア
ルミニウム焼結体の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an aluminum nitride sintered body, and in particular, a method for manufacturing an aluminum nitride sintered body with high density and high thermal conductivity, which is in high industrial demand. Regarding.

[従来の技術] 窒化アルミニウム焼結体は、高い熱伝導性と高い絶縁性
を有し、高集積・高出力用の半導体向けの基板材料とし
て注目されている素材である。
[Prior Art] Aluminum nitride sintered bodies have high thermal conductivity and high insulation properties, and are attracting attention as substrate materials for highly integrated, high-output semiconductors.

基板材料として、望ましい焼結体の特性としては、 ■絶縁抵抗が高い。Desirable properties of the sintered body as a substrate material include: ■High insulation resistance.

■熱伝導率が大きい。■High thermal conductivity.

0強度が高い。0 High intensity.

ことが条件である。That is the condition.

しかしながら、窒化アルミニウムの粉末を焼結助剤に添
加することなく成形・焼成したのでは、焼結が不十分に
しか行われず、かつ酸素等の不純物の除去が完全でない
ため、上記望ましい特性を得ることは不可能であった。
However, if aluminum nitride powder is molded and fired without adding a sintering aid, sintering will be insufficient and impurities such as oxygen will not be completely removed, thus achieving the desired characteristics described above. That was impossible.

このため、焼結密度を上げる方法として、窒化アルミニ
ウム粉末に5焼結助剤として第二の物質を添加する方法
が広く行われてきた。代表的な例を挙げると、酸化イツ
トリウム(特開昭49−111909号)、酸化カルシ
ウム(特公昭58−49510号)等の酸化物、炭化カ
ルシウム(特開昭61−270264号)、窒化カルシ
ウム(特開昭6l−201670) 、窒化イツトリウ
ム(特開昭第61−183174号等)、硼化カルシウ
ム(特開昭61−97168号)、カルシウムシアナミ
ド(特開昭第62−283873号)、硫化カルシウム
(特開昭第61−146768号)等が知られており、
室圧下またはホットプレス焼成によって緻密な焼結体が
得られることが報告されている。
Therefore, as a method of increasing the sintered density, a method of adding a second substance as a sintering aid to aluminum nitride powder has been widely used. Typical examples include oxides such as yttrium oxide (Japanese Patent Publication No. 49-111909), calcium oxide (Japanese Patent Publication No. 58-49510), calcium carbide (Japanese Patent Publication No. 61-270264), calcium nitride ( JP-A-61-201670), yttrium nitride (JP-A-61-183174, etc.), calcium boride (JP-A-61-97168), calcium cyanamide (JP-A-62-283873), calcium sulfide (Unexamined Japanese Patent Publication No. 61-146768) etc. are known,
It has been reported that a dense sintered body can be obtained by firing under room pressure or hot press.

焼結助剤が窒化アルミニウムの緻密化に効果があるのは
、焼成中のある温度域で、焼結助剤の作用によって粒界
に液相が形成され、この液相が窒化アルミニウムの粒子
成長を助長するため高密度化できるものと考えられてい
る。
The reason why sintering aids are effective in densifying aluminum nitride is that in a certain temperature range during firing, a liquid phase is formed at the grain boundaries due to the action of the sintering aid, and this liquid phase is responsible for the growth of aluminum nitride particles. It is believed that high density can be achieved to promote this.

また、窒化アルミニウムを高熱伝導化するためには、窒
化アルミニウム粒内の酸素をできるだけ低減させる必要
があることが知られている。焼結助剤が窒化アルミニウ
ム焼結体の高熱伝導化に対しても効果があるのは、焼結
助剤と窒化アルミニウム中に不純物として含まれる酸化
アルミニウムの反応により、粒子内の酸素濃度を下げる
ためと説明される。
Furthermore, it is known that in order to make aluminum nitride highly thermally conductive, it is necessary to reduce oxygen in aluminum nitride grains as much as possible. The sintering aid is effective in increasing the thermal conductivity of aluminum nitride sintered bodies because the reaction between the sintering aid and aluminum oxide, which is contained as an impurity in aluminum nitride, lowers the oxygen concentration within the particles. It is explained that this is because

このため、窒化アルミニウムの焼結体を製造する上で、
焼結助剤の添加は不可欠と考えられる。
For this reason, in manufacturing aluminum nitride sintered bodies,
Addition of sintering aids is considered essential.

しかし、酸化イツトリウムやランタノイド金属を焼結助
剤として使った場合、焼結助剤の作用によって生成する
液相の蒸気圧が低いため、該液相が揮散せずに焼結体中
に残存してしまう結果として、表面や内部にむらが出や
すく均質でないため、基鈑の使用上に不都合がある、と
いう問題点があった。
However, when yttrium oxide or lanthanide metal is used as a sintering aid, the vapor pressure of the liquid phase generated by the action of the sintering aid is low, so the liquid phase does not volatilize and remains in the sintered body. As a result, the surface and interior of the base plate tend to be uneven and not homogeneous, which poses a problem in that the base plate is inconvenient to use.

また、酸化カルシウム等のアルカリ土類金属酸化物を使
った場合は、低温度域で液相が揮散により減少してしま
い、揮散温度より更に高温度である焼成温度域において
は、窒化アルミニウム粒内の酸素濃度を下げる効果が弱
くなるため、焼結体の熱伝導率があまり高くならない、
という問題点があった。
In addition, when alkaline earth metal oxides such as calcium oxide are used, the liquid phase decreases due to volatilization at low temperatures, and in the firing temperature range, which is higher than the volatilization temperature, the inside of aluminum nitride grains is reduced. The effect of lowering the oxygen concentration in the sintered body becomes weaker, so the thermal conductivity of the sintered body does not become very high
There was a problem.

窒化物、炭化物、硼化物等は、上記のような問題は少な
いと考えられるが、窒化物、炭化物、硼化物の多くは、
いずれも入手しにくく合成も困難な物質であり、あえて
使っても極めて高コストになってしまい実用的でないと
考えられる。さらに、窒化物、炭化物、硼化物は、一般
に通常の大気中では、大気中の水蒸気や酸素、二酸化吹
製等によって容易に分解されてしまう。このため、窒化
物、炭化物、硼化物を添加したグリーン成形体を大気中
で取り扱うと、焼結助剤が経時的に減少するばかりか分
解生成物のガスによって成形体に欠陥を生じやすい。従
って、これら化合物を焼結助剤として取り扱う場合は、
窒素等の不活性ガス中か真空中で取り扱う必要があり、
大量生産を考えるとこれは現実的でない。
Although nitrides, carbides, borides, etc. are thought to have fewer problems such as those mentioned above, many of the nitrides, carbides, and borides are
All of these substances are difficult to obtain and difficult to synthesize, and even if they were used, they would be extremely expensive and would be impractical. Furthermore, nitrides, carbides, and borides are generally easily decomposed in the normal atmosphere by water vapor, oxygen, carbon dioxide, etc. in the atmosphere. For this reason, when a green molded body to which nitrides, carbides, and borides are added is handled in the atmosphere, not only the sintering aid decreases over time, but also the molded body is likely to suffer from defects due to gases from decomposition products. Therefore, when handling these compounds as sintering aids,
It must be handled in an inert gas such as nitrogen or in a vacuum.
This is not realistic considering mass production.

特開昭61−256981号公報には、アルカリ土類金
属酸化物と、アルミニウムを添加した例が開示されてい
る。しかし、この例では添加したアルミニウムと窒化ア
ルミニウム表面の酸素との反応による酸素低減効果が主
な目的であり、焼結密度は不十分であった。
JP-A-61-256981 discloses an example in which an alkaline earth metal oxide and aluminum are added. However, in this example, the main purpose was to reduce oxygen by the reaction between added aluminum and oxygen on the surface of aluminum nitride, and the sintered density was insufficient.

また、特開昭61−227969号公報には、アルカリ
土類金属酸化物と酸化硼素を添加した例が開示されてい
る。しかし、この例では低温で硼酸質のガラス相を形成
することにより、グリーン成形体中の助剤分布の均質性
を高めることが目的であり、焼結促進効果や酸素の低減
効果を期待することはできない。
Further, JP-A-61-227969 discloses an example in which an alkaline earth metal oxide and boron oxide are added. However, in this example, the purpose is to improve the homogeneity of the auxiliary agent distribution in the green molded body by forming a boric acid glass phase at low temperatures, which is expected to promote sintering and reduce oxygen. I can't.

このため、均質、高密度で熱伝導率の高い窒化アルミニ
ウム焼結体を製造するための、新しい焼結助剤の開発が
望まれていた。
Therefore, it has been desired to develop a new sintering aid for producing a homogeneous, high-density, and highly thermally conductive aluminum nitride sintered body.

〔発明が解決しようとする課題1 本発明の目的は上記従来技術の問題点を克服し、基板材
料用として望ましい、均質で高密度かつ高熱伝導率の窒
化アルミニウム焼結体の製造方法を提供することにある
[Problem to be Solved by the Invention 1] An object of the present invention is to overcome the problems of the prior art described above and provide a method for producing a homogeneous, high-density, and high-thermal-conductivity aluminum nitride sintered body, which is desirable as a substrate material. There is a particular thing.

〔課題を解決するための手段] 本発明者らは上記従来技術の問題点に鑑み、均質、高密
度で熱伝導率の高い窒化アルミニウム焼結体を製造する
ため鋭意研究を重ねた結果、本発明に至ったものである
[Means for Solving the Problems] In view of the problems of the prior art described above, the present inventors have conducted intensive research to produce a homogeneous, high-density, and highly thermally conductive aluminum nitride sintered body, and as a result, have developed the present invention. This led to the invention.

すなわち、本発明は、 主成分の窒化アルミニウム粉末100重量部に焼結助剤
として、 (イ) アルカリ土類金属酸化物および加熱により熱分
解してアルカリ土類金属酸化物を生成するアルカリ土類
金属化合物より選ばれた1種または2種以上を、アルカ
リ土類金属酸化物に換算して0.01〜5重量部と、 (ロ) 酸化硼素および加熱により熱分解して酸化硼素
を生成する硼素化合物より選ばれた1種または2種以上
を、酸化硼素に換算して0.01〜5重量部と、 (ハ) アルミニウム0.01〜5重量部を、(ニ) 
前記(イ)、(ロ)および(ハ)の合計が10重量部以
下になるように添加し、該混合粉末を成形したのち、非
酸化性雰囲気中で1400〜2000°Cの温度範囲に
おいて焼成することを特徴とする窒化アルミニウム焼結
体の製造方法。
That is, in the present invention, 100 parts by weight of aluminum nitride powder as the main component, and as a sintering aid, (a) an alkaline earth metal oxide and an alkaline earth metal that is thermally decomposed by heating to produce an alkaline earth metal oxide; One or more selected metal compounds in an amount of 0.01 to 5 parts by weight in terms of alkaline earth metal oxide, (b) Boron oxide and thermal decomposition by heating to produce boron oxide. (c) 0.01 to 5 parts by weight of one or more selected boron compounds in terms of boron oxide; (c) 0.01 to 5 parts by weight of aluminum; (d)
Add the above (a), (b) and (c) so that the total is 10 parts by weight or less, mold the mixed powder, and then sinter in a temperature range of 1400 to 2000 ° C in a non-oxidizing atmosphere. A method for producing an aluminum nitride sintered body, characterized by:

を提供するものである。It provides:

[作用] 主成分の窒化アルミニウムの粉末としては、製法、純度
等は特に限定はされないが、高い焼結体密度を得るため
にはできるだけ微細で粒度の揃ったものが好ましく、ま
た、高い熱伝導性を得るためには酸素量と金属不純物量
の低いものの使用が好適である。
[Function] There are no particular restrictions on the manufacturing method, purity, etc. of the aluminum nitride powder, which is the main component, but in order to obtain a high sintered body density, it is preferable that the powder be as fine as possible and have a uniform particle size. In order to obtain the desired properties, it is preferable to use a material with a low amount of oxygen and metal impurities.

窒化アルミニウム粉末に焼結助剤として、前記(イ)、
(ロ)および(ハ)の3種類を添加する。添加の時期は
この3種類が必ずしも同時である必要はなく、また、ど
のような順序で加えても構わない、さらに、(イ)、(
ロ)および(ハ)の3種類を予め混合しておき、この混
合物をアルゴンガス中等の不活性雰囲気下で加熱・仮焼
してから、窒化アルミニウム粉末に添加してもよい。
As a sintering aid to aluminum nitride powder, the above (a),
Add three types (b) and (c). These three types do not necessarily have to be added at the same time, and they can be added in any order.
The three types (b) and (c) may be mixed in advance, and this mixture may be heated and calcined in an inert atmosphere such as argon gas, and then added to the aluminum nitride powder.

アルカリ土類金属酸化物としてはBe01Mg01Ca
b、SrO,BaOが具体的に挙げられ、焼成中に熱分
解してアルカリ土類金属酸化物を生成するアルカリ土類
金属化合物としては、例えば、水酸化物、炭酸塩、硝酸
塩、蓚酸塩・酢酸塩等の有機酸塩、アルコキシド、キレ
ート、等が挙げられる。
Be01Mg01Ca as alkaline earth metal oxide
Specific examples of alkaline earth metal compounds that thermally decompose during firing to produce alkaline earth metal oxides include hydroxides, carbonates, nitrates, oxalates, etc. Examples include organic acid salts such as acetates, alkoxides, chelates, and the like.

アルカリ土類金属酸化物としての添加量は0.01重量
部以上かつ5重量部以下に限定される。アルカリ土類金
属酸化物の添加量が0.01重量部未満であると焼結助
剤の効果がな(なり、逆に5重量部を越えるとかえって
焼結が阻害され、いずれも焼結体の密度が下がり、熱伝
導率が低下してしまう。
The amount of alkaline earth metal oxide added is limited to 0.01 parts by weight or more and 5 parts by weight or less. If the amount of alkaline earth metal oxide added is less than 0.01 part by weight, the sintering aid will have no effect (on the contrary, if it exceeds 5 parts by weight, sintering will be inhibited, and in both cases, the sintered body will be density decreases, and thermal conductivity decreases.

焼成中に熱分解して酸化硼素を生成する硼素化合物とし
ては、例えば、メタ硼酸、オルト硼酸、硼酸アンモニウ
ム、アミン硼酸塩、硼酸アミド、硼酸エステルが挙げら
れる。
Examples of boron compounds that are thermally decomposed to produce boron oxide during firing include metaboric acid, orthoboric acid, ammonium borate, amine borates, boric acid amides, and boric acid esters.

酸化硼素としての添加量は0.01重量部以上かつ5重
量部以下に限定される。酸化硼素の添加量が0.01部
未満であると焼結助剤の効果がな(なり、逆に5重量部
を越えると、かえって焼結が阻害され、いずれも焼結体
の密度が下がり、熱伝導率が低下してしまう。
The amount of boron oxide added is limited to 0.01 parts by weight or more and 5 parts by weight or less. If the amount of boron oxide added is less than 0.01 part, the sintering aid will be ineffective (on the other hand, if it exceeds 5 parts by weight, sintering will be inhibited, and the density of the sintered body will decrease). , the thermal conductivity will decrease.

ここで、アルカリ土類金属酸化物と酸化硼素は、おのお
の個別の物質として加える代わりに、アルカリ土類金属
の硼酸塩のような化合物として加えることもできる。
Here, instead of adding the alkaline earth metal oxide and boron oxide as individual substances, they can also be added as a compound such as an alkaline earth metal borate.

アルミニウムは、−J5tには粉末または箔粉の形で加
える。粒度等に制限はないが、十分に細かくないと混合
が不完全になり焼けむらの原因となることがある。
Aluminum is added to -J5t in the form of powder or foil powder. There is no limit to the particle size, but if it is not fine enough, mixing may be incomplete, which may cause uneven baking.

アルミニウムの添加量は0.01重量部以上かつ5重量
部以下に限定される。アルミニウムの添加量が0.01
重量部未満であると添加の効果がなくなり、5重量部を
越えると焼成中に溶解・凝集する結果、金属粒となって
むらの原因になる。
The amount of aluminum added is limited to 0.01 parts by weight or more and 5 parts by weight or less. The amount of aluminum added is 0.01
If the amount is less than 5 parts by weight, the effect of addition will be lost, and if it exceeds 5 parts by weight, it will dissolve and agglomerate during firing, resulting in metal grains and causing unevenness.

アルカリ土類金属酸化物、酸化硼素およびアルミニウム
のそれぞれの添加量は、上記範囲に入っていれば特に制
限はないが、以上3種の焼結助剤の合計添加量が10重
量部を越えると、窒化アルミニウムの焼結が阻害される
ので、合計添加量は10重量部以下に制限される。
There is no particular restriction on the amount of each of the alkaline earth metal oxide, boron oxide, and aluminum as long as it falls within the above range, but if the total amount of the three sintering aids exceeds 10 parts by weight, Since sintering of aluminum nitride is inhibited, the total amount added is limited to 10 parts by weight or less.

上述した添加量によって主成分および焼結助剤を混合し
た粉末は、エタノール、トルエン、ジオキサン等の分散
媒を用いて十分に混合・混練する。このとき必要に応じ
て適当な分散剤を添加してもよい。このようにして得ら
れるスラリーに適切な量のバインダを添加し、所望の形
状に成形する。成形方法としては、基板を製造する場合
にはドクターブレード法によることが多いが、他のプレ
ス法、ロールコート法などを用いることも可能である。
The powder obtained by mixing the main component and the sintering aid in the amounts added above is sufficiently mixed and kneaded using a dispersion medium such as ethanol, toluene, or dioxane. At this time, a suitable dispersant may be added if necessary. An appropriate amount of binder is added to the slurry thus obtained, and the slurry is molded into a desired shape. As a molding method, a doctor blade method is often used when manufacturing a substrate, but other press methods, roll coating methods, etc. can also be used.

成形体は乾燥した後、加熱によりバインダを分解・揮散
させる(脱脂工程)。焼成は一般に窒素、アンモニア、
アルゴン等の分子状の酸素を含まない非酸化性雰囲気下
で、1400℃から2000°Cの範囲で行う。
After the molded body is dried, the binder is decomposed and volatilized by heating (degreasing process). Firing is generally performed using nitrogen, ammonia,
It is carried out in a non-oxidizing atmosphere such as argon that does not contain molecular oxygen at a temperature in the range of 1400°C to 2000°C.

焼成を酸化性雰囲気で行うと酸素によって分解されて酸
化アルミニウムとなり、また焼成温度が1400’C未
満では焼結が不十分で、2000℃を越えるとAffN
の揮発によって密度が著しく低下する。
If firing is performed in an oxidizing atmosphere, it will be decomposed by oxygen and become aluminum oxide, and if the firing temperature is less than 1400'C, sintering will be insufficient, and if it exceeds 2000°C, AffN will occur.
The density decreases significantly due to volatilization.

焼結助剤としてアルカリ土類金属酸化物、酸化硼素、金
属アルミニウムを複合添加することによる効果は明らか
ではないが、アルカリ土類金属酸化物としてCaOを例
にとって説明すれば、次のように推察される。
The effect of adding a combination of alkaline earth metal oxide, boron oxide, and metal aluminum as a sintering aid is not clear, but if we take CaO as an example of an alkaline earth metal oxide, we can infer the following. be done.

(1)B203+2Aff=A℃203+2B(2) 
2 B + 3 Ca O= 3 Ca B 6 + 
B 203(3)6B203+A、2203 =Aβ2 (B4O713 (4)6CaO+Al2203=Ca6A9209すな
わち、1000℃以下で(1)式の反応でB2O3、A
℃からアルミナと硼素が生じ、この硼素が(2)式のよ
うに焼結助剤のCaOと反応してCaBにを生成する。
(1) B203+2Aff=A℃203+2B(2)
2 B + 3 Ca O= 3 Ca B 6 +
B 203 (3) 6B203 + A, 2203 = Aβ2 (B4O713 (4) 6CaO + Al2203 = Ca6A9209 In other words, B2O3, A
Alumina and boron are produced from the temperature of 0.degree. C., and this boron reacts with the sintering aid CaO to produce CaB as shown in equation (2).

さらに高温になると、未反応8203 Bよび(2)式
によって生成した8203と、AffN粒子表面に存在
するA Q 203 :!3 ヨび(1)式で生成した
AR203と、未反応のCaOは相互に(3)、(4)
式のように反応して、A22  (B4O7) 3、C
a6Ag2osのような低融点の粒界液相を形成する。
When the temperature rises further, unreacted 8203 B and 8203 generated by equation (2), and A Q 203 present on the AffN particle surface:! 3 AR203 generated by equation (1) and unreacted CaO are mutually (3) and (4)
React as shown in the formula to form A22 (B4O7) 3,C
A grain boundary liquid phase with a low melting point such as a6Ag2os is formed.

焼結温度付近において、これらの粒界液相は焼結を著し
く促進し焼結密度を向上させるが、蒸発によって徐々に
揮散する。また、(1)式の反応で生成したCaB6は
焼成温度で保持中も残存し、その強い還元作用と焼結促
進作用によって、粒界液相の大部分が揮散した後でも焼
結と脱酸素の効果は継続する。以上の結果として、非常
に緻富で酸素の少ない焼結体が得られる。
Near the sintering temperature, these grain boundary liquid phases significantly promote sintering and improve the sintered density, but are gradually volatilized by evaporation. In addition, CaB6 generated by the reaction of equation (1) remains at the sintering temperature, and its strong reducing and sintering promoting effects allow for sintering and deoxidation even after most of the grain boundary liquid phase has volatilized. The effect continues. As a result of the above, a very dense sintered body with low oxygen content can be obtained.

上記反応は複雑多様の中間体を生成し、それぞれの中間
体が焼結促進と低酸素化に寄与するのが特徴である。ま
た、焼成中の雰囲気を切り賛えたり変化させることによ
って、中間生成相を制御することもできる。
The above reaction is characterized by producing a variety of complex intermediates, each of which contributes to sintering promotion and oxygen reduction. The intermediate phase can also be controlled by controlling or changing the atmosphere during firing.

以上、アルカリ土類金属酸化物としてCaOを用いて説
明したが、焼結過程は他のアルカリ土類酸化物において
も本質的に同様である。
Although the above description has been made using CaO as the alkaline earth metal oxide, the sintering process is essentially the same for other alkaline earth metal oxides.

このような効果は、単独の酸化物等の添加で1よfrJ
られす、また、アルカリ土類金属酸化物、酸化硼素およ
びアルミニウムのうちの2種を添加したたけでも得られ
ず、本発明による顕著な焼結促進と酸素低減の効果は、
アルカリ土類金属酸化物、酸化硼素および金属アルミニ
ウムの3種を複合添加することによってはじめて得られ
るものである。
Such an effect can be obtained by adding a single oxide, etc.
Furthermore, the remarkable effects of promoting sintering and reducing oxygen by the present invention cannot be obtained even by adding only two of alkaline earth metal oxides, boron oxide, and aluminum.
It can only be obtained by adding a combination of three types: an alkaline earth metal oxide, boron oxide, and metal aluminum.

〔実施例] 実施例1 平均粒径1umの窒化アルミニウム粉末100(Rm部
に、第1表に示す添加量の、粒径1μmのアルカリ土類
金属酸化物またはアルカリ土類金属炭酸塩(酸化物とし
て換算)(試料番号14は酸化物、他は炭酸塩)、平均
粒径1.5ILmの酸化硼素またはメタ硼酸(酸化硼素
として換算)(試料番号10は硼酸、他は酸化物ン、平
均粒径3μmのアトマイズ法によって製造した純度99
.5%のアルミニウム粉末を1分散媒としてエタノール
とキシレンの混合液を用い、ボールミルで24時間混合
後、バインダとしてポリビニルブチラール樹脂を添加し
、ドクターブレード法によってシート状に成形した。
[Example] Example 1 Alkaline earth metal oxide or alkaline earth metal carbonate (oxide boron oxide or metaboric acid (converted as boron oxide) with an average particle size of 1.5 ILm (sample number 10 is boric acid, others are oxides, average particle size) Purity 99 manufactured by atomization method with a diameter of 3 μm
.. A mixture of ethanol and xylene was used with 5% aluminum powder as a dispersion medium, and after mixing in a ball mill for 24 hours, polyvinyl butyral resin was added as a binder, and the mixture was formed into a sheet by a doctor blade method.

このグリーンシートを窒素ガス流中で700°C・2時
間の加熱を行って脱脂後、アルゴンガス流中で1200
℃まで昇温し、そのあと窒素に雰囲気を切り替え、常圧
で1800℃で4時間焼成して、窒化アルミニウムの焼
結板を得た。
This green sheet was degreased by heating at 700°C for 2 hours in a nitrogen gas flow, and then heated at 1200°C in an argon gas flow.
The temperature was raised to .degree. C., and then the atmosphere was changed to nitrogen, and the mixture was fired at 1800.degree. C. for 4 hours at normal pressure to obtain a sintered aluminum nitride plate.

なお、試料番号Iおよび18は1400〜2000℃の
何れの温度にても焼結しなかった。
In addition, sample numbers I and 18 were not sintered at any temperature from 1400 to 2000°C.

得られた窒化アルミニウム扱について、相対密度(焼結
体のかさ密度の真密度に対する割合)、熱伝導率、絶縁
抵抗、表面粗度を測定した結果を併せて第1表に示した
Regarding the obtained aluminum nitride treatment, the relative density (ratio of bulk density to true density of the sintered body), thermal conductivity, insulation resistance, and surface roughness were measured and the results are also shown in Table 1.

実施例2 嘔均粒径1μmの窒化アルミニウム粉末100東量部に
、第2表に示す添加量の、各種化合物(酸化物として換
算)および平均粒径3μmのアトマイズ法によって製造
した純度99.5%のアルミニウム粉末を1分散媒とし
てエタノールとキシレンの混合液を用い、ボールミルで
24時間混合後、バインダとしてポリビニルブチラール
樹脂を添加し、ドクターブレード法によってシート状に
成形した。
Example 2 100 parts of aluminum nitride powder with an average particle size of 1 μm, various compounds (calculated as oxides) added in the amounts shown in Table 2, and a purity of 99.5 manufactured by the atomization method with an average particle size of 3 μm. A mixed solution of ethanol and xylene was used with 1% aluminum powder as a dispersion medium, mixed for 24 hours in a ball mill, polyvinyl butyral resin was added as a binder, and the mixture was molded into a sheet by a doctor blade method.

このグリーンシートを窒素ガス流中で700°C・2時
間の加熱を行って脱脂後、アルゴンガス流中で1200
℃まで昇温し、そのあと窒素に雰囲気を切り替え、常圧
で1800℃で4時間焼成して、窒化アルミニウムの焼
結板を得た。
This green sheet was degreased by heating at 700°C for 2 hours in a nitrogen gas flow, and then heated at 1200°C in an argon gas flow.
The temperature was raised to .degree. C., and then the atmosphere was changed to nitrogen, and the mixture was fired at 1800.degree. C. for 4 hours at normal pressure to obtain a sintered aluminum nitride plate.

得られた窒化アルミニウム板について、相対密度(焼結
体のかさ密度の真密度に対する割合)、熱伝導率、絶縁
抵抗、表面粗度をγ11+1定した結果を併せて第2表
に示した。
Table 2 also shows the results of relative density (ratio of bulk density to true density of the sintered body), thermal conductivity, insulation resistance, and surface roughness determined by γ11+1 for the obtained aluminum nitride plate.

[究明の効果] 第1表および第2表から明らかなように、本発明の方法
によって製造した窒化アルミニウム焼結体は、相対密度
、熱伝導率、絶縁抵抗、表面粗度がすべて優れており、
その工業的価値は頗る大である。
[Effects of the Investigation] As is clear from Tables 1 and 2, the aluminum nitride sintered body produced by the method of the present invention has excellent relative density, thermal conductivity, insulation resistance, and surface roughness. ,
Its industrial value is enormous.

出 願 人 川崎 製 鉄 株 式Out wish Man Kawasaki Made iron KK formula

Claims (1)

【特許請求の範囲】 1 主成分の窒化アルミニウム粉末100重量部に焼結
助剤として、 (イ) アルカリ土類金属酸化物および加熱により熱分
解してアルカリ土類金属酸化物を生成するアルカリ土類
金属化合物より選ばれた1種または2種以上を、アルカ
リ土類金属酸化物に換算して0.01〜5重量部と、 (ロ) 酸化硼素および加熱により熱分解して酸化硼素
を生成する硼素化合物より選ばれた1種または2種以上
を、酸化硼素に換算して0.01〜5重量部と、 (ハ) アルミニウム0.01〜5重量部を、(ニ) 
前記(イ)、(ロ)および(ハ)の合計が10重量部以
下になるように添加し、該混合粉末を成形したのち、非
酸化性雰囲 気中で1400〜2000℃の温度範囲において焼成す
ることを特徴とする窒化アルミニウム焼結体の製造方法
[Scope of Claims] 1. 100 parts by weight of aluminum nitride powder as the main component, and as a sintering aid, (a) an alkaline earth metal oxide and an alkaline earth that is thermally decomposed by heating to produce an alkaline earth metal oxide. One or more selected from similar metal compounds in an amount of 0.01 to 5 parts by weight in terms of alkaline earth metal oxide, (b) Boron oxide and thermal decomposition by heating to produce boron oxide. (c) 0.01 to 5 parts by weight of aluminum, (d) 0.01 to 5 parts by weight, calculated as boron oxide, of one or more boron compounds selected from
The above (a), (b), and (c) are added so that the total is 10 parts by weight or less, and after the mixed powder is molded, it is fired in a non-oxidizing atmosphere in a temperature range of 1400 to 2000 ° C. A method for producing an aluminum nitride sintered body, characterized by:
JP1095382A 1989-04-17 1989-04-17 Production of sintered aluminum nitride Pending JPH02275769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1095382A JPH02275769A (en) 1989-04-17 1989-04-17 Production of sintered aluminum nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1095382A JPH02275769A (en) 1989-04-17 1989-04-17 Production of sintered aluminum nitride

Publications (1)

Publication Number Publication Date
JPH02275769A true JPH02275769A (en) 1990-11-09

Family

ID=14136096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1095382A Pending JPH02275769A (en) 1989-04-17 1989-04-17 Production of sintered aluminum nitride

Country Status (1)

Country Link
JP (1) JPH02275769A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424261A (en) * 1993-12-22 1995-06-13 The Carborundum Company Low temperature sintering route for aluminum nitride ceramics
US5520878A (en) * 1993-12-22 1996-05-28 International Business Machines Corporation Aluminum nitride body and method for forming said body utilizing a vitreous sintering additive
US5541145A (en) * 1993-12-22 1996-07-30 The Carborundum Company/Ibm Corporation Low temperature sintering route for aluminum nitride ceramics
JP2000044345A (en) * 1998-07-24 2000-02-15 Ngk Insulators Ltd Aluminum nitride-based sintered compact, corrosion- resistant member, embedded metal product and apparatus for holding semiconductor
US7553788B2 (en) 2006-09-26 2009-06-30 Tokuyama Corporation Process for producing an aluminum nitride sintered body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424261A (en) * 1993-12-22 1995-06-13 The Carborundum Company Low temperature sintering route for aluminum nitride ceramics
US5520878A (en) * 1993-12-22 1996-05-28 International Business Machines Corporation Aluminum nitride body and method for forming said body utilizing a vitreous sintering additive
US5541145A (en) * 1993-12-22 1996-07-30 The Carborundum Company/Ibm Corporation Low temperature sintering route for aluminum nitride ceramics
JP2000044345A (en) * 1998-07-24 2000-02-15 Ngk Insulators Ltd Aluminum nitride-based sintered compact, corrosion- resistant member, embedded metal product and apparatus for holding semiconductor
US7553788B2 (en) 2006-09-26 2009-06-30 Tokuyama Corporation Process for producing an aluminum nitride sintered body

Similar Documents

Publication Publication Date Title
KR960006250B1 (en) High thermal conductive silicon nitride sintered body and the method of producing the same
US7122490B2 (en) Aluminum nitride materials and members for use in the production of semiconductors
JPS5849510B2 (en) Chitsuka Aluminum Shouketsutaino
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JPH02275769A (en) Production of sintered aluminum nitride
JP2004182585A (en) High purity aluminum nitride powder and method of manufacturing the same, and high purity aluminum nitride sintered compact
JP3100892B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
AU627777B2 (en) Increasing aluminum nitride thermal conductivity via pre- densification treatment
JP2774761B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2541150B2 (en) Aluminum nitride sintered body
EP1036779A1 (en) Aluminium nitride sintered product and process for its production
JP2536448B2 (en) Aluminum nitride sintered body
JP4753195B2 (en) Method for producing aluminum nitride sintered body
JP3046342B2 (en) Method for producing aluminum nitride powder
JP2742599B2 (en) Aluminum nitride sintered body and method for producing the same
JPH0597523A (en) Production of sintered aluminum nitride
JPS63236765A (en) Aluminum nitride sintered body
Kato et al. Properties of sintered TiAl by injection molding
JPS63277572A (en) Production of sintered aluminum nitride
JPH03197366A (en) Preparation of aluminum nitride sintered product
JPH0138075B2 (en)
JPS6163571A (en) Manufacture of aluminum nitride sintered body
JP2000095569A (en) High heat conductivity silicon nitride sintered compact and its production
JPH02275768A (en) Production of sintered aluminum nitride